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In this study, we propose an interfacial operator approach to compute surface phonon modes for one- and
two-dimensional periodic arrays of polar materials in a finite-difference formulation. The key aspect of the
approach is to introduce an interfacial variable along the interface between the polar material and the surround-
ing dielectric material, which represents the local strength of the surface phonon modes along the interface. In
this approach, the apparently nonlinear eigenvalue problem can be reformulated as a quadratic eigensystem,
and thus further reduced to a standard linear eigenvalue problem. Band structures can be computed directly
without the need of examining transmission spectra as in the finite-difference time-domain method, or locating
the mode frequency by testing an auxiliary function in other methods. Applying the method to four different
types of photonic crystals of polar materials, we are able to uncover several interesting results by studying the
effect of dimension, the size �filling ratio� effect, the effects of the transverse optical phonon frequency ��T�,
and longitudinal optical phonon frequency ��L� as well as the effect of shape or geometry of the polar material.
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I. INTRODUCTION

Photonic crystals made of dielectric materials have been
extensively studied since 1987.1,2 The most distinguished
feature is their full band gaps, where periodicity of the struc-
ture provides a scattering mechanism to prohibit propagation
of the electromagnetic field from all directions over certain
ranges of frequencies. If the dielectrics are replaced by per-
fect metals,3–9, the fields are completely expelled from the
metals and vanish inside. As a result, large band gaps can be
opened up. If more realistic dispersive metals replace perfect
conductors in the photonic structures,10–15 collective motion
of free electrons gives rise to resonance in optical properties.
In particular, surface plasmon modes may appear in the op-
tical frequency range, and therefore, these structures are also
named plasmonic crystals.16,17 On the other hand, if polar
materials replace the metals,18–21 surface phonon modes may
result from the coupling of lattice vibration of the ionic
structure and the electromagnetic field. In the meanwhile,
densely distributed resonant cavity modes as well as other
modes also arise in these structures. This type of periodic
structures are termed as photonic crystals of polar materials
or simply polaritonic crystals.21

The model for polar materials considered in the present
study is given by22

���� = ����2 − �L
2

�2 − �T
2� , �1�

where ��=���� is the dielectric constant at a very high fre-
quency, �T is transverse optical �TO� phonon frequency, and
�L is the longitudinal optical �LO� phonon frequency, which
is related to �T through the Lyddane-Sachs-Teller �LST� re-
lation �L

2 /�T
2 =��0� /����. It is known that a polar material

does not support propagating modes with frequencies inside
the polariton gap ��T����L�, while the bulk modes with
frequencies outside the gap follow an anticrossing scheme.
The situation changes drastically if we consider interfaces

between polar materials and other dielectrics. The simplest
interface is a plane between the polar material and a sur-
rounding dielectric. In this case, there exists the surface pho-
non mode with the frequency inside the polariton gap. Let �d
be the dielectric constant of the surrounding medium. At the
large wave number limit, the frequency of the surface pho-
non mode approaches

�sph =����L
2 + �d�T

2

�� + �d
, �2�

which is called the surface phonon frequency. Furthermore, a
periodic array of polar materials may fold the bands within
the first Brillouin zone and produce extra bands not observed
in a simple interface.

There is a large difference between the dielectric photonic
crystals and those made of metals. For dielectrics, the elec-
tric field produces a polarization in the same direction, and
the band structures are scale invariant. For dispersive metals,
the electric field produces an adverse polarization which may
result in a negative dielectric constant due to the electron
motion at frequencies below the plasma frequency �p. The
band structures are no longer scale invariant because of the
characteristic �p of the metal. For arrays of polar materials,
oscillation of the effective charges of the ions due to lattice
vibration results in two distinct classes of resonant modes.
One class of modes are analogous to the case of surface
plasmons in dispersive metals, but usually occurs in the in-
frared frequency range. These waves are surface phonons or
surface phonon modes. The other are resonant cavity modes
or waveguide modes corresponding to very large dielectric
constants lying immediately below �T.

It has been difficult to compute eigenmodes and band
structures of frequency-dependent materials, in particular, for
transverse electric �TE� modes. The major difficulty comes
from the apparently nonlinear formulation of the eigenvalue
problem.23 Several approaches have been proposed to study
this problem, including plane wave expansion method20 and
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vectorial eigenmode expansion method.21 Other approaches
such as transfer matrix method,18 layer-Korringa-Kohn-
Rostoker method,24 multiple multipole method,15 and finite-
difference time-domain method14 can also be applied to
frequency-dependent problems. Another difficulty comes
from the special physical features of the solution. Localized
surface plasmons for arrays of dispersive metal, as well as
surface phonons for arrays of polar material, require very
fine resolution schemes. An even more critical situation is
that the dielectric function changes sign across the dielectric-
metal or dielectric-polar material interface over some fre-
quency ranges. This will cause the change of type of the
eigensystem and may induce numerical instability in solving
the eigenvalue problem.

In one of our previous papers,25 we developed an interfa-
cial operator approach to compute band structures for photo-
nic crystals of dispersive metals. In particular, we considered
the free-electron and the Drude models for the metal prop-
erty. In this approach, the apparently nonlinear eigenvalue
problem can be reformulated as a linear eigensystem which
is solved by standard eigenvalue solvers. In the present
study, we extend this approach to be applicable to photonic
crystals of polar materials with the dielectric function in Eq.
�1�. In this approach, we will obtain a quadratic eigensystem,
which in turn can be reduced to a linear eigensystem at the
expense of doubling the matrix size. Moreover, we can dis-
pense with the need of examining transmission spectra as in
the finite-difference time-domain method, or locating the
mode frequency by testing an auxiliary function in other
methods.

In the present study, we investigate the four types of po-
laritonic crystals in Figs. 1�a�–1�d�. Special emphases are
placed upon the frequency bands within the polariton gap in

addition to the resonant cavity modes with frequencies lying
immediately below �T. The four different photonic crystals
of polar materials enable examination of �i� the effect of
dimension between Fig. 1�a� and Figs. 1�b�–1�d�, �ii� the size
effect or the filling ratio effect �t /a, w /a, r /a�, �iii� the effect
of the intrinsic frequencies �T and �L, as well as �iv� the
geometric effect �different shapes of polar materials� be-
tween Figs. 1�b�–1�d�. It would be helpful to summarize the
main results here and refer to the following sections for more
details.

�1� About the effect of dimension, it will be shown that
while there are only two branches of surface phonon modes
for one-dimensional arrays, our numerical results indicate
that there is infinite number of surface phonon modes for
two-dimensional crystals. However, resonant cavity modes
are supported by polaritonic crystals in both dimensions.

�2� Regarding the effect of �T and �L, it is of interest to
see what would happen if we let �T go to zero and �L tend to
infinity. As �T goes to zero, the resonant cavity modes dis-
appear all together, and as �L goes to infinity the surface
phonon modes cannot be found with finite frequencies. It is
further argued according to the Rayleigh quotient that the
frequency bands of the polaritonic crystal will converge up-
ward to those of the same photonic crystal made of perfect
conductors. For finite values of �L, there are other modes
existing within the polariton gap in addition to the surface
phonon modes. The transition of one such typical mode as
�L goes from finite values to infinity will be discussed.

�3� Concerning the size effect, it will be shown that if the
filling ratio is large, the distribution of resonant cavity modes
is more spread in frequency, and the bulk modes inside the
polariton gap would be expelled more effectively out of the
gap. On the other hand, if the thickness ratio becomes
smaller, the bands of surface phonon modes around �sph is
broadening. It is also argued that anticrossing of band disper-
sion of resonant cavity modes is also a size effect as the
cutoff frequencies for TM modes are dependent upon the
filling ratio.

�4� Finally with the effect of shape and geometry, it will
be shown that the bands of TE modes for the array of circular
cylinders could completely fill in the polariton gap and does
not allow full photonic band gap within it, while the bands of
TE modes for the array of grid cylinders are relatively more
flat, and thus allowing full photonic band gaps within the
polariton gap. It is also shown and argued that the arrays of
grid cylinders are more effective in lifting the degeneracy of
surface phonon modes than the arrays of circular cylinders.

II. INTERFACIAL OPERATOR APPROACH

The time-harmonic wave equations for linear, isotropic
and nonmagnetic materials in two dimensions are given by

−
1

�
�2E = ��

c
�2

E , �3�

− � · �1

�
�H� = ��

c
�2

H �4�

for TM and TE modes, respectively. For periodic structures,
it is sufficient to solve the problem on one unit cell along

FIG. 1. �Color online� Plasmonic crystals made of dispersive
metals. �a� 1D layered structure, �b� 2D array of square cylinders,
�c� 2D array of circular cylinders, and �d� 2D array of grid
cylinders.
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with Bloch’s condition as the boundary condition

E�r + ai� = eik·aiE�r� , �5�

H�r + ai� = eik·aiH�r� , �6�

where k is the wave vector and ai �i=1,2� are the lattice
translation vectors. For frequency-dependent materials, the
eigensystem no longer has a standard format since the eigen-
value itself appears in the solution operator

L���� = �� , �7�

where �=�2 /c2 is the eigenvalue, and � is the eigenfunc-
tion, which can be either the E or the H field. If we discretize
Eq. �7� in a straightforward manner, for example, by a finite-
difference scheme, we will obtain a nonlinear eigensystem

A���x = �x , �8�

where A is the matrix system and x is the eigenvector. This is
one type of nonlinear eigenvalue problem, that is, nonlinear
in eigenfrequency. However, if the dielectric function of the
material has an analytical form, we are able to reformulate
the original nonlinear eigenvalue problem as a standard
eigensystem. For example, the eigensystem for TM modes
�3�, applied with the dielectric function �1�, can be written as

− �2E = ���� − �L

� − �T
��E �9�

or, rearranged in the following form:

��2 − ���L −
1

��

�2� −
�T

��

�2�E = 0, �10�

which is a quadratic eigensystem, with �T=�T
2 /c2 and �L

=�L
2 /c2. By introducing an auxiliary variable E�=�E, Eq.

�10� can be written as

� 0 I

�T

��

�2 �L −
1

��

�2 	�E

E�
� = ��E

E�
� . �11�

This is a linear eigensystem with standard format, which can
be solved by standard eigenvalue solvers at the expense of
doubling the matrix size. However, this could not be done for
the TE modes �4�, for the dielectric function lies inside the
operator.

In our previous study25 we have proposed the interfacial
operator approach to compute surface plasmon modes for
periodic structures made of dispersive metal, based on the
free-electron model. Here, we extend this approach to be
applicable to polar materials.

The basic idea is first to deal with the eigensystem �4� in
the strict insides of the dielectric and the polar material sepa-
rately, so that the dielectric function can be moved out of the
operator in either region as follows:

−
1

�d
�2H = �H , �12�

− �2H = ���� − �L

� − �T
��H , �13�

where �d is the dielectric constant of the dielectric material.
In the polar material, Eq. �13� is further rearranged in the
same manner of Eq. �10� as

��2 − ���L −
1

��

�2� −
�T

��

�2�H = 0. �14�

Next, consider discretization of Eqs. �12� and �14� in a
one-dimensional lattice with the ith point at the interface.
The dielectric medium lies to the left of the ith point, the
polar material to the right. If we discretize Eqs. �12� and �14�
in the strict insides of the dielectric medium and the polar
material, respectively, we obtain a system of equation of the
form

A�n−1��n���Hn = 0, �15�

where A is an �n−1��n matrix, and is quadratic in �, Hn is
the column vector of all discrete H fields, and Hn−1
= 
H1 , . . . ,Hi−1 ,Hi+1 , . . . ,Hn�T is a subset of Hn excluding Hi

at the interface. It is obvious that Eq. �15� does not constitute
an eigenvalue problem because the matrix A is not square.
One more equation is needed. In fact, Eqs. �12� and �14� are
connected by an interface condition

�1

�

�H

�n
�

S
= 0, �16�

where � /�n denotes the derivative in the surface normal di-
rection, and 
¯�S denotes the jump across the interface S.
The interface condition �16� is obtained by integrating both
sides of the eigensystem �4� over a thin box located on the
interface, and taking the limit as the box height goes to zero.
Applying the dielectric function �1� for the polar material,
the interface condition �16� becomes

1

�d
� �H

�n
�

+
=

1

��
�� − �T

� − �L
�� �H

�n
�

−
, �17�

where + and − denote the dielectric and the polar material
regions, respectively. The next step is to rearrange Eq. �17�
as follows:

�L

�d
� �H

�n
�

+
−

�T

��

� �H

�n
�

−
= �S , �18�

so that the eigenvalue � only appears on the right-hand side,
where

S 
1

�d
� �H

�n
�

+
− � 1

��

�H

�n
�

−
�19�

is a weighted difference of the normal derivatives of the H
field across the interface.

Apparently, Eqs. �12� and �14�, supplemented by Eq. �18�,
cannot be formulated as a standard eigensystem in terms of
H, for the right-hand side of Eq. �18� contains the derivatives
of H. This difficulty can be removed by considering a finite-
difference formulation. Recall that Eqs. �12� and �14� have
been put in the discretized form, Eq. �15�. We will also dis-
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cretize Eq. �18� at the interface point i to yield

−
�L

�d
Hi−1 + ��L

�d
+

�T

��
�Hi −

�T

��

Hi+1

= ��− ��Hi−1 + �sumHi − �dHi+1

�d��
� , �20�

where �sum=��+�d. The advantage of discretizing Eq. �18� is
now clear that the right-hand side of Eq. �20� is simply linear
combination of the discrete variables Hi−1, Hi, and Hi+1. The
next key step is to introduce an interfacial variable

Ri 
− ��Hi−1 + �sumHi − �dHi+1

�d��

�21�

to replace Hi at the interface. Equivalently,

Hi =
��Hi−1 + �d��Ri + �dHi+1

�sum
. �22�

Let �1=�L−�T and �2=���L+�d�T. Substituting Eq. �22�
for Hi in Eq. �20� yields

1

�sum
�− �1Hi−1 + �2Ri + �1Hi+1� = �Ri, �23�

which makes the interface variable Ri an ideal substitute for
Hi in formulating the eigenvalue problem. Moreover, we
note that Ri is a discrete version of S in Eq. �19�, and thus a
measure of the weighted difference of the normal derivative
�H /�n in two sides of the interface. This important property
enables Ri to represent the local strength of surface phonon
modes at the interface as a surface phonon mode decays
rapidly from the interface into both the polar material and the
surrounding dielectric.

Finally, all Hi appearing in Eq. �15� is replaced by the
right-hand side of Eq. �22�. Then, Eq. �15� supplemented by
Eq. �23� now constitutes a standard quadratic eigenvalue
problem of the form

An�n���H̃n = 0, �24�

where An�n is a square matrix, and is quadratic in �, and H̃n
is Hn with Hi replaced by Ri. Alternatively, Eq. �24� can be
recast into a more explicit form

��2 − �B − C�H̃ = 0, �25�

where H̃=H̃n, B and C are square matrices. Equation �25�
can be written as a linear eigensystem of double size as fol-
lows:

�0 I

C B
��H̃

H̃�
� = ��H̃

H̃�
� , �26�

where H̃�=�H̃. In the discrete sense, the eigensystem �26�
has the same eigenvalue as the original eigensystem �8�, al-

though the eigenvector H̃ is slightly different from the origi-
nal eigenvector H. However, they can be converted back and
forth between each other through Eqs. �21� and �22�. Most
importantly, Eq. �26� is a standard eigenvalue problem, and
can be solved by many eigenvalue solvers.

The above formulation can be applied to any number of
interfaces. One only needs to introduce the same number of
interfacial variables.

III. EXTENSION TO TWO DIMENSIONS

The method formulated above can be extended to two
dimensions in a straightforward manner. However, the details
are much more involved than in the one-dimensional �1D�
case.

First of all, we discretize the Eqs. �12� and �14� in the
strict insides of the dielectric and the polar material by a
central finite-difference scheme, respectively. The resulting
matrix system is then supplemented by introducing the inter-
facial variables at the interface between the two media. Fig-
ure 2 shows a schematic diagram for the interfacial operator
approach in a two-dimensional structure. There are eight
types of interface points in 2D. Four types of them appear at
sides: left, right, bottom, and top, which are denoted by �l�,
�r�, �b�, and �t�, respectively, and the other four types appear
at corners: bottom left, bottom right, top left and top right,
which are denoted by �bl�, �br�, �tl�, and �tr�, respectively.
This is due to four different surface normal directions in 2D:
vertical, horizontal, and two diagonals, compared to only one
direction in 1D. As a result, there are eight types of interfa-
cial variables in 2D defined as follows:

Ri,j
�l� 

− ��Hi−1,j + �sumHi,j − �dHi+1,j

�d��

,

Ri,j
�r� 

− �dHi−1,j + �sumHi,j − ��Hi+1,j

�d��

,

Ri,j
�b� 

− ��Hi,j−1 + �sumHi,j − �dHi,j+1

�d��

,

Ri,j
�t� 

− �dHi,j−1 + �sumHi,j − ��Hi,j+1

�d��

,

FIG. 2. �Color online� A schematic diagram for the interfacial
operator approach in a two-dimensional structure.
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Ri,j
�bl� 

− ��Hi−1,j−1 + �sumHi,j − �dHi+1,j+1

�d��

,

Ri,j
�br� 

− ��Hi+1,j−1 + �sumHi,j − �dHi−1,j+1

�d��

,

Ri,j
�tl� 

− �dHi+1,j−1 + �sumHi,j − ��Hi−1,j+1

�d��

,

Ri,j
�tr� 

− �dHi−1,j−1 + �sumHi,j − ��Hi+1,j+1

�d��

�27�

or, equivalently,

Hi,j =
��Hi−1,j + �d��Ri,j

�l� + �dHi+1,j

�sum
,

Hi,j =
�dHi−1,j + �d��Ri,j

�r� + ��Hi+1,j

�sum
,

Hi,j =
��Hi,j−1 + �d��Ri,j

�b� + �dHi,j+1

�sum
,

Hi,j =
�dHi,j−1 + �d��Ri,j

�t� + ��Hi,j+1

�sum
,

Hi,j =
��Hi−1,j−1 + �d��Ri,j

�bl� + �dHi+1,j+1

�sum
,

Hi,j =
��Hi+1,j−1 + �d��Ri,j

�br� + �dHi−1,j+1

�sum
,

Hi,j =
�dHi+1,j−1 + �d��Ri,j

�tl� + ��Hi−1,j+1

�sum
,

Hi,j =
�dHi−1,j−1 + �d��Ri,j

�tr� + ��Hi+1,j+1

�sum
. �28�

Following the same procedure for Eq. �23� in 1D, eight in-
terface conditions in 2D can be formulated as

1

�sum
�− �1Hi−1,j + �2Ri,j

�l� + �1Hi+1,j� = �Ri,j
�l�,

1

�sum
��1Hi−1,j + �2Ri,j

�r� − �1Hi+1,j� = �Ri,j
�r�,

1

�sum
�− �1Hi,j−1 + �2Ri,j

�b� + �1Hi,j+1� = �Ri,j
�b�,

1

�sum
��1Hi,j−1 + �2Ri,j

�t� − �1Hi,j+1� = �Ri,j
�t�,

1

�sum
�− �1Hi−1,j−1 + �2Ri,j

�bl� + �1Hi+1,j+1� = �Ri,j
�bl�,

1

�sum
�− �1Hi+1,j−1 + �2Ri,j

�br� + �1Hi−1,j+1� = �Ri,j
�br�,

1

�sum
��1Hi+1,j−1 + �2Ri,j

�tl� − �1Hi−1,j+1� = �Ri,j
�tl�,

1

�sum
��1Hi−1,j−1 + �2Ri,j

�tr� − �1Hi+1,j+1� = �Ri,j
�tr�. �29�

As to the strict insides of the dielectric and the polar mate-
rial, Eqs. �12� and �14� are discretized to give

�2Hi,j + �� 1

�dh2Li,j� = 0, �30�

�2Hi,j + �� 1

��h2Li,j − �LHi,j� −
�T

	�h2Li,j = 0, �31�

where Li,j =Hi−1,j +Hi,j−1−4Hi,j +Hi+1,j +Hi,j+1.
Second, since there are four neighbor points instead of

two, incorporated in the discretization of the �2 operator in
2D, replacing Hi,j at the interface in Eqs. �30� and �31� with
Rij through Eq. �28� becomes more complicated in 2D. How-
ever, this could be done in a systematic and efficient way.
Equations �29� to �31� are combined together to form a qua-
dratic eigensystem in the same form of Eq. �25�, which in
turn can be written as a linear eigensystem as in Eq. �26�.

FIG. 3. �Color online� The dispersion relations at k=0 for a
one-dimensional polaritonic layered structure 
Fig. 1�a�� of thick-
ness t /a=0.2, where �Ta /2
c=0.4, �La /2
c=1, and ��=5.1.
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IV. RESULTS AND DISCUSSION

In the present study, we consider the polar material TlCl
used in Ref. 21, where ���5.1, �Ta /2
c�0.4, and
�La /2
c�1.0 for the lattice constant a=10 	m. For �d�1,
we have �spha /2
c�0.9286, according to Eq. �2�. First of
all, we will study the one-dimensional crystal in Fig. 1�a�,
and then proceed with the study of two dimensional crystals
in Figs. 1�b�–1�d�.

A. 1D array of polar materials

For the one-dimensional layered structures 
Fig. 1�a��,
there are two surface phonon modes inside the polariton gap
��T����L� for the TE bands. One has a lower frequency
with odd symmetry and the other has a higher frequency
with even symmetry. Figure 3 shows the dispersion relations
at the zone center �k=0� for the thickness ratio t /a=0.2. The
insets show the eigenmodes of two TE bands at the off-line
wave number �a /2
=2, and of the lower band at �a /2

=0.7, where � is the wave number parallel to the interface.
Note that a crossing scheme is observed between the two TE
bands in the polariton gap for k=0. Near the crossing point,
usually at a small off-line wave number, the mode of the
lower TE band switches from even symmetry to odd symme-
try. In addition, we see an anticrossing scheme between the
two TE bands inside the polariton gap for k�0. Figure 4
shows the dispersion relations at ka /2
=0.1 for the same
structure in Fig. 3. In this case, the eigenmodes of the two
TE bands no longer possess perfectly different symmetries of
odd and even at small off-line wave numbers. This is due to

the phase difference eika of the modes between the two sides
of the unit cell, as can be seen from the Bloch condition �6�.
In view of the similar symmetries of the modes, no intersec-
tions can be found between the two TE bands.26 However,
they eventually grow into even and odd modes at large off-
line wave numbers, for the fields at the unit cell boundary
become very small due to the evanescent nature of surface
phonon modes.

Splitting of the modes comes from interaction of surface
phonons on both sides of the polar material as well as the
dielectric. The mode with even symmetry has a higher fre-
quency because the mode structure has a larger area that
effectively corresponds to a larger energy. At sufficiently
large off-line wave numbers, the frequencies of two surface
phonon modes converge to the same frequency �sph given in
Eq. �2�. For a very thin structure, convergence of surface
phonon modes is slow. This is due to effective interaction of
the modes from both sides of the polar material, which lifts
the degeneracy. Figure 5 shows the dispersion relations at
ka /2
=0.5 for the thickness ratio t /a=0.1. In a range of
medium fractions of the polar material, convergence of sur-
face phonon modes becomes faster. However, for a very high
filling fraction, convergence is slow again, for the degen-
eracy is again lifted by effective interaction of the modes
from both sides of the dielectric. Figure 6 shows the disper-
sion relations at the zone edge �ka /2
=0.5� for the thickness
ratio t /a=0.9. In the meanwhile, the higher TE band inside
the polariton gap has a higher frequency that approaches the
LO phonon frequency �L at zero off-line wave number. This
is reasonable for the whole lattice is almost filled with the
polar material. Another important fact in Fig. 6 is the nega-

FIG. 4. �Color online� The dispersion relations at ka /2
=0.1
for a one-dimensional polaritonic layered structure 
Fig. 1�a�� of
thickness t /a=0.2, where �Ta /2
c=0.4, �La /2
c=1, and ��

=5.1.

FIG. 5. �Color online� The dispersion relations at ka /2
=0.5
for a one-dimensional polaritonic layered structure 
Fig. 1�a�� of
thickness t /a=0.1, where �Ta /2
c=0.4, �La /2
c=1, and ��

=5.1.
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tive group velocity of the higher TE band, which occurs as
the dielectric portion becomes sufficiently small. This is con-
sistent with the property of left handedness for the wave-
guide stack in Ref. 27, which serves as an approach to mak-
ing a material with a negative index of refraction. Figure 6
also shows that as the thickness ratio t /a is close to 1, all the
frequency bands �bulk modes� are expelled from the polar-
iton gap, except the two TE bands �surface modes� which
converge to �sph from below and above, respectively, at large
off-line wave numbers.

In addition to surface phonon modes inside the polariton
gap, a large number of nearly dispersionless bands for both
TM and TE modes intensively gather around the TO phonon
frequency �T from below. They are resonant cavities
modes28 which correspond to very large values of dielectric
constant. Figure 6 further shows that the bands of resonant
cavity modes are more spread if the thickness ratio t /a is
large. This can be explained by examining the waveguide
modes in high-� cylinders, and we will come back to this
point in the discussion for two-dimensional arrays of polar
materials.

B. 2D arrays of polar materials

In order to ensure the accuracy of the eigenfrequencies,
computations are performed on five different grids. Table I
lists the numerics of �2 and �48 for TE modes at the zone
center  for a square array of square cylinders in Fig. 1�b�.
Here, �2 is the first nonzero eigenfrequency, and �48 is the
48th eigenfrequency which is close to the TO phonon fre-
quency �T. The computed results show good agreements be-

tween different grid resolutions. Figure 7 also shows the dis-
tribution of eigenfrequencies for the same structure. The
frequencies are little dependent on the grid level except in
two distinct regions: one below the TO phonon frequency �T
�resonant cavity modes� and one around the surface phonon
frequency �sph �surface phonon modes�. As expected, the
modes intensively distributed below �T are the resonant cav-
ity modes, which we have also observed in one-dimensional
layered structures. However, contrary to the one-dimensional
polaritonic crystals which have only two branches of surface
phonon modes, the two-dimensional polaritonic crystals ap-
parently have infinite degrees of surface phonon mode gath-
ering around the surface phonon frequency �sph. The same
figure appears to indicate that the number of resolved surface
phonon modes �resonant cavity modes� increases linearly
�quadratically� with the number of grid points.

In order to see the fuller details, we plot the bands of TM
and TE modes separately in Figs. 8 and 9 for a square array
of circular cylinders of radius r /a=0.3 in Fig. 1�c�. The same
figures also show the bands of the metallodielectric crystal
for comparison, where polar materials are replaced by per-
fect conductors. Both polarizations �TM and TE� have reso-
nant cavity modes. However, only one polarization �TE� has
surface phonon modes. These two types of modes �surface
phonon modes and resonant cavity modes� come from differ-
ent physical origins. For frequencies immediately below �T,
there is large dielectric constant which can support infinite
degrees of resonant cavity modes. On the other hand, surface
phonon modes come from the coupling between the electro-
magnetic wave and vibration of the ionic charge of the polar

FIG. 6. �Color online� The dispersion relations at ka /2
=0.5
for a one-dimensional polaritonic layered structure 
Fig. 1�a�� of
thickness t /a=0.9, where �Ta /2
c=0.4, �La /2
c=1, and ��

=5.1.

TABLE I. Convergence test for the eigenfrequency against the
grid size.

Ngrid 202 302 402 502

�2a /2
c 0.2580 0.2583 0.2585 0.2585

�48a /2
c 0.3887 0.3895 0.3906 0.3911

FIG. 7. �Color online� The eigenfrequencies for TE modes ver-
sus the index of eigenmode computed with different grid resolutions
at the point  for a square array of square cylinders 
Fig. 1�b�� of
half width w /a=0.2 where �Ta /2
c=0.4, �La /2
c=1, and
��=5.1.
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material, which is not allowed for TM modes.
If �T goes down to zero, resonant cavity modes would

disappear, and �L would act similar to �p �plasma frequency
in the free-electron model for dispersive metals�. If also �L
goes to infinity, the frequency of surface phonon modes
would go to infinity as well, and all the other bands would
converge upward to the bands of the metallodielectric crys-
tals. This upward convergence can be explained by consid-
ering the Rayleigh quotient for TE modes �also for TM
modes�

RH =
�H,LH�
�H,H�

, �32�

where �f ,g�=�Vcell
f*gd� denotes the inner product of f and g

over the unit cell Vcell. Each eigenfrequency is obtained by
minimizing the Rayleigh quotient with respect to functions
which are orthogonal to all the lower frequency modes. Note
that perfect conductors expel fields completely. The metall-
odielectric crystal therefore has less freedom in distributing
the energy in the unit cell, and has higher eigenfrequencies
compared to the arrays of polar materials which allow lim-
ited energy distribution in themselves. Below, we shall focus
on discussion of resonant cavity modes and surface phonon
modes separately.

1. Resonant cavity modes

Important physics related to resonant cavity modes have
been investigated in depth in Ref. 28, such as anticrossing

interaction of the TE bands with the metallodielectric bands,
node switching from one pattern to another, flux expulsion
with small changes in frequency across the TO phonon fre-
quency �T, and so forth. Although resonant cavity modes
have similar dispersionless characteristic as surface phonon
modes, they are bulk modes in nature, and the number of
which is even larger than that of surface phonon modes.
From Fig. 7, we see that the number of stationary modes
around the TO phonon frequency �T increases quadratically
with the grid resolution. This is consistent with the reso-
nances of the square cavity to the metallic waveguide modes
with frequencies �lm determined by two free indices l and
m28

�lm =

c

2w��lm

�l2 + m2, �33�

where �lm=����lm
2 −�L

2� / ��lm
2 −�T

2�. Solving Eq. �33� for �lm

yields28

�lm
2 =

2�lm
2 �T

2

�L
2 + �lm

2 + ���L
2 + �lm

2 �2 − 4�lm
2 �T

2
, �34�

where �lm=
c�l2+m2 /2w��� with w the half width of the
square cavity. The expression �34� indicates �T is the upper
limit frequency of resonant cavity modes for if �lm goes to
infinity, �lm approaches �T. On the other hand, if �lm goes to
0, �lm approaches �lm�T /�L. Therefore, for large fraction of

FIG. 8. �Color online� The TM band structure for a square array
of circular cylinders 
Fig. 1�c�� of radius r /a=0.3, where
�Ta /2
c=0.4, �La /2
c=1, and ��=5.1. The dashed lines denote
the bands of metallodielectric crystals obtained by replacing the
polar material with a perfect metal.

FIG. 9. �Color online� The TE band structure for a square array
of circular cylinders 
Fig. 1�c�� of radius r /a=0.3 where
�Ta /2
c=0.4, �La /2
c=1, and ��=5.1. The dashed lines denote
the bands of metallodielectric crystals obtained by replacing the
polar material with a perfect metal.
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polar materials, that is, large value of w /a, the resonant
bands spread more widely.

As the frequency approaches �T from below, the bands
become more concentrated. All these bands are flattened ex-
cept an anticrossing interaction with the bands of metallodi-
electric crystals �by replacing the polar material with a per-
fect metal�, in particular, for TE modes. The anticrossing
interaction is present only for modes with even symmetry
with respect to the wave vector, and is possible due to small
but finite leakage of the modes out of the polar material,28

while the field for the metallodielectric structure is com-
pletely compelled from the perfect metal. In Fig. 10, we plot
the portion of the TE bands along the -X path for a square
array of square cylinders of half width w /a=0.2, along with
the real part of the magnetic field of the eigenmodes for the
second polaritonic band and the first metallodielectric band
at ka /2
=0.4, which is near the anticrossing point. We can
observe the leakage of the magnetic field out of the polar
material in Fig. 10�b�, with a contrast to the completely ex-
pelled field out of the perfect metal in Fig. 10�c�. The overlap
integral of the two modes serves as an indication of the an-
ticrossing interaction.28 Therefore, we define an anticrossing
index � for the two modes f and g as

� =
��f ,g��2

�f , f��g,g�
. �35�

For two modes with different symmetries, this value is zero
and there are no anticrossing schemes, while for two modes

with like symmetries, this value is always larger than zero
and an anticrossing scheme can be observed. In this case, for
f and g correspond to the modes in Figs. 10�b� and 10�c�,
respectively, the anticrossing index �=0.277.

In Ref. 28, the anticrossing interaction occurs only for TE
modes, for the TM metallodielectric band usually has a cut-
off frequency higher than the chosen TO phonon frequency
�T in normalized unit, and thus no anticrossing interaction
was found for TM modes. However, the anticrossing inter-
action can also be observed for TM modes if the cutoff fre-
quency is small enough such that the metallodielectric band
penetrates through the resonant bands. A lower cutoff fre-
quency for the corresponding TM metallodielectric band can
be obtained with a smaller filling fraction of the polar mate-
rial. In Fig. 11, we plot the portion of the TM bands along
the -X path for a square array of square cylinders of half
width w /a=0.05, along with the real part of the electric field
of the eigenmodes for the second polaritonic band and the
first metallodielectric band at ka /2
=0.2, which is near the
anticrossing point. In this case, the two modes in Figs. 11�b�
and 11�c� has an anticrossing index �=0.835, which is sub-
stantially larger than that for Figs. 10�b� and 10�c�. This is
due to more leakage of the electric field out of the polar
material for TM modes in Fig. 11�b�, which can be explained
on a unified basis by examining different types of boundary
conditions for TM and TE modes, respectively. For TE
modes, the interface condition 
 1

�
�H
�n

�
S allows a drastic

change of the magnetic field across the interface S between

FIG. 10. �Color online� �a� The TE band structure for a square
array of square cylinders 
Fig. 1�b�� of half width w /a=0.2 where
�Ta /2
c=0.4, �La /2
c=1, and ��=5.1. �b� The real part of the
eigenmode for the second polaritonic band at ka /2
=0.4. �c� Same
as �b� for the first metallodielectric band.

FIG. 11. �Color online� �a� The TM band structure for a square
array of square cylinders 
Fig. 1�b�� of half width w /a=0.05, where
�Ta /2
c=0.4, �La /2
c=1, and ��=5.1. �b� The real part of the
eigenmode for the second polaritonic band at ka /2
=0.2. �c� Same
as �b� for the first metallodielectric band.

INTERFACIAL OPERATOR APPROACH TO COMPUTING¼ PHYSICAL REVIEW B 73, 235123 �2006�

235123-9



the dielectric and the polar material, which may prevent a
large leakage of the field from the polar material to the di-
electric. On the contrary, for TM modes, the interface condi-
tion 
 �E

�n
�

S has to be satisfied at the interface S. Continuity of
the normal derivative of the electric field prevents a drastic
change of the electric field across the interface, and results in
a larger leakage of the field out of the polar material. More
leakage of the electric field gives rise to a larger value of the
overlap integral, which also means that the anticrossing be-
havior is stronger. However, due to the cutoff behavior of the
metallodielectric band, the anticrossing scheme is not so
typical as for TE modes.

2. Surface phonon modes

For the one-dimensional layered structures 
Fig. 1�a��,
there are only two surface phonon modes with odd and even
symmetries, and the offline wave number is essential to pro-
vide the momentum along the interface and sustain surface
phonon modes. For the two-dimensional structures 
Figs.
1�b� and 1�d��, there are as many surface phonon modes as
possible, and the off-plane wave number is not necessary to
sustain surface phonon modes. This is because the two-

dimensional structure has a continuous interface which al-
lows a degree of freedom to sustain the mode oscillation.
Figure 12 shows the H field in magnitude for four typical
surface phonon modes at the point  near the surface phonon
frequency �sph for a square array of square cylinders of half
width w /a=0.3. Note that in all the plots of the TE eigen-
modes, the H field is normalized to have maximum unity,
that is, �H�max=1. Surface phonon modes may be as sharp as
a knife edge living on the interface. With the interfacial op-
erator approach, it only takes a few points to resolve this
feature. Note that in Fig. 12 the typical feature of the surface
phonon modes is similar except a different variation along
the interface. However, the eigenfrequency is almost identi-
cal.

Apparently variation of the H field along the interface
between the polar material and the dielectric does not alter
the value of the eigenfrequency, and the interface can sustain
as many stationary modes as it could. Consequently, there
are expected to be infinite number of surface phonon modes
around �sph, analogous to the case of surface plasmon
modes.14,25 The highly degenerate nature and infinite number
of surface phonon modes can be further explained through
the Rayleigh quotient RH �32�. It is known that the eigenfre-

FIG. 12. �Color online� The H field in magnitude for four typical surface phonon modes with �a /2
c=0.9286 at the point  near the
surface phonon frequency �sph for a square array of square metallic cylinders 
Fig. 1�b�� of half width w /a=0.3, where �Ta /2
c=0.4,
�La /2
c=1, and ��=5.1.
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quency corresponds to minimization of the Rayleigh quotient
under a constraint that the corresponding eigenfunction be
orthogonal to all previously obtained eigenfunctions. For a
linear operator L, Eq. �32� can be used directly, while for a
nonlinear operator, the Rayleigh quotient RH has to be ob-
tained in a slightly different manner. Based on the interfacial
operator approach developed in the previous section, we re-
write the eigensystems �12� and �14� in the dielectric and the
polar material regions, respectively, as

�2H + �� 1

�d
�2H� = 0, �36�

�2H − ���LH −
1

��

�2H� −
�T

��

�2H = 0. �37�

Taking inner product of H with each term of the above two
equations, adding them together, performing the integration
by parts, and using the Bloch condition �6�, we obtain a
quadratic expression for the Rayleigh quotient RH:

RH
2 A − RHB + C = 0 �38�

or, equivalently,

RH =
B ± �B2 − 4AC

2A
, �39�

where

A = �
Vcell

�H�2d� ,

B = �
Sm

H*Sda +
1

�d
�

Vd

��H�2d� + �
Vm

� 1

��

��H�2

+ �L�H�2�d� ,

C = −
�T

��
�

Sm

H*� �H

�n
�

−
da +

�T

��
�

Vm

��H�2d� , �40�

with Vd and Vm denoting the volumes of the dielectric and
the polar material, respectively, of the unit cell, and Sm the
surface of Vm. In the expression of B, S appears in the sur-
face integral term, which accounts for the contribution of the
strength of surface phonon mode to the eigenfrequency. Note
also that only the normal derivative of the H field occurs in
the surface integral, and the tangential variation of the H
field will not change the value of RH as well as the eigenfre-
quency. There can be as many modes as possible if the varia-
tion of the H field in the normal direction to the interface
remains unchanged. This can be verified from the field pat-
terns of the typical surface phonon modes in Fig. 12, which
shows different degrees of oscillation along the interface. All
the four modes have the same frequency �a /2
c=0.9286
with three significant digits. Surface phonon modes of higher
oscillation can be resolved only when the grid resolution is
fine enough to tell the tangential variation.

Another important aspect of surface phonon modes is
band flattening and band broadening. The band flattening for
the two-dimensional structures 
Figs. 1�b�–1�d�� is due to
strong phonon-photon coupling that reduces the band
dispersion.19 Basically, band flattening occurs for frequency
bands around the surface phonon frequency �sph and reso-
nant cavity modes below the TO phonon frequency �T.
However, the shape/geometry of the polar material is a major
factor in determining the overall band pattern. Figures 13
and 14 show the band structures for a square array of grid
cylinders of thickness t /a=0.1 
Fig. 1�d��. In particular, Fig.
14 shows that the flattened bands gathering around the sur-
face phonon frequency �sph spread more widely compared to
those of circular cylinders in Fig. 9. This is the phenomenon
of band broadening, which is similar to the behavior of sur-
face phonon modes for plasmonic crystals.25 This band
broadening is due to effective interaction of the modes on
both sides of the polar material, which lifts the degeneracy.
Moreover, the overall band structure for the grid cylinders
exhibits a general flattening tendency, thus opening up wide
photonic band gaps within the polariton gap ��T����L�.
As a comparison, Fig. 9 for round-shaped circular cylinders,
shows that the frequency bands inside the polariton gap ex-
tends widely in frequency, blocking the full gap region and
denying opening up of photonic band gaps. On the other
hand, the bands of resonant cavity modes for grid cylinders
become more concentrated near �T because thin-striped po-
lar materials allow less freedom in distributing the fields of

FIG. 13. �Color online� The TM band structure for a square
array of grid cylinders 
Fig. 1�d�� of thickness t /a=0.1 where
�Ta /2
c=0.4, �La /2
c=1, and ��=5.1. The dashed lines denote
the metallodielectric bands obtained by replacing the polar material
with a perfect metal.
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bulk modes. If the thickness ratio t /a or r /a is large, surface
phonon modes are more densely distributed in frequency,
while resonant cavity modes spread more widely.

3. Longitudinal modes

The electromagnetic fields are transverse in nature. How-
ever, longitudinal modes may exist in a material when the
dielectric constant becomes zero. According to the dielectric
function �1� for polar materials, a longitudinal mode exists
when its eigenfrequency is equal to the LO phonon fre-
quency �L. That also means oscillation of the electric field
coincides with the coherent motion of the electrons. As with
surface phonon modes, longitudinal modes appear only in
the TE modes, for the transversality condition of the E field
�� ·E=0� is always met for the TM modes. However, longi-
tudinal modes are difficult to obtain due to singularity of the
operator in Eq. �4�. Nevertheless, with rearrangement of the
interfacial operator approach in Eq. �4�, based on the dielec-
tric function �1�, the singularity is removed and longitudinal
modes can be solved. Figure 15 shows the static mode at the
point  for a square array of circular cylinders of radius
r /a=0.3. Note that the longitudinal mode is constant in the
metal, which is the typical feature of longitudinal oscillation.

V. CONCLUDING REMARKS

In this paper, we proposed the interfacial operator ap-
proach to compute band structures of polaritonic crystals or

photonic crystals of polar materials in one and two dimen-
sions. In particular, an interfacial variable is introduced to
measure the weighted difference of the normal derivatives of
the H field across the interface, and thus accounts for the
local strength of the surface phonon modes. Fine resolution
at different grid levels shows that the mode frequencies are
not very dependent upon the number of grid points except
for the possible infinite degeneracy of surface phonon modes
and the many resonant cavity modes. The number of re-
solved resonant cavity modes and surface phonon modes do
depend on the grid resolution.

The method has been applied to study four types of pho-
tonic crystals of polar materials. In particular, we have ex-
amined the effects of dimension, the size �filling ratio� effect,
the effect of the intrinsic frequencies �T �the transverse op-
tical phonon frequency�, and �L �the longitudinal optical
phonon frequency� as well as the geometric �shape� effect of
the polar material. Physical details have been discussed re-
garding the crossing and anticrossing schemes of band dis-
persion, distribution of resonant cavity modes, localized na-
ture of surface phonon modes, lifting degeneracy by thinning
polar materials, and the limiting behaviors of the band struc-
tures at the small limit of �T and large limit of �L. Several
interesting features were uncovered and explained and the
main results were summarized in the Introduction. As a final
remark, we have not considered the effect of dissipation of
polaritonic structures which is substantial in the infrared re-
gime. The issue is now under investigation, and the results
will be reported elsewhere.
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FIG. 14. �Color online� The TE band structure for a square array
of grid cylinders 
Fig. 1�d�� of thickness t /a=0.1, where
�Ta /2
c=0.4, �La /2
c=1, and ��=5.1. The dashed lines denote
the metallodielectric bands obtained by replacing the polar material
with a perfect metal.

FIG. 15. �Color online� The longitudinal mode at the point  for
a square array of circular cylinders 
Fig. 1�c�� of radius r /a=0.3
where �Ta /2
c=0.4, �La /2
c=1, and ��=5.1.
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