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Abstract: The author investigates the characteristics of magnetic res-
onance band gaps for split ring structures. Resonance band gap width is
related to the discrepancy of resonance frequency at two different Bloch
wavelength scales. Large band gaps are achieved by loweringthe resonance
frequency on one hand, and raising the dissimilarity between two respective
resonant modes on the other. By increasing the internal fraction of ring
area, large resonance band gaps are obtained. The band gap features alter
as the plasmonic effect becomes significant, where the kinetic inductance
outweighs the geometric one and the magnetic resonance attenuates.
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1. Introduction

Split ring resonator (SRR) [1] has been the essential element in the design of metamaterials in
recent years [2, 3]. Due to the adverse magnetic response [4,5], SRR structures may in effect
exhibit a negative permeability, which is not available in naturally occurring materials. This un-
usual property comes from resonance of fields within the SRR element, and can be described in
terms of the equivalent circuit model [6]. An SRR element is understood as an electromagnetic
analog ofLC circuit, in which the ring acts as an inductor and the gap as a capacitor. As the
time-varying magnetic field aligns parallel to the ring axis, currents and charges are induced
on the metal surface. Near the resonance condition, the resultant field amplitude is strongly en-
hanced. Once the frequency goes above the resonance, the phase continues to lag behind until
it is completely out of phase to the incident field. As a result, the magnetic response behaves in
an adverse manner.

In order to seek for a large magnetic activity, a very inhomogeneous field distribution within
the SRR element is required [1]. As a gap is brought into the ring to build a split ring configu-
ration, the ring geometry becomes an open boundary instead of a closed one. An extra degree
of freedom for field oscillation is introduced into the system, and the gap behaves like a defect
[7]. Due to the concentration of energy within the SRR element, magnetic resonance for SRR
structures occurs at a relatively lower frequency range. A similar feature appears for acoustic
wave in the locally resonant sonic materials [8].

As the field is localized within individual SRR elements (with rather weak interactions be-
tween neighboring cells) when the magnetic resonance occurs, the propagation of field may be
prohibited over a certain frequency range. In periodic structures, the local resonance is coupled
to periodic scattering, resulting in a hybridization of Bragg and resonance bands [9]. Broad-
ening of individual resonance thus leads to the formation offorbidden gaps in the dispersion
diagram. For SRR structures, the resonance region can be effectively enlarged by making good
use of the geometric property.

In this study, the author aims to explore the mechanism of magnetic resonance band gaps for
SRR structures, and identify the features of large band gapsin terms of resonant modes. The
interface matching method [10, 11, 12] is employed to solve the underlying problem, where the
plasmonic effect is taken into account through the skin depth. The basic thinking for obtaining
large resonance gaps is first to identify the key features of resonant modes at the upper and lower
band edges, respectively, and then to raise the dissimilarity between the two respective modes
so that the discrepancy of resonance frequency would be significant. By increasing the internal
fraction of ring area, the band gap width as well as gap ratio can be substantially enlarged.
In particular, the square SRR structure with large width andsmall thickness may possess a
rather large band gap. The underlying mechanism is illustrated with the resonant mode patterns
at the upper and lower band edges, which occur at two different Bloch wavelength scales. The
present results are compared with the permeability model based on the effective medium theory
[1] when the skin depth is negligible. As the plasmonic effect becomes significant, the band
gap features alter due to the increasing importance of kinetic inductance and the attenuation of
magnetic resonance.
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Fig. 1. Dispersion diagram for a square SRR structure withs/a = 0.8, t/a = 0.04, d/a =
0.2. Yellow region is the resonance band gap and dashed lines are results for a closed ring
structure (d = 0) with the sames andt. The unit cell and geometric parameters are shown
on the right.

2. Results and discussion

2.1. Localized nature of magnetic resonance

First, the case of vanishing skin depthδp ≈ 0 is considered for characterizing the magnetic
resonance features that are solely determined by the geometry. Figure 1 shows the dispersion
diagram for a square SRR structure withs/a = 0.8, t/a = 0.04, andd/a = 0.2. Magnetic res-
onance is characterized by aresonance frequency branch (in red color) for TE polarization,
which is absent for a closed ring structure. For comparison,the results ford = 0 are overlaid in
the same plot with dashed lines. This resonance branch appears between the two fundamental
modes: acoustical and optical, where the acoustical (lower) branch begins with zero frequency
and grows as the wave number increases, and the optical (higher) branch begins with a cutoff
frequency and goes downward. A magnetic resonance band gap is opened immediately below
the resonance branch. The upper band edge occurs at the Brillouin zone center (pointΓ) on the
resonance branch, while the lower edge locates at the zone edge (pointM) on the acoustical
branch.

The major feature of magnetic resonance is manifest on the mode patterns in terms of mag-
netic field vectors, as shown in Fig. 2 for a square SRR structure withs/a = 0.5, t/a = 0.04, and
d/a = 0.1. A common feature is shared for the eigenmodes at both band edges: the fields are
intense inside the SRR element, outside which the field amplitudes are substantially reduced
and the field orientations are even reversed. This feature can be realized as being due to the
depolarization field for a periodic structure with infinite extent [1]. The mode pattern in Fig. 2
also depicts alocalized nature since the fields are strongly concentrated within theindividual
SRR element with rather weak interactions between neighboring cells. Localization prevents
the field or energy from being transferred across the unit cell and indicates the existence of
band gap.

The field patterns outside the SRR element exhibit a different feature. In Fig. 2(a), asymmet-
ric pattern is shown in the region outside the SRR element, whileFig. 2(b) displays anantisym-
metric distribution. This distinction is due to the phase change across the unit cell, according to
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Fig. 2. Magnetic field contours (Re[H]) of the eigenmodes for a square SRR structure with
s/a = 0.5, t/a = 0.04, andd/a = 0.1. Red and green colors correspond to positive and
negative values, respectively. (a) the upper band edge: pointΓ on the resonance branch
with ωa/2πc = 0.304. (b) the lower band edge: pointM on the acoustical branch with
ωa/2πc = 0.256. The band gap width is 0.048(2πc/a) and the gap to mid-gap ratio is
17%.

Fig. 3. Magnetic field contours (Re[H]) of the eigenmodes for a square SRR structure with
s/a = 0.8, t/a = 0.04,d/a = 0.2 at (a) the upper band edge withωa/2πc = 0.261, and (b)
the lower band edge withωa/2πc = 0.151. The band gap width is 0.11(2πc/a) and the
gap to mid-gap ratio is 53.4%.

Bloch’s theorem. Near the Brillouin zone edge (e.g. the point M), the Bloch wavelength is com-
parable to the unit cell size and the fields are out of phase to each other on opposing sides of the
cell boundary. The difference in mode patterns accompaniesa change of resonance frequency,
which makes up the resonance band width.

2.2. Features of large resonance band gaps

A gap is associated with a resonance due to the coupling of individual resonance with the
lattice scattering. The hybridization of Bragg and resonance bands leads to the broadening of
individual resonance and the opening of band gaps [9]. For SRR structures, this feature was
illustrated with the eigenmode patterns at two different Bloch wavelength scales (cf. Fig. 2).
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By raising thedissimilarity between two respective eigenmodes, the resonance region can be
enlarged as well. This is attained by increasing the internal fraction of ring area or, equivalently,
reducing the portion outside the ring. Figure 3 shows the eigenmode patterns for a square SRR
structure with a larger internal fraction (s/a = 0.8, t/a = 0.04,d/a = 0.2). As the region allowed
for field variation (outside the ring) becomes smaller, the dissimilarity between Fig. 3(a) and
(b) becomes more evident. Note that the resonant frequency at the upper band edge is slightly
decreased, whereas the frequency at the lower band edge is greatly reduced. Accordingly, a
substantially enlarged band gap width [from 0.048(2πc/a) to 0.11(2πc/a)] and gap to mid-gap
ratio (from 17% to 53.4%) are obtained.
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Fig. 4. Dispersion diagrams for the square SRR structures withs/a = 0.95 andt/a = 0.01.
(a) the optimal band gap width 0.252(2πc/a) atd/a = 0.85, (b) the optimal gap to mid-gap
ratio 109% atd/a = 0.2.

As the internal fraction of ring area is further increased, the band gap size can be even larger.
Figure 4 shows the dispersion diagrams for SRR structures with a rather large widths/a =
0.95 and small thicknesst/a = 0.01. In Fig. 4(a), an optimal band gap width 0.252(2πc/a) is
attained at a large gap distanced/a = 0.85, and in Fig. 4(b), an optimal gap to mid-gap ratio
109% is achieved at a small gap distanced/a = 0.2. It is noticed that the resonance frequency
at the lower band edge is substantially reduced [0.138(2πc/a) and 0.079(2πc/a) in Fig. 4(a)
and (b), respectively]. This is due to a large equivalent inductanceL associated with a high
fraction of internal area. For a small gap distance, the equivalent capacitanceC is also large and
the resonance frequency is even lower [cf. Fig. 4(b)].
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Fig. 5. Band gap widths and gap to mid-gap ratios of the SRR structures witht/a = 0.01
for variousd/a ands/a.

(C) 2008 OSA 8 December 2008 / Vol. 16,  No. 25 / OPTICS EXPRESS  20190
#98860 - $15.00 USD Received 15 Jul 2008; revised 1 Nov 2008; accepted 14 Nov 2008; published 24 Nov 2008



The ring gap distance serves as another important geometricparameter that affects the band
gap size. Since the gap is a passage between the inner and outer regions of the SRR element,
a large gap distance may further raise the dissimilarity of resonant mode patterns between the
two band edges. In Fig. 5, the band gap widths and gap to mid-gap ratios are plotted for various
gap distances. It is shown that the optimal band gap width tends to occur at a large gap distance.
On the other hand, the optimal gap to mid-gap ratio is likely to occur at a small gap distance,
where the resonance frequency is lower due to a larger equivalent capacitance.

2.3. Effect of the internal fraction

The basic feature of magnetic resonance band gap for SRR structures can be related to the
internal fraction through the effective permeability. According to the effective medium theory
[1], a periodic array of SRR elements can be regarded as a homogeneous medium having the
effective permeability

µeff = 1−
Fω2

ω2−ω2
0

, (1)

at the long wavelength, whereω0 is the resonance frequency of the equivalentLC circuit and
F is the internal fraction of ring area. Based on this permeability model, µeff < 0 in the range
ω0 < ω < ωm, whereωm = ω0/

√
1−F is considered as themagnetic plasma frequency for

SRR structures [1, 13]. In principle, this frequency range would be the forbidden region in the
dispersion diagram, in whichω0 andωm correspond to the upper and lower bounds of magnetic
resonance, respectively. As the fractionF is increased, the lower boundω0 is reduced due to
a larger equivalent inductanceL for a bigger ring (ω0 ∝ 1/

√
L), provided that the ring gap

distance remains unchanged. On the other hand, the upper bound ωm does not have a marked
change since bothω0 and

√
1−F are reduced asF increases. As a result, the resonance range

∆ω = ωm −ω0 would be significant for a largeF .
The effective permeability characterizes the trend of magnetic resonance band gap with re-

spect to the internal fraction, which is consistent with thedissimilarity of eigenmode patterns
between the upper and lower band edges, as addressed in the previous subsection. Note, how-
ever, that the validity of effective permeability is restricted to a relatively low frequency range.
For larger internal fractions, the lower limit of magnetic resonance tends to occur at even lower
frequencies, whereas the upper limit may exceed what is supposed to be valid to a certain extent.
In this situation, the actual value of effective permeability should be carefully examined.

2.4. Effect of the kinetic inductance

If the skin depthδp ≡ c/ωp is much smaller than the SRR size, magnetic resonance is solely
determined by the SRR geometry. As the skin depth becomes comparable to or even larger
than the SRR element, the kinetic energy of free electrons increases its importance and the
magnetic resonance features begin to change. For a plasmonic SRR element, the equivalent
inductance consists of two parts:L = Lm + Le. The geometrical inductance (per unit length)
Lm = µ0(s− 2t)2 is determined by the internal ring area [14], while the kinetic inductance
(per unit length)Le = l/(tε0ω2

p) = µolc2/(tω2
p) comes from the free electron motion [15],

wherel = 4(s− t)− d is the circumference of the SRR element. It follows thatLm ∝ a2 and
Le ∝ δ 2

p . Meanwhile, the equivalent capacitance (per unit length)C = ε0t/d remains unchanged
for differenta andδp.

Forδp ≪ a, ω0 = 1/
√

LC ∝ 1/a is reciprocally scaled with the lattice period. Forδp ≫ a, on
the other hand,ω0 ∝ 1/δp is inversely proportional to the skin depth. In this situation, the kinetic
inductanceLe outweighs the geometric inductanceLm, and the magnetic resonance frequency
tends to saturate [15, 16]. This feature is accompanied withthe diminishing of localized nature
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Fig. 6. Magnetic field contours (Re[H]) of the eigenmodes for the SRR structure in Fig. 3
with δp/a = 1 at (a) the upper band edge and (b) the lower band edge.

in the eigenmode pattern, as shown in Fig. 6(a), where the fields between inside and outside the
ring no longer exhibits a large contrast as in Fig. 3 forδp ≈ 0. The magnetic resonance is thus
attenuated. On the other hand, the mode pattern in Fig. 6(b) is less affected by the skin depth as
the Bragg resonance dominates the characteristics of magnetic resonance at the Brilloun zone
edge. Nevertheless, the resonance frequency is substantially changed [16].

3. Concluding remarks

In conclusion, basic features of magnetic resonance band gaps for split ring structures were
investigated, with emphasis on the dispersion characteristics. The internal fraction of ring area
is a key factor for obtaining large magnetic resonance band gaps. A square SRR structure with
large width and small thickness (s/a = 0.95 andt/a = 0.01) would give rise to a large band
gap width [0.252(2πc/a)] as well as large gap ratio (109%). This feature can be understood
by the raised dissimilarity of resonant mode patterns between the upper and lower band edges.
In terms of the effective permeability, the present resultsshows consistency with the effective
medium theory for negligible skin depths. As the plasmonic effect increases its importance for
sizable skin depths, the band gap features exhibit a notablechange due to the kinetic energy of
free electrons. For sufficiently large skin depth, the kinetic inductance outweighs the geometric
one and the magnetic resonance attenuates.
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