
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

$This work
�Correspond
E-mail addr
Journal of Sound and Vibration 319 (2009) 622–645

www.elsevier.com/locate/jsvi
Sound scattering by a compact circular pore$

C.Y. Kuoa,�, R.L. Chernb, C.C. Changa,b

aDivision of Mechanics, Research Center for Applied Sciences, Academia Sinica, 128, Nankang 115, Taipei, Taiwan, ROC
bInstitute of Applied Mechanics, National Taiwan University, 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC

Received 20 September 2007; received in revised form 5 June 2008; accepted 8 June 2008

Handling Editor: L.G. Tham

Available online 3 August 2008
Abstract

The aim of this paper is to study the three-dimensional scattering of an oblique wave incident on a flanged circular

compact pore of finite depth. The multipole structure with the scattering is resolved by the method of matched asymptotic

expansion, where we assume smallness of � ¼ k�a�, the product of the incident wavenumber k� and the pore radius a�. Two

distinguished cases are solved: the rigid boundary condition and the pressure-release boundary condition. The study

presents by far the most complete solutions to these problems, with the outer solution up to Oð�5Þ and the inner solution up

to Oð�2Þ. In particular, the sophisticated interplay between the pore depth and the incident angle is revealed in the different

orders of solution. It is shown that the leading order of the outer wave field for both cases is Oð�3Þ. For the rigid

boundaries, there is one dipole dependent on the incident angle and one monopole. Interestingly, the monopole arises from

the second-order interaction of the pore volume and the small but non-negligible compressibility in the inner field. This is

one of the few examples analytically solvable to demonstrate this property. On the other hand, only one dipole is found for

the pressure-release boundary. The next order in the outer solutions for both types of the boundary conditions is of Oð�5Þ
and is shown to contain quadrupoles and octupoles. The multipole structures for both types of boundaries are tabulated,

explicitly with the effects of the incident angle and the pore depth.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

We investigate the scattering of acoustic waves incident on a small circular pore with a finite depth
in a semi-infinite flat surface. The radius and the depth of the pore are both assumed to be much smaller
than the wavelength of the incident waves. Under these circumstances, a multipole expansion is
appropriate for understanding the mechanisms because of its ability to illustrate the physics in different
orders of magnitude and to express the multipole moments, or strengths, explicitly in closed forms.
The compactness of the pore is measured by a small parameter �, which is defined by the product of the
incident wavenumber k� and the radius of the pore a�. The pore depth ‘�, being compact, is, therefore,
comparable to a�.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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In the literature, only a few references are related to the present study. A very brief note was presented by
Sato and Shirai [1] on sound wave transmission through ducts in thick walls. The diffraction of a two-
dimensional flanged duct with external incident waves has been solved numerically by Shenderov [2]. He
formulated the scattering problem into an integral equation that is reduced to an infinite system of linear
algebraic equations. Directivities and spectra of the scattering waves and interactions with the pipe resonant
modes are addressed for a wide range of sound frequencies. Scharstein and Davis [3] studied the
electromagnetic wave scattering of a two-dimensional subwavelength semi-circular trough in a ground plane.
They also used the method of matched asymptotic expansion to solve the multipole structure of the scattering
wave. Although the multipole expansion can be derived from these studies, the two-dimensional wave is
different from the three-dimensional counterpart in that the colatitude variation does not exist in the former
configuration. This variation introduces asymmetry of the multipole structure and generates new multipoles
when the incident wave sheds obliquely on the pore and, to the authors’ knowledge, has not yet been
addressed.

A further motivation for the current study was that we noticed that recently, there has been renewed interest
in electromagnetic waves incident on flat surfaces with periodic structures of small poles. For example, Garcia-
Vidal et al. [4] have investigated the finite-difference time-domain (FDTD) calculation of the transmission of
the wave through a single rectangular hole in a perfect conductor plate, and Garcia de Abajo and Saenz [5]
have calculated the effective permittivity of a flat perfect conductor with such a pore structure to model
surface plasmon on metal surfaces. Further development of the present theory along this direction would
provide an alternative point of view on both the near field and the far field radiation mechanisms of these
emerging interests.

The significant difference between the present configuration and sound emission from a duct is that the fluid
mass near the pore exit resists greatly the penetration of the waves being propagated into the duct. The leading
order monopole, Oð1Þ, for sound emitted from the duct due to the mass flux crossing the pore exit, see Pierce
[6, Chap. 7], is degenerated into higher orders for the present situation. Hence, multipoles at higher orders
must be solved altogether. By using the method of matched asymptotic expansion, we can divide the flow into
two regions: the inner flow and outer wave regions. The method similar to Crighton [7] and Kuo and Dowling
[8] can be applied to obtain solutions up to Oð�2Þ and Oð�5Þ for the inner and outer regions, respectively.

We first demonstrate the solution for the rigid surface condition. For the inner solution, the leading order of
the scattering field is a dipole of Oð�Þ due to the incident angle. A monopole also exists in the solution but is
shown to appear at Oð�2Þ due to the small but non-negligible fluid compressibility. However, the monopole
and the dipole fields become comparable in the outer wave region and are combined into the leading order
solution in this region, which is of Oð�3Þ. This is one of the few examples analytically solvable to demonstrate
this peculiar property of acoustic waves.

The same analytical method is also applicable to the same problem but with pressure-release surfaces. This
boundary condition occurs for acoustics when sound is shed on free-moving surfaces, such as liquid surfaces.
Though it is unlikely that any solid materials would reproduce this wave field acoustically, the derivation of
the solution for this condition is still worthwhile because it is extendible to cope with other wave systems, such
as electro-magnetic waves. The leading term in both inner and outer regions is a dipole perpendicular to the
flanged flat surface.

In what follows, we describe the geometry of the problem in Section 2 and solve for the rigid boundary
condition in Section 3. The details are provided as thoroughly as possible. In Sections 3.1 and 3.2, the first-
and second-order inner pressure fields are solved, and in Sections 3.3 and 3.4, the matching process to the
outer wave region is performed. In a parallel manner, the derivation for the pressure-release boundaries is
presented in Section 4. Numerical calculation results for both types of boundaries and the prospects of future
studies are provided in Sections 3.5, 4.3 and 5. The main results, the multipole structures, are tabulated in
Tables 1 and 2, explicitly with the effects of the incident angle and the pore depth.

2. Geometry and governing equations

The problem of interest and its coordinate definition are sketched in Fig. 1. There is a circular pore with a
finite depth drilled in a semi-infinite rigid domain. The pore has a radius a� and a finite depth ‘�. An incident
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Fig. 1. The coordinate system and the incident wave.
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plan wave is directed to the pore with an incident angle c. The coordinate is chosen such that k�y ¼ 0,
i.e. symmetric with respect to the xz plane. The spherical coordinate ðs�;f; yÞ and the cylindrical coordinate
ðr�;f; z�Þ, with r�2 ¼ x�2 þ y�2 and s�2 ¼ x�2 þ y�2 þ z�2, are used on appropriate occasions.

The wave equation with a time harmonic proportional to expð�io�t�Þ is

ðr�2 þ k�2Þp�ðx�;o�Þ ¼ 0, (1)

where p� is the total sound pressure. Variables with an asterisk superscript � denote the dimensional physical
quantities. r�2 is the Laplace operator and k�2 is o�2=c�2, where o� and c� are the sound frequency and the
speed, respectively. The incident wave is described by p�inc ¼ I� expðik�xx� � ik�z z�Þ, where I� is the pressure
amplitude and k�x ¼ k�kx ¼ k� sinðcÞ and k�z ¼ k�kz ¼ k� cosðcÞ.

There are two characteristic length scales: the wave length 1=k� for the outer region, far away
from the pore, and the pore radius a� for the inner region, which contains the flow field in the pore and
around the pore exit region. We normalize Eq. (1) with respect to the characteristic scales for both inner and
outer regions:

ðr2
i þ �

2ÞpðxÞ ¼ 0 and ðr2
o þ 1ÞPðXÞ ¼ 0, (2)

where x ¼ x�=a�, X ¼ k�x�. The sound pressure is normalized against 2I�. Because the acoustic wave length is
much larger than the pore radius, we have a small parameter � ¼ k�a� such that X ¼ �x.

Interactions between the incident wave and the pore take place in the inner region. We consider two perfect
conditions: the hard surface, or no penetration condition, i.e. qp�=qn� ¼ 0, and the pressure-release condition,
p� ¼ 0. The resultant inner flow, which acts as multipole acoustic sources with determinable strengths, is then
matched to the outer wave field. The wave field that sees the singularities at the origin, cf. Eq. (35), is simply
wave propagation over a flat surface with its boundary condition at the Z ¼ 0 plane. The matching process
reveals the types of the multipole sources.

3. Rigid reflective surface

After normalizing the sound pressure by 2I�, the external wave field, the incident wave and its reflection by
the rigid plane is pext ¼ cosðkzZÞ expðikxX Þ. It satisfies qp=qz ¼ 0 at z ¼ 0. This leads to the approximation in
the inner flow region

pext ¼ 1�
�2

2
k2

zz2
� �

1þ i�kxx�
�2

2
k2

xx2

� �
þOð�3Þ. (3)

From Eqs. (2)1 and (3), it is suggested that the inner expansion for the total pressure is in the form of

pðxÞ ¼ 1þ �pð1ÞðxÞ þ �2pð2ÞðxÞ þOð�3Þ. (4)

The first term on the right-hand side is the leading term of the external field. It is a uniform field in the inner
region. The rest of the terms contain the induced scattering fields and higher orders of the external field.
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Substitution of Eq. (4) into Eq. (2)1 leads to the governing equations of the two orders

r2
i pð1Þ ¼ 0; r2

i pð2Þ þ 1 ¼ 0; etc. (5)

The equations also hold for the pressure in the pore region.
The inner region consists of two zones. They are one semi-infinite flow region, zX0, and the cylindrical pore

region, r ¼ 1, and �‘pzp0. Let us define the total pressure in the semi-infinite zone and the pore region as
pðxÞ and pporeðr;f; zÞ, respectively. The inner solution can be constructed by matching the solutions of the two
zones at the pore exit, z ¼ 0 and rp1. This is typically known as a mixed boundary value problem.
Mathematical theories and other applications of the relevant problems can be found in monographs, such as
Sneddon [9] and Fabrikant [10].

3.1. First-order inner solution

Taking the first order as an example, we can express the total pressure for the semi-infinite zone zX0

pð1Þðr;f; zÞ ¼ ikxx�
1

2p

Z 2p

0

Z 1

0

qpð1Þðr0;f0; z0Þ

qz0

����o r0 dr0 df0

s

¼ ikxxþ pð1Þsc ðr;f; zÞ,

where the term ikxx is the spatial variation due to the external oblique incident wave. The second term,
denoted as pð1Þsc ðr;f; zÞ, is the near-field scattering, which is obtained by using the semi-infinite Green function
with a vanishing normal derivative at z ¼ 0. We use the abbreviation s2 ¼ r20 þ r2 þ z2 � 2rr0 cosðf� f0Þ for
the square of the distance between two points ðr;f; zÞ and ðr0;f0; 0Þ in the cylindrical coordinate. The
evaluation symbol jo indicates that the operand is evaluated in the region rp1 at z ¼ 0 or r0p1 at z0 ¼ 0,
whichever is appropriate.

Because the surface source, ðqpð1Þ=qz0Þj
o, is still an unknown, it needs to be solved by matching with the

pressure condition in the pore. For this purpose, we bring the observation point ðr;f; zÞ� to the pore exit,
i.e. rp1, z ¼ 0. At the exit, we have the pressure continuity, pð1Þporej

o ¼ pð1Þ ¼ ikxxþ pð1Þsc j
o, and the

pressure derivative continuity, ðqpð1Þpore=qzÞjo ¼ ðqpð1Þ=qzÞjo. With these conditions, we reach an integral
equation

pð1Þporej
o ¼ ikxx�

1

2p

Z 2p

0

Z 1

0

qpð1Þpore

qz

�����
o
r0 dr0 df0

se

, (6)

which uses the pore pressure as unknowns. This is a Fredholm equation of the first kind. We have omitted the
arguments ðr;f; zÞ in pð1Þpore and qpð1Þpore=qz0 and abbreviated se ¼ sjz¼0 for simplicity.

The integral equation, Eq. (6), can be solved elegantly by the method proposed by Fabrikant [10]. He
reintroduced Poisson’s azimuthal operator, LðlÞ, which allows the scattering term in Eq. (6) to be recast into

pð1Þsc j
o ¼ �

2

p

Z r

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p Z 1

x

r0 dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � x2

q L
x2

rr0

� �
qppore

qz

����o, (7)

provided that ðqp=qzÞjo belongs to L1½0; 2p� as a function of f0 for any fixed rX0. The details are
recapitulated in Appendix A.

The integrals in Eq. (7) are in the form of Abel transform [11]. The complexity of solving Eq. (6) with Eq. (7)
can be greatly reduced by applying their inverse operators,

L
1

r

� �
d

dr

Z r

0

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p LðrÞ (8)

and, subsequently,

LðtÞ
d

dt

Z 1

t

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2
p L

1

r

� �
. (9)
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The details are relegated to Section B.1. The inversion procedures yield the unknown pressure derivative in
terms of the pressure at the pore exit,

pt

2

qpð1Þpore

qz

�����
o

¼
2ikxt2 cosfffiffiffiffiffiffiffiffiffiffiffiffi

1� t2
p þLðtÞ

d

dt

Z 1

t

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2
p L

1

r2

� �
d

dr

Z r

0

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p LðrÞpð1Þpore

�����
o

(10)

with ðt;fÞ as the radial and azimuthal coordinate variables.
The pressure in the pore region can be written as a linear combination of the eigenfunctions

pð1Þporeðr;f; zÞ ¼
X1
m¼0

X1
n¼1

Að1ÞmnJmðj
0
mnrÞ cosðmfÞ

cosh½j0mnðzþ ‘Þ�

coshðj0mn‘Þ
,

where m is the azimuthal modal number and j0mn is the nth zero of the derivative of the mth order of the
Bessel function of the first kind, i.e. J 0mðj

0
mnÞ ¼ 0. The symmetry condition with respect to the y ¼ 0 plane leads

to the sole dependence on the azimuthal factor cosðmfÞ. The pressure and its pressure derivative at the pore
exit are now

pð1Þporej
o ¼

X1
m¼0

X1
n¼1

Að1ÞmnJmðj
0
mnrÞ cosðmfÞ, (11)

qpð1Þpore

qz

�����
o

¼
X1
m¼0

X1
n¼1

j0mnAð1ÞmnJmðj
0
mnrÞ cosðmfÞ tanhðj0mn‘Þ. (12)

In view of Eq. (10), it can be seen straightforwardly from the orthogonality of the cosine function that the
non-vanishing components in the pore have a sole azimuthal mode m ¼ 1. Substituting Eqs. (11) and (12) and
the definition of LðlÞ operator into the integral equation (10), we have

pt

2

X1
n¼1

j01nA1n tanhðj01n‘ÞJ1ðj
0
1ntÞ

¼
2ikxt2ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p �

X1
n¼1

ffiffiffiffiffiffiffiffi
pj01n

2

r
A
ð1Þ
1n j01n

Z 1

t

t2 drffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2
p r�1=2J3=2ðj

0
1nrÞ þ

t2ffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p J1=2ðj

0
1nÞ

� �
(13)

after carrying out the integrals and omitting the azimuthal factor cosf.
Further taking operator

R 1
0
dt J1ðj

0
1l tÞð�Þ in Eq. (13), we obtain an infinite system of algebraic equations for

the unknown coefficients A1n X1
l¼1

M
ð1Þ
nl A

ð1Þ
1l ¼

2ikx

j01n
2
ðsin j01n � j01n cos j01nÞ (14)

with the help of formulas (5.54) and (6.567) of Ref. [12]. The matrix M
ð1Þ
nl is a symmetric array

M
ð1Þ
nl ¼

p
2

j01n

2
ðJ2

3=2ðj
0
1nÞ � J1=2ðj

0
1nÞJ5=2ðj

0
1nÞÞ þ J3=2ðj

0
1nÞJ1=2ðj

0
1nÞ

� �

þ
p
4

j01n tanhðj01n‘Þ 1�
1

j01n
2

 !
J2
1ðj
0
1nÞ if n ¼ l;

p
2

ðj01nj01lÞ
�1=2

j01n
2
� j01l

2
fj01n

2
j01lJ3=2ðj

0
1nÞJ1=2ðj

0
1lÞ � j01nj01l

2
J1=2ðj

0
1nÞJ3=2ðj

0
1lÞg if nal:

8>>>>>>>>><
>>>>>>>>>:

Eq. (14) can be solved easily without the need for any special numerical algorithms.
For the sake of further discussion, we denote the solution of the column vector of A

ð1Þ
1n by

A
ð1Þ
1 ¼ ikxĀ

ð1Þ

1n . (15)

Numerical calculation will be presented in Section 3.5.
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3.2. Second-order inner solution

The solution process of the second-order inner flow is similar to that discussed above. The total pressure for
zX0 of this order is

pð2Þðr;f; zÞ ¼ �1
2ðk

2
xx2 þ k2

zz2Þ þ pð2Þsc ðr;f; zÞ. (16)

The first term on the right-hand side is the external incident and reflected waves. Noting that its Laplacian
automatically satisfies the source term of the Poisson equation (5), the scattering field, pð2Þsc in zX0, follows the
Laplace equation, such that

pð2Þsc ðr;f; zÞ ¼ �
1

2p

Z 2p

0

Z 1

0

qpð2Þ

qz

����o r0 dr0 df0

s
. (17)

This leads to the integral equation for the sound pressure at the pore exit

pð2Þporej
o ¼ �

k2
xx2

2
�

1

2p

Z 2p

0

Z 1

0

qpð2Þpore

qz

�����
o
r0 dr0 df0

se

. (18)

Applying the inverse operators and following the similar procedures in Section B.1, we inverse Eq. (18) to

pt

2

qpð2Þpore

qz

�����
o

¼ �
k2

xtffiffiffiffiffiffiffiffiffiffiffiffi
1� t2
p �

1

2
þ t2 þ

2t2

3
cosð2fÞ

� �

þLðtÞ
d

dt

Z 1

t

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2
p L

1

r2

� �
d

dr

Z r

0

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p LðrÞpð2Þpore

�����
o

. (19)

Pressure in the pore region, satisfying Eq. (5)2, is

pð2Þporeðr;f; zÞ ¼ A
ð2Þ
0 �

1

2
ðzþ ‘Þ2 þ

X1
m¼0

X1
n¼1

Að2ÞmnJmðj
0
mnrÞ cosðmfÞ

cosh½j0mnðzþ ‘Þ�

coshðj0mn‘Þ
. (20)

The second term on the right-hand side is the particular solution to satisfy the source term due to the
compressibility effect from the zeroth order and the rest are the homogeneous eigensolutions. Apparently, the
non-zero components only exist for azimuthal modes m ¼ 0 and m ¼ 2. Substitution of Eq. (20) into Eq. (19)
results in the respective equations for these two modes.

For m ¼ 0, the unknown coefficients can be solved by taking
R 1
0 dtð�Þ and

R 1
0 dtJ0ðj

0
0l tÞð�Þ in Eq. (19). This

leads to the system of equations

1 VT

V 0M
ð2Þ

 !
A
ð2Þ
0

A
ð2Þ
0

0
@

1
A ¼ ‘

‘

2
þ

p
4

‘

2
V

0
BB@

1
CCA� k2

x

1

6

Nð2Þ

0
@

1
A. (21)

Symbols A
ð2Þ
0 , V and Nð2Þ are column vectors:

A
ð2Þ
0 ¼ A

ð2Þ
0n ; V ¼ V n ¼

sinðj00nÞ

j00n

,

Nð2Þ ¼ N ð2Þn ¼
ðj00n

2
� 2Þ sin j00n þ 2j00n cos j00n

2j030n

and VT is the transpose of V. The square submatrix, 0M
ð2Þ, is

0M
ð2Þ¼0M

ð2Þ
nl ¼

1

2
1þ

sinð2j00nÞ

2j00n

� �
þ

pj00n

4
tanhðj00n‘ÞJ

2
0ðj
0
0nÞ if n ¼ l;

1

2

sinðj00n � j00lÞ

j00n � j00l

þ
sinðj00n þ j00lÞ

j00n þ j00l

� �
if nal:

8>>><
>>>:
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In view of Eq. (21), we can briefly express the solution of the coefficients

A
ð2Þ
0

A
ð2Þ
0

0
@

1
A ¼ ‘ 0Ā

ð2Þ

0

0Ā
ð2Þ

0n

0
@

1
A� k2

x

2Ā
ð2Þ

0

2Ā
ð2Þ

0n

0
@

1
A, (22)

where the first term contains the effect of the pore volume and the second accounts for the effect of the
incident angle.

Similarly, taking the operator
R 1
0 dtJ2ðj

0
2l tÞð�Þ in Eq. (19) with Eq. (20), we obtain the system of algebraic

equations for m ¼ 2,

X1
l¼1 2

M
ð2Þ
nl A

ð2Þ
2l ¼ �

2k2
x

3

ffiffiffiffiffiffiffiffi
p

2j02n

r
J5=2ðj

0
2nÞ (23)

and its solutions are

A
ð2Þ
2n ¼ �k2

xĀ
ð2Þ

2n . (24)

The matrix 2M
ð2Þ, equivalently, 2M

ð2Þ
nl , is

2M
ð2Þ ¼

p
2

j02n

2
ðJ2

5=2ðj
0
2nÞ � J3=2ðj

0
2nÞJ7=2ðj

0
2nÞÞ þ J3=2ðj

0
2nÞJ5=2ðj

0
2nÞ

� �

þ
p
4

j02n tanhðj02n‘Þ 1�
4

j02n
2

 !
J2
2ðj
0
2nÞ if n ¼ l;

p
2

ðj02nj02lÞ
�1=2

j02n
2
� j02l

2
fj02n

2
j02lJ5=2ðj

0
2nÞJ3=2ðj

0
2lÞ � j02nj02l

2
J3=2ðj

0
2nÞJ5=2ðj

0
2lÞg if nal:

8>>>>>>>>><
>>>>>>>>>:

Both matrices 0M
ð2Þ and 2M

ð2Þ are symmetric.
3.3. Far field of inner solution

We present in this section only the principal procedures of the matching without emphasizing the rigorous
details. One may verify the correctness of the results by following the routines, such as introducing an
intermediate overlapping scale as in van Dyke [13], or using a simplified version by alternating expressions
using the inner and outer variables as in Crighton [7].

The key point to match with the outer field is to express the far-field inner solution using the outer
coordinate variables. The inner solution of the scattering pressure obtained in the previous section is,
see Eqs. (6) and (17),

pscðr;f; zÞ ¼ �
�

2ps

Z 2p

0

df0

Z 1

0

r0 dr0
qpð1Þpore

qz

�����
o

þ �
qpð2Þpore

qz

�����
o !

� 1�
2r0 sin y

s
cosðf� f0Þ þ

r20
s2

� ��1=2
, (25)

where s2 ¼ r2 þ z2 is the distance from the origin to the observer at ðr;f; zÞ, and y is the colatitude angle
between the position of the observer and the z axis such that r ¼ s sin y.

For large s, the distance factor, the term in the second line of Eq. (25), can be expanded approximately

1þ
r0 sin y

s
cosðf� f0Þ þ

r20
2s2

1

2
�

3

2
cos2 yþ

3

2
sin2 y cosð2ðf� f0ÞÞ

� �

�
3r30
2s3

sin y
4
ð5cos2 y� 1Þ cosðf� f0Þ �

5

12
sin3 y cosð3ðf� f0ÞÞ

� �
, (26)
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using Taylor series with an accuracy up to Oððr0=sÞ4Þ. Maintaining this accuracy ensures that the match to the
outer wave region is accurate up to Oð�5Þ.

Because the leading pressure field, pð1Þpore, Eq. (11), has only one azimuthal mode, m ¼ 1 , with approximation
(26), the only non-vanishing far-field terms from it are

�
�3

2pS

Z 2p

0

df0

Z 1

0

dr0r0
qpð1Þ

qz

����o r0 sin y
S

cosðf� f0Þ

�

�
3�2r30
8S3

sin yð5cos2 y� 1Þ cosðf� f0Þ

�
, (27)

where we have expressed s in terms of the outer variable S ¼ jXj ¼ �s. The first integral is proportional
to the first x-moment of the mass flux crossing the pore exit and the second term is one of the third moments
of the flux, with the spherical mode ð3; 1Þ, cf. Section 3.4. With Eqs. (12) and (15), Eq. (27) can be inte-
grated explicitly

�
ikx�3

2S2
sin y cosf

X1
n¼1

Ā
ð1Þ

1n tanhðj01n‘ÞJ2ðj
0
1nÞ

þ
3ikx�5

S4

sin y
16

5cos2 y� 1
� 	

cosf
X1
n¼1

Ā
ð1Þ

1n tanhðj01n‘Þ J2ðj
0
1nÞ �

2

j01n

J3ðj
0
1nÞ

� �
, (28)

where unique directivity patterns associated with each term are found.
The second-order inner solution has two azimuthal components, m ¼ 0 and m ¼ 2 of Eq. (20). For the

m ¼ 0 mode, the far-field approximation is

�3

S

Z 1

0

dr0r0 ‘ �
X1
n¼1

j00nA
ð2Þ
0n tanhðj00n‘ÞJ0ðj

0
0nr0Þ

 !
1þ

�2r20
2S2

1

2
�

3

2
cos2 y

� �� �

with the coefficients A
ð2Þ
0n given by Eq. (22). The expression can be evaluated to

�3‘

2S
þ

�5

2S3

1

2
�

3

2
cos2 y

� �
‘

4
þ
X1
n¼1

2

j00n

A
ð2Þ
0n tanhðj00n‘ÞJ2ðj

0
0nÞ

 !
. (29)

The first term is physically the net total mass flux into the pore volume, and the other is the second moment
ð2; 0Þ, cf. Section 3.4. It is worth noting that the leading term of Eq. (29) is Oð�3Þ, and it is at the same order of
that in Eq. (28). This term will be matched to the leading term of the scattering wave in the radiation field.

Finally, the far-field approximation for m ¼ 2 mode reads

3�5

8S3
k2

x sin
2 y cosð2fÞ

X1
n¼1

Ā
ð2Þ

2n tanhðj02n‘ÞJ3ðj
0
2nÞ. (30)

Eqs. (28)–(30) are to be matched with the outer wave region in the next subsection.
3.4. Outer wave region

The scattering wave in the outer region satisfies the governing equation (2)2, the outgoing wave condition at
infinity and the rigid wall at Z ¼ 0. From the expansions, (28)–(30), it is suggested that the scattering wave can
be written in the form of

PscðS;f; yÞ ¼ �3Pð3Þsc ðS;f; yÞ þ �
5Pð5Þsc ðS;f; yÞ þ oð�5Þ, (31)

where ðS;f; yÞ is the spherical coordinate position variables for ZX0. From their directivity patterns, we
conclude that Pð3Þ and Pð5Þ contain two and three multipoles, respectively. They are

Pð3Þsc ðS;f; yÞ ¼ B
ð3Þ
00 Y 00ðf; yÞh

ð1Þ
0 ðSÞ þ B

ð3Þ
11 Y 11ðf; yÞh

ð1Þ
1 ðSÞ, (32)
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Pð5Þsc ðS;f; yÞ ¼ B
ð5Þ
20 Y 20ðf; yÞh

ð1Þ
2 ðSÞ þ B

ð5Þ
22 Y 22ðf; yÞh

ð1Þ
2 ðSÞ

þ B
ð5Þ
31 Y 31ðf; yÞh

ð1Þ
3 ðSÞ, (33)

where Bð3;5Þmn are the strengths of the multipoles yet to be determined. We use the combination ðm; nÞ to indicate
the spherical modes and to distinguish the different types of multipoles. For example, ð0; 0Þ is a monopole and
ð1; 0Þ and ð1; 1Þ are the dipoles orienting in z and x directions. Y mnðf; yÞ are the real part of the spherical
harmonic functions whose definitions are:

Y 00 ¼
1ffiffiffiffiffiffi
4p
p ; Y 22 ¼

1

4

ffiffiffiffiffiffi
15

2p

r
sin2 y cosð2fÞ,

Y 11 ¼ �

ffiffiffiffiffiffi
3

8p

r
sin y cosf; Y 31 ¼ �

1

4

ffiffiffiffiffiffi
21

4p

r
sin yð5cos2 y� 1Þ cosf

Y 20 ¼

ffiffiffiffiffiffi
5

4p

r
3

2
cos2 y�

1

2

� �
, (34)

and hð1Þm ðSÞ is the spherical Hankel function of the first kind such that

hð1Þm ðSÞ ¼

ffiffiffiffiffiffi
p
2S

r
ðJmþ1=2ðSÞ þ iY mþ1=2ðSÞÞ.

To match with the inner field of the wave components, we need the approximation of the spherical Hankel
function for S! 0:

h
ð1Þ
0 ðSÞ ¼ �

i

S
þ 1þ

i

2
S þOðS2Þ; h

ð1Þ
2 ðSÞ ¼ �

3i

S3
�

i

2S
þOð1Þ,

h
ð1Þ
1 ðSÞ ¼ �

i

S2
�

i

2
þ

S

3
þOðS2Þ; h

ð1Þ
3 ðSÞ ¼ �

15i

S4
�

3i

2S2
þOð1Þ. (35)

Apart from the leading terms of each function in Eq. (35), the higher order terms only induce the flow field in
the inner region of order higher than �3, which can be omitted in the present study. This can be seen by
expressing Eq. (31) with Eq. (32), Eqs. (33) and (35) in terms of the inner variable s and following the
arguments in Ref. [7].

Therefore, the amplitude of the leading order multipoles of the scattering wave, Eq. (32), can be
found by matching the coefficients of the leading terms of Eqs. (28) and (29) with the directivity (34)1;3.
This yields

B
ð3Þ
00 ¼ i

ffiffiffi
p
p

‘ (36)

and

B
ð3Þ
11 ¼ �

ffiffiffiffiffiffi
2p
3

r
kx

X1
n¼1

Ā
ð1Þ

1n tanhðj01n‘ÞJ2ðj
0
1nÞ ¼ �kxB̄

ð3Þ
11 . (37)

Eq. (36) represents that the strength of the monopole is linearly proportional to the depth of the pore and
Eq. (37) is a dipole of ð1; 1Þ induced by the oblique incident angle.

We further match the coefficients for the multipoles of Oð�5Þ. The first term on the right-hand side of
Eq. (33), matched with Eq. (29), is the quadrupole ð2; 0Þ. It contains the effects of both the pore volume and
the incident wave,

B
ð5Þ
20 ¼ �

i

3

ffiffiffi
p
5

r
‘

4
þ
X1
n¼1

2

j00n

ð‘0Ā
ð2Þ

0n � kx
2
2Ā
ð2Þ

0n Þ tanhðj
0
0n‘ÞJ2ðj

0
0nÞ

 !

¼ �
i

12

ffiffiffi
p
5

r
‘ � i‘0B̄

ð5Þ
20 þ ikx

2
2B̄
ð5Þ
20 (38)
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with the coefficients A
ð2Þ
0n , Eq. (22), expanded. The second term, with Eq. (24), is the quadrupole ð2; 2Þ, which is

purely induced by the oblique incident wave

B
ð5Þ
22 ¼

i

2

ffiffiffiffiffiffi
2p
15

r
k2

x

X1
n¼1

Ā
ð2Þ

2n tanhðj02n‘ÞJ3ðj
0
2nÞ ¼ ik2

xB̄
ð5Þ
22 . (39)

The last term is then the octupole ð3; 1Þ:

B
ð5Þ
31 ¼

kx

10

ffiffiffiffiffi
p
21

r X1
n¼1

Ā
ð1Þ

1n tanhðj01n‘Þ J2ðj
0
1nÞ �

2

j01n

J3ðj
0
1nÞ

� �
¼ kxB̄

ð5Þ
31 . (40)

Equations from (36) to (40) are the effective moments of the multipoles in the present scattering problem.
Their dependence on the pore depth and incident wave angle is explicitly shown in the expressions. The

moment coefficients, B̄
ð3Þ
00 ; B̄

ð3Þ
11 ; B̄

ð5Þ
20 ; B̄

ð5Þ
22 and B̄

ð5Þ
31 are defined to simplify the following discussion, and they are

dependent only on the pore depth.
3.5. Calculation and discussion

We solve the multipoles of the scattering wave in the last section and obtain three infinite systems of
algebraic equations, (14), (21) and (23), for the inner flows. For numerical illustration, we truncate the systems
into finite sizes provided that a good match at the pore exit is ensured. The convergence with the number of
terms, N, is plotted in Fig. 2(a). The representative error for each N is the maximum error in the total pressure,
taken from x ¼ 0 to 0:97. The error occurs near the exit corner because it is a geometric singular point. We use
N ¼ 150 for the monopole and 120 for the others. They are verified to produce an absolute error less than

about 0.015 and a relative error less than 3% at the exit. Fig. 2(b) shows Ā
ð1Þ

1n for ‘ ¼ 1:5, a typical serial of the

unknowns of the equation sets. It converges to zero with alternating signs.
The three equation sets are associated with three different inner flow fields, as sketched in Figs. 3–5. The

first-order inner flow is an incompressible field with an external uniform flow parallel to the flanged surface,
Eq. (6). The normalized total pressure, �ipð1Þ=kx, gives a base flow field shown in Fig. 3(a). This flow vanishes
when the wave is normally incident on the pore and reaches the maximum when the incident angle approaches
90�. The modification due to the pore on the mean flow, Fig. 3(b), is an incompressible dipole, or doublet, with
a strength proportional to the x-moment of the mass flux entering/leaving the pore, seen from the first term of
Eq. (27). It has a directivity pattern of a two-lobed structure. We omit the duct field because of discontinuity in
pressure after subtracting the external flow.

The second-order inner flow is under the influence of both the fluid compressibility and the incident angle.
The small but non-negligible compressibility allows the flow to be compressed slightly during the compressing
phase. This causes extra mass to be stored in/near the pore volume. When the external pressure releases, the
m
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mass is discharged from the pore and becomes a monopole source. This is seen from the first two terms of the
duct solution, (20). The monopole flow is shown in Fig. 4. The strength of the monopole is linearly
proportional to the storage capability of the pore, i.e. the depth see the first term of Eq. (29). On the
other hand, there are two flow fields in this order caused by the incident angle. They have azimuthal
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modes m ¼ 0 and m ¼ 2, which are induced from the incident pressure, �k2
xr

2 cos2 f=2, at the pore exit,
Eq. (16). The induced flows have two quadrupoles, or quadrulets, ð2; 0Þ and ð2; 2Þ, shown in Fig. 5(a,b). The
quadrupole flows in the figure are normalized by k2

x.
The far-field scattering fields are given by the matching procedures and the results are tabulated in Table 1.

The leading terms, Eq. (32), are of Oð�3Þ and contain one monopole and one dipole. The monopole arises from
the second-order inner field and becomes the leading order of the wave field because of its slower spatial decay
rate, as pointed out in Ref. [7]. The dipole is induced from the incident angle of the external wave. After
extracting the angle dependence, its moment coefficient, B̄

ð3Þ
11 , is a function which depends only on the depth, as

shown in Fig. 6(a). The dipole has an accompanying higher order term, which is the octupole ð3; 1Þ of Oð�5Þ
resulting from the second term of Eq. (28). The moment coefficient B̄

ð5Þ
31 is calculated and plotted in Fig. 6(b).

Both of the moment coefficients vanish when ‘! 0 and saturate around ‘ � 1.
The next order of magnitude of the scattering wave is Oð�5Þ. In addition to the mentioned octupole, it

further consists of two quadrupoles: ð2; 0Þ and ð2; 2Þ. The quadrupole ð2; 0Þ has the most complicated structure
Table 1

Multipole structures for the rigid surface

Multipole Oð�3Þ Oð�5Þ

Monopole i‘
ffiffiffi
p
p

Dipole ð1; 1Þ �kxB̄
ð3Þ
11

Quadrupole ð2; 0Þ
�

i

12

ffiffiffi
p
5

r
‘ � i‘0B̄

ð5Þ
20 þ kx

2
2B̄
ð5Þ
20

Quadrupole ð2; 2Þ ik2
xB̄
ð5Þ
22

Octupole ð3; 1Þ kxB̄
ð5Þ
31
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Fig. 6. The effective multipole moment coefficient versus pore depth of (a) dipole ð2; 1Þ, Eq. (37) and (b) octupole ð3; 1Þ, Eq. (40).
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20 of Eq. (38).
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and is under the influence of both the fluid compressibility and the incident angle, Eq. (38). The term scaling
linearly with ‘ is due to the non-vanishing second moment of the compressed mass flowing into the volume.
Its moment coefficient, 0B̄

ð5Þ
20 , is sketched in Fig. 7. The non-zero incident angle raises the remaining terms of

the quadrupoles ð2; 0Þ and ð2; 2Þ. Their moment coefficients, 2B̄
ð5Þ
20 and B̄

ð5Þ
22 , are shown in Figs. 8(a) and (b),

respectively.
4. Pressure-release surface

4.1. Inner flow

As argued in the introduction, the solution for the pressure-release condition is valuable when extending the
current solution to systems such as electro-magnetic waves, regardless of whether there are any real materials
providing such a condition acoustically. The pressure-release condition gives pðxÞ ¼ 0 on the boundary
surface.

As in Section 3, we carry out the inner flow up to a second-order accuracy. The external incident and
reflected waves over a pressure-release surface at z ¼ 0 are:

pext ¼ �i�kzzþ �2kxkzxzþOð�3Þ

after normalizing by 2I�. We denote p
ð1Þ
ext ¼ �ikzz and p

ð2Þ
ext ¼ kxkzxz in the following derivation. Their

derivatives with respect to z are �ikz and kxkzx ¼ kxkzr cosf, respectively. This expansion indicates that the
total pressure expansion of the inner region is pðxÞ ¼ �pð1ÞðxÞ þ �2pð2ÞðxÞ and, subsequently, the pressures,
pð1Þ and pð2Þ, satisfy the Laplace equations: see Eq. (2)1.

The non-dimensionalized total pressures in the inner flow region can be written down straightforwardly
using the same Green function in Section 3.1:

pð1;2ÞðxÞ ¼ p
ð1;2Þ
ext ðxÞ �

1

2p

Z 2p

0

Z 1

0

qpð1;2Þsc

qz

����o r0 dr0 df0

s
�

1

2p

Z 2p

0

Z 1
1

qpð1;2Þsc

qz

����4 r0 dr0 df0

s
. (41)

The evaluation symbol, j4, indicates that the operand is evaluated in the region rX1 at z ¼ 0 or r0X1
at z0 ¼ 0, whichever is appropriate. This is a summation of the external wave field, p

ð1;2Þ
ext ðxÞ, and the

scattering waves due to the pore. The superscript ð1;2Þ corresponds to the physical quantities of the first or
second order.

Both ðqpð1;2Þsc =qzÞjo;4 are unknowns at the moment. For the pressure-release condition, the pressure vanishes
on the flanged surface. Utilizing this condition, we bring the observation point x in Eq. (41) to the flanged
surface. This gives an integral equationZ 2p

0

Z 1
1

qpð1;2Þsc

qz

����4 r0 dr0 df0

se

¼ �

Z 2p

0

Z 1

0

qpð1;2Þsc

qz

����o r0 dr0 df0

se

, (42)
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for rX1 at z ¼ 0. Applying the azimuthal operator Lð�Þ, with details in Section B.2, we recast Eq. (42) intoZ 1
r

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2

p Z x

1

r0 dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r20

q L
rr0
x2


 �qpð1;2Þsc

qz

����4

¼ �

Z 1
r

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2

p Z 1

0

r0 dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r20

q L
rr0
x2


 �qpð1;2Þsc

qz

����o, (43)

which is ready to be inverted.
The sequence of the inverse operators is

LðtÞ
d

dt

Z 1
t

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p L
1

r

� �
and L

1

r

� �
d

dr

Z r

1

tdtffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p LðtÞ (44)

as proposed in Ref. [10]. After taking the inverse operators, we obtain the pressure derivative on the flanged
surface in terms of that at the pore exit, e.g.

qpð1;2Þsc

qz

����4 ¼ � 2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � 1

p Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r20

q
r0 dr0

r2 � r20
L

r0
r

� �
qpð1;2Þsc

qz

����o. (45)

In order to match the pressure condition with the pore solution, it is more convenient to recast ðqpð1;2Þsc =qzÞj4 in
terms of ðqpð1;2Þsc =qzÞjo. For this purpose, we again take x in Eq. (41) to the pore exit area and substitute with
Eq. (45). We also have the continuity of the pressure and the pressure derivative at the pore exit:
pð1;2Þjo ¼ pð1;2Þporej

o, and ðqpð1;2Þsc =qzÞjo ¼ �ðqp
ð1;2Þ
ext =qzÞjo þ ðqpð1;2Þpore=qzÞjo, respectively. With the details in

Section B.3, we have

pð1;2Þporej
o ¼ �

2

p

Z 1

r

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2

p Z x

0

r0 dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r20

q L
rr0
x2


 �
�
qp
ð1;2Þ
ext

qz

�����
o

þ
qpð1;2Þpore

qz

�����
o !

. (46)

Eq. (46) is the equivalent integral equation for the pressure-release condition, but now uses the pore pressure
as the unknown.

Pressure field in the pore region can be expanded by the eigensolutions

pð1;2Þporeðr;f; zÞ ¼
X1
m¼0

X1
n¼1

Að1;2Þmn

jmn

JmðjmnrÞ cosðmfÞ
sinh½jmnðzþ ‘Þ�

coshðjmn‘Þ
,

where the constant jmn satisfies JmðjmnÞ ¼ 0. This form is chosen particularly so that symmetric algebraic
systems are achieved later. At z ¼ 0, the pressure and its derivative are:

pð1;2Þporej
o ¼

X1
m¼0

X1
n¼1

Að1;2Þmn

jmn

tanhðjmn‘ÞJmðjmnrÞ cosðmfÞ, (47)

qpð1;2Þpore

qz

�����
o

¼
X1
m¼0

X1
n¼1

Að1;2Þmn JmðjmnrÞ cosðmfÞ. (48)

Substituting Eqs. (47) and (48) into Eq. (46), we haveX1
m¼0

X1
n¼1

Að1;2Þmn

jmn

tanhðjmn‘ÞJmðjmnrÞ cosðmfÞ ¼ �
2
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x2 � r2

p Z x

0

r0 dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r20

q
�L

rr0
x2


 �
�
qp
ð1;2Þ
ext

qz

�����
o

þ
X1
m¼0

X1
n¼1

Að1;2Þmn Jmðjmnr0Þ cosðmfÞ

 !
. (49)

From the orthogonality of the cosine functions, the only non-vanishing azimuthal modes for the first- and
second-order inner flow are m ¼ 0 and 1, respectively. Taking

R 1
0
drrJ0ðj0lrÞð�Þ and

R 1
0
drrJ1ðj1lrÞð�Þ, we can
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rewrite Eq. (49) into two infinite algebraic equation systems:

Mð1ÞA
ð1Þ
0 ¼ �ikzN

ð1Þ; Mð2ÞA
ð2Þ
1 ¼ kxkzN

ð2Þ,

for the two orders of the inner flow. Their solutions are abbreviated as

A
ð1Þ
0 ¼ �ikzðM

ð1ÞÞ
�1Nð1Þ ¼ �ikzĀ

ð1Þ

0n ,

A
ð2Þ
1 ¼ kxkzðM

ð2ÞÞ
�1Nð2Þ ¼ kxkzĀ

ð2Þ

1n . (50)

The matrices and vectors in Eq. (50) are explicitly

Nð1Þ ¼

ffiffiffi
2

p

r
j
�3=2
0n J3=2ðj0nÞ,

Mð1Þ ¼

�
1

2j0n

tanhðj0n‘ÞJ�1ðj0nÞJ1ðj0nÞ

þ
1

2j0n

fJ2
1=2ðj0nÞ � J�1=2ðj0nÞJ3=2ðj0nÞg if n ¼ l;

ðj0nj0lÞ
�1=2

j20n � j20l

fj0lJ1=2ðj0nÞJ�1=2ðj0lÞ � j0nJ�1=2ðj0nÞJ1=2ðj0lÞg if nal

8>>>>>>>>><
>>>>>>>>>:

and

Nð2Þ ¼
2

3

ffiffiffi
2

p

r
j
�3=2
1n J5=2ðj1nÞ,

Mð2Þ ¼

�
1

2j1n

tanhðj1n‘ÞJ0ðj1nÞJ2ðj1nÞ

þ
1

2j1n

fJ2
3=2ðj1nÞ � J1=2ðj1nÞJ5=2ðj1nÞg if n ¼ l;

ðj1nj1lÞ
�1=2

j21n � j21l

fj1lJ3=2ðj1nÞJ1=2ðj1lÞ � j1nJ1=2ðj1nÞJ3=2ðj1lÞg if nal:

8>>>>>>>>><
>>>>>>>>>:

Matrices Mð1;2Þ are confirmed symmetric.
4.2. Outer wave region

In Section 4.1, the inner pressure fields for the leading two orders of magnitude are solved. Following the
same principle of the method of the matched asymptotic expansion, the outer wave field is to be determined
from the far-field behavior of the inner pressure, i.e. by letting s!1 in Eq. (41). However, since the
integration domain of the second integral of Eq. (41) extends to infinity, this introduces unnecessary
complications in the calculation while taking the limit of s at small z. This can be avoided if we reformulate the
scattering pressure in an alternative expression,

pð1;2Þsc ðr;f; zÞ ¼
Z 2p

0

Z 1

0

pð1;2Þsc j
oqGðr;f; z; r0;f0; z0Þ

qz0

����
z0¼0

 !
r0 dr0f0 (51)

with the semi-infinite Green function Gðr;f; z; r0;f0; z0Þ satisfying Gjz0¼0 ¼ 0 at z ¼ 0. The derivative of G at
z0 ¼ 0 is, therefore,

qG

qz0

����
z0¼0

¼
z

2ps3
(52)



ARTICLE IN PRESS
C.Y. Kuo et al. / Journal of Sound and Vibration 319 (2009) 622–645 637
by the method of image after taking z0! 0. The far-field approximation of (52), as s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z2

p
!1, is

cos y
2ps2

1þ
3r0

s
sin y cosðf� f0Þ �

3r20
2s2

5

2
cos2 y�

3

2

� �
þ

15r20
4s2

sin2 y cosð2ðf� f0ÞÞ

� �
,

where y has the same definition as that in Section 3.3, i.e. r ¼ s sin y. Following the process outlined in
Sections 3.3 and 3.4, we have the outer wave field in the same form of Eq. (31), but with a different multipole
expansion structure,

Pð3Þsc ðS;f; yÞ ¼ B
ð3Þ
10 Y 10ðf; yÞh

ð1Þ
1 ðSÞ,

Pð5Þsc ðS;f; yÞ ¼ B
ð5Þ
21 Y 21ðf; yÞh

ð1Þ
2 ðSÞ þ B

ð5Þ
30 Y 30ðf; yÞh

ð1Þ
3 ðSÞ.

The directivities are given by the spherical harmonics

Y 10ðr;fÞ ¼
1

2

ffiffiffi
3

p

r
cos y; Y 30ðr;fÞ ¼

ffiffiffiffiffiffiffiffi
7

16p

r
ð5 cos3 y� 3 cos yÞ:

Y 21ðr;fÞ ¼ �

ffiffiffiffiffiffi
15

8p

r
sin y cos y cosf;

The moments B
ð3Þ
10 , B

ð5Þ
21 and B

ð5Þ
30 are simply proportional to the integrals

R
pscj

odA,
R

xpscj
odA andR

r20pscj
odA with the area element dA of the pore exit. Contrary to the case of the rigid boundary condition,

these integrals are the total force, the first and second force moments, respectively. By the same matching
process as in Section 4.2, we find the multipole moments,

B
ð3Þ
10 ¼ 2

ffiffiffi
p
3

r
kz

X1
n¼1

Ā
ð1Þ

0n

j20n

tanhðj0n‘ÞJ1ðj0nÞ ¼ kzB̄
ð3Þ
10 , (53)

B
ð5Þ
21 ¼ �i

ffiffiffiffiffiffi
2p
15

r
kxkz

X1
n¼1

Ā
ð2Þ

1n

j21n

tanhðj1n‘ÞJ2ðj1nÞ ¼ �ikxkzB̄
ð5Þ
21 , (54)

B
ð5Þ
30 ¼ �

1

5

ffiffiffi
p
7

r
kz

X1
n¼1

Ā
ð1Þ

0n

j20n

tanhðj0n‘Þ J1ðj0nÞ �
2J2ðj0nÞ

j0n

� �
¼ � kzB̄

ð5Þ
30 , (55)

where coefficients Ā
ð1Þ

0n and Ā
ð2Þ

1n are solved in Eq. (50). The multipole structure of the scattering waves contains
the leading dipole ð1; 0Þ, of Oð�3Þ, and is followed by the quadrupole ð2; 1Þ and the octupole ð3; 0Þ of Oð�5Þ.

Similar to their rigid boundary counterparts, the moment coefficients B̄
ð3Þ
10 , B̄

ð5Þ
21 and B̄

ð5Þ
30 are functions that

depend on the pore depth.

4.3. Calculation and discussion

We solve the inner flow for the leading two orders similar to Section 3 and investigate the leading multipole
structure of the scattering wave. The coefficient set of each equation systems has the same characteristics as
those in Fig. 2(b). We choose N ¼ 120 for calculations in this section, which produces an absolute error no
greater than approximately 0.01.

The total pressure contour of the first-order-inner flow is sketched in Fig. 9(a). The pressure is normalized
by the wavenumber factor kz. Subtracting the external incident and reflected wave field, we visualize the inner
doublet in Fig. 9(b). It is a dipole aligned vertically to the flanged surface. It has no azimuthal dependence, i.e.
m ¼ 0, and its strength is proportional to the total pressure force exerted on the pore exit plane. The second-
order inner flow, normalized by the factors �ikxkz, is plotted in Fig. 10. The flow is a quadrulet of ð2; 1Þ. The
flow is induced by the non-zero factor kxkz, and its strength is related to the x-moment of the force at the exit.

The outer field region is the resultant field of the multipole scattering waves. The solution leads by the dipole
ð1; 0Þ of Oð�3Þ. It is followed by the quadrupole ð2; 1Þ and the octupole ð3; 0Þ of Oð�5Þ. They are summarized in
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Fig. 10. Pressure contour of inner quadrulet ð2; 1Þ, pð2Þ=ðkxkzÞ and pð2Þ=ðkxkzÞ � xz for zo0 and zX0.
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Fig. 9. Pressure contour of (a) total inner pressure, ipð1Þ=kz and (b) inner doublet ð1; 0Þ, ipð1Þ=kz and ipð1Þ=kz � z for zo0 and zX0.

Table 2

Multipole structures for the pressure-release surface

Multipole Oð�3Þ Oð�5Þ

Dipole ð1; 0Þ kzB̄
ð3Þ
10

Quadrupole ð2; 1Þ �ikxkzB̄
ð5Þ
21

Octupole ð3; 0Þ �kzB̄
ð5Þ
30

C.Y. Kuo et al. / Journal of Sound and Vibration 319 (2009) 622–645638
Table 2. The effective moment coefficients are plotted in Figs. 11 and 12, respectively. They all vanish when
the pore depth approaches zero and well asymptote to their saturated constants when the depth is larger than
about one pore radius.

The effect of the incident angle is extracted as multiplier factors kz and �ikxkz to the effective moment
coefficients. They are both zero when the incident wave is parallel to the surface. This is realizable because the
external wave vanishes on the plane surface and, as a result, induces no scattering field at the two solved
magnitudes of order. The scattering field in this case degenerates further into higher orders and is not a
concern of the present investigation. The quadrupole ð2; 1Þ depends on the factor kxkz. Therefore, it does
not appear when the wave is normally incident on the pore and reaches its maximum when the incident
angle is at 45�.
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Fig. 12. The effective moment coefficient versus pore depth of quadrupole ð2; 1Þ, Eq. (54).
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Fig. 11. The effective multipole moment coefficient versus pore depth of (a) dipole ð1; 0Þ, Eq. (53) and (b) octupole ð3; 0Þ, Eq. (55).
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5. Conclusion

The scattering wave field of acoustic waves incident obliquely on a compact pore in a semi-infinite domain is
solved analytically using the method of matched asymptotic expansion. The acoustic wave length is assumed
to be much larger than the radius of the pore. The scattering field is, therefore, divided into an inner flow field
and an outer wave field. The inner field, described by the Laplace or Poisson equation, is solved by the method
developed by Fabrikant, while the outer scattering field is described by the wave equation. By the matching
procedures, we obtained uniformly valid multipole expansion solutions for both rigid and pressure-release
boundaries. They are summarized in Tables 1 and 2. The only geometric effect of the pore after normalization
with respect to the pore radius is the depth. It modifies the wave scattering through its influence on the
effective moment coefficients, B̄

ð3;5Þ
mn . The coefficients are shown to vanish altogether when ‘ ¼ 0 and to

asymptote to constant values when ‘ exceeds about 1. The dependence of the incident angle is extracted as
multiplier factors of the multipole moment coefficients.

For the rigid condition, there is a monopole which originates from the second-order inner flow due to the
small but non-negligible compressibility. Its strength is linearly proportional to the storage capability of the
pore, the depth, owing to the extra compressed mass being stored in the pore, as discussed in Section 3.5.
The pore volume also raises two accompanying components of the quadrupole ð2; 0Þ, whose strengths scale
linearly with the pore depth. The other multipoles are all induced by the incident angle and reach maxima
when the incident wave is parallel to the surface. They include the dipole ð1; 0Þ, the quadrupoles ð2; 0Þ and ð2; 2Þ
and the octupole ð3; 1Þ. The multipole strengths are related to the moments of the mass flux entering the pore.

On the other hand, the multipole structure is changed accordingly for the pressure-release condition. The
leading field is a dipole perpendicular to the pore exit and is followed by the quadrupole ð2; 1Þ and the octupole
ð3; 0Þ. The strength of the dipole is proportional to the total pressure force exerted on the pore exit plane, and
those of the quadrupole and the octupole are proportional to the x-moment and the second radial moment of
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the force on the exit plane, respectively. These waves all have a common incident angle dependence of kz and
disappear from the investigated orders of magnitude when the incident wave is parallel to the flanged surface,
Section 4.3. The quadrupole ð2; 1Þ scales on kxkz and exhibits a maximum when the incident angle is at 45�.
There are no compressibility terms arising in this case, as it did in the rigid boundary one.

Although only a scalar equation is considered in the present study, the current theory can be applied to
more sophisticated problems. A broad family of scattering problems are currently under investigation, notable
examples being electromagnetic wave scattering and the anisotropic effect of elliptical pores. In the future, the
expansion enables us to treat the pore as an individual scatterer and, thus, to investigate the wave fields from
surfaces with various pore structures by formulating the mutual interactions as multiple scattering processes:
see Ishimaru [14].

Appendix A. Fundamentals of potential theory of mixed boundary value problems

We provide brief explanations of the two major prerequisites of Fabrikant’s potential theory of mixed
boundary value problems. They are the Poisson operator LðlÞ and the integral representations of the inverse
of a spatial distance. Derivation of the double integral of Eq. (7) is also shown in this section as a concluding
application demonstration of the two ingredients.

Consider a function f ðr;fÞ with a periodic 2p. This function can be associated with Fourier
coefficient f mðrÞ, where

f mðrÞ ¼
1

2p

Z 2p

0

eimff ðr;fÞdf.

Define the Poisson operator LðlÞ for a complex l such that

LðlÞf mðrÞ ¼ ljmjf mðrÞ. (A.1)

Consequently, we have the operator properties Lðl1ÞLðl2Þ ¼Lðl1l2Þ and Lð1Þ ¼ 1.
Now, look at

LðlÞf ðr;fÞ ¼
X1

m¼�1

ljmjf mðrÞe
�imf

¼
1

2p

Z 2p

0

df0 f ðr;f0Þ
X1

m¼�1

ljmjeimðf�f0Þ.

The series in the integral can be evaluated analytically for jljp1 to

Lðl;f0 � fÞ ¼
ð1� l2Þ

1þ l2 � 2l cosðf0 � fÞ

and the whole equation is recast into

LðlÞf ðr;fÞ ¼
1

2p

Z 2p

0

Lðl;f� f0Þf ðr;f0Þdf0. (A.2)

This equation defines the analytical form of the operator LðlÞ for jljp1.
On the other hand, the square of the distance between two points ðr;f; zÞ and ðr0;f0; 0Þ using the polar

coordinate defined in Fig. 1. is

s2 ¼ r2 þ r20 � 2rr0 cosðf� f0Þ þ z2.

We define the new variables l1 and l2 such that the distance can be represented as

s2 ¼ l21 þ l22 � 2l1l2 cosðf� f0Þ.

This leads to the two equations

l21 þ l22 ¼ r2 þ r20 þ z2 and l1l2 ¼ rr0
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with the solution

l1 ¼ l1ðr0; r; zÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ r0Þ

2
þ z2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� r0Þ

2
þ z2

q� �
,

l2 ¼ l2ðr0; r; zÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ r0Þ

2
þ z2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� r0Þ

2
þ z2

q� �
. (A.3)

Variable l1 is the arithmetic average of the difference between the longest and the shortest possible distances of
the two points and l2 is the average of the sum of the two extreme distances when r0 is kept constant and f0

varies within ½0; 2p�.
Starting with the identity, e.g. formula (3.249) of Ref. [12]

1

s
¼

2

p

Z 1
0

dZ
s2 þ Z2

(A.4)

and making the change of variable

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 � x2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 � x2

q
=x, (A.5)

we have

L
x2

rr0
;f� f0

� �
¼ �

xZ
s2 þ Z2

dZ
dx

, (A.6)

where Lðl;f� f0Þ is defined in Eq. (A.2). Substituting Eqs. (A.5) and (A.6) into the identity (A.4), we obtain
the first integral representation of the inverse of the distance

1

s
¼

2

p

Z l1

0

Lðx2=rr0;f� f0Þdxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l21 � x2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 � x2

q , (A.7)

where we notice that x in the above expression is the dummy integration variable.
Alternatively, if we redefine Z to be

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � l21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � l22

q
=x

and follow similar procedures for the change of variable, we acquire the second integral represen-
tation of 1=s as

1

s
¼

2

p

Z 1
l2

Lðrr0=x2;f� f0Þdxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � l21

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � l22

q . (A.8)

The benefit of adopting these representations, or decompositions, Eqs. (A.7) and (A.8), is that the interwoven
variable f� f0 is absorbed in function L. This makes many multiple integrations analytically possible. These
decompositions also have other good mathematical properties which are discussed in Ref. [10].

We often need to bring a field point to the z ¼ 0 plane in formulating our integral equations. In the limiting
case, the variables l1 and l2 reduce to

l̄1 ¼ lim
z!0

l1ðr0;r; zÞ ¼ minðr0;rÞ,

l̄2 ¼ lim
z!0

l2ðr0;r; zÞ ¼ maxðr0;rÞ. (A.9)

Having these prerequisites, the derivation of the scattering term of Eq. (6) to that of Eq. (7) is straightforward.
Using the first representation (A.7) and combining the f0-integral with function L, we have

pð1Þsc j
o ¼ �

2

p

Z 1

0

dr0 r0

Z l̄1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̄
2

1 � x2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l̄
2

2 � x2

q L
x2

rr0

� �
qp

qz

����o dx.



ARTICLE IN PRESS

Fig. A.1. Integration domain.
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The integration domain is the lower shaded area in Fig. A.1(a). Changing the order of integration,
we obtain Eq. (7).
Appendix B. Miscellaneous details

B.1. Derivation of Eq. (10)

First of all, we recall the right-hand side of Eq. (6), after substituting Eq. (7) for the scattering wave, and
applying the first inverse operator (8)

L
1

r

� �
d

dr

Z r

0

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p LðrÞ

� ikxr cosf�
2

p

Z r

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p Z 1

x

r0 dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � x2

q L
x2

rr0

� �
qp

qz0

����o
8><
>:

9>=
>;. (B.1)

With Eq. (A.1), we have LðrÞ cosf ¼ r cosf. Therefore, the first term of Eq. (B.1) becomes

ikx cosf
d

rdr

Z r

0

r3 drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p ,

which can be evaluated by parts

ikx cosf
d

rdr
�r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p
jrr¼0 þ 2

Z r

0

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p
dr

� �
.

Carrying out the integral, we have the field, 2ikxr cosf, after the first inversion. Application of the
second inverse operator, Eq. (9), is similar, and after a few elementary integration steps, we have the inversed
external field,

�2ikxt2ð1� t2Þ�1=2 cosf. (B.2)

The same procedures are applied on other external fields with azimuthal modes m ¼ 0 and 2, such as those in
Eqs. (19) and (49).

The second term of Eq. (B.1) reads

�
2

p
L

1

r

� �
d

dr

Z r

0

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p Z r

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p Z 1

x

r0 dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � x2

q L
x2

r0

� �
qpðr0;f; z0Þ

qz0

����o
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fðx;fÞ

.
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Provided that Fðx;fÞ belongs to L1, which holds for physics, the first two integrals can change the order
of operation,

�
2

p
L

1

r

� �
d

dr

Z
0

dxFðx;fÞ
Z r

x

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p
with the inner integral trivial. Resuming the definition of Fðx;fÞ and using the l’Hopital rule, we have

�

Z 1

r

r0 dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � r2

q L
r

r0

� �
qp

qz0

����o. (B.3)

Next, applying the second inverse operator on Eq. (B.3),

�LðtÞ
d

dt

Z 1

t

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2
p

Z 1

r

r0 dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 � r2

q L
1

r0

� �
qp

qz0

����o

and changing the order of integration, we have the resultant integrals integrable which yield

p
2

t
qpðt;f; z0Þ

qz0

����o. (B.4)

Expressions (B.2) and (B.4) are the inversed terms in Eq. (10).

B.2. Inversion of Eq. (42)

As described in Appendix A, there are two alternative ways to represent the integrals of Eq. (42).
The most convenient choice is to make the final form of the outermost integrals on both sides of the
equation over the same interval, such that the inversion can be done simultaneously. For this purpose, we
recast Eq. (42) into Z 1

1

dr0 r0

Z 1
l̄2

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � l̄

2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � l̄

2

2

q L
rr0
x2


 �qpð1;2Þsc

qz0

����4

¼ �

Z 1

0

dr0 r0

Z 1
l̄2

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � l̄

2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � l̄

2

2

q L
rr0
x2


 �qpð1;2Þsc

qz0

����o,

where l̄1 and l̄2 are given in Eq. (A.9). The integral domains for the left- and right-hand sides are, respectively,
the lower and upper shaded regions in Figs. A.1(a). Changingg the order of the integration, we obtain Eq. (43)
straightforwardly.

Since both sides of the above equation are in the same form, we only demonstrate the application of the first
inverse operator, Eq. (44)1, on the left-hand side term. It reads

LðtÞ
d

dt

Z 1
t

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p Z 1
r

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2

p Z x

1
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x2 � r20

q L
r0
x2
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����4
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Fðx;fÞ

and following

LðtÞ
d

dt

Z 1
t

dxFðx;fÞ
Z x

t

rdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � t2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2

p .

The inner integration is again integrable and the full equation after the first inversion becomes

L
r0
t


 �Z t

1
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t2 � r20
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����4 ¼ �L r0
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0
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qz0

����o.
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Next, applying the second inverse operator (44)2 and changing the order of integration, we have

L
1

r

� �
d

dr

Z r

1

dr0 r0Lðr0Þ
qpð1;2Þsc

qz0

����4
Z r

r0
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q
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����o d
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Z r

1
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r2 � t2
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t2 � r20

q .

The inner integrals are elementary and, therefore, we reach Eq. (45).

B.3. Derivation of Eq. (46)

We start from the total pressure at the pore exit. The last term of Eq. (41) on the right-hand side with
Eq. (A.8) and the definition (A.2) can be recast into

�
2

p

Z 1
1
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x2 � r2

p Z x

1
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q L
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����4.

Substituting the solved pressure derivative on the flanged surface, Eq. (45), this term becomes

4
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The inner two integrals are inter-changeable, and so

4
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q
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Carrying out the innermost integration, we have
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1
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On the other hand, the first term on the right-hand side of Eq. (41) can be recast into

�
2

p

Z 1

0

dr0r0

Z 1
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dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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with the integration domain in Fig. A.1(b). It follows straightforwardly the change of integration order
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p

Z 1
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which is ready to be combined with Eq. (B.5). Finally, we have Eq. (46) after substituting the continuity
conditions of the pressure at the pore exit.
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