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This paper is concerned with the modelling of a magnetorheological (MR) fluid in the
presence of an applied magnetic field as a twofolded mixture—a macroscopic fluid
continuum and mesoscopic multi-solid continua. By assigning to each solid particle a
vectorial mesoscopic variable, which is defined as the nearest relative position vector
with respect to other particles, the solid medium of the MR fluid is further treated as a
mixture consisting of different components, specified by these mesoscopic variables. The
treatment of multi-solid continua is similar to that in the mesoscopic theory of liquid
crystals. However, the key difference lies in the fact that the time-discontinuity of the
defined vectorial mesoscopic variable will give rise to a ‘pseudo’ chemical reaction in the
solid continuum. The equation of the phenomenological mesoscopic distribution function
of the solid continuum then has an additional production term from the pseudo chemical
reaction, analogous to the collision term appearing in the Boltzmann equation. The
mesoscopic and macroscopic balance equations are then derived and by assuming
the special constitutive relations the macroscopic equation for the second moment of the
distribution function can be obtained.

Keywords: mesoscopic theory; magnetorheological fluids; solid–fluid mixture;
balance equations; distribution function
*kc

Rec
Acc
1. Introduction

In the past two decades magnetorheological (MR) fluids or their electric
analogues, electrorheological fluids (Block & Kelly 1988; Ashour et al. 1996),
have attracted much attention in the academic and industrial areas due not only
to their potential applications in the semi-active control but also to their novel
physical phenomena, e.g. phase transition, magnetic-dependent yield stress, and
two longitudinal elastic waves (Nahmad-Molinari et al. 1999). An MR fluid is
composed of a non-magnetized carrying fluid and suspended magnetizable
particles of diamagnetic nature, the latter of which have uniform distribution in
the absence of the applied magnetic field. When one turns on a magnetic field,
the magnetic particles will almost instantaneously be magnetized and aggregate
to form a stable chain-like or column-like structure along the direction of the
field. This magnetic-dependent structure can be modified or destroyed by
changing the flowing conditions such as applying a sufficiently strong shear force.
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K.-C. Chen1124
Hence, an MR material is a paradigm that internal structure can be formed or
destroyed by the arrangement of the particles upon the action of applied fields.

In this paper, we propose a macroscopic–mesoscopic approach to investigate
the behaviour of MR materials. Firstly, an MR material is modelled as a
macroscopic mixture composed of a solid continuum, characterized by the
arrangement of magnetizable particles, and a fluid continuum, represented as the
non-magnetized carrying fluid. In the modelling approach, we assign to each
particle of the solid continuum a vector l, the nearest relative positive vector
among particles, to delineate the arrangement of the particles. The arrangement
can be influenced by the magnitude of the magnetic field and the flow condition
of the MR fluid. The vector l can be regarded as a continuous index so that the
solid continuum can be further treated as a mesoscopic mixture of different
components with individual indices l’s or mesoscopic variables l’s. The concept of
a continuous index was also proposed by Faria (2001) and used by Faria &
Hutter (2002), who name it ‘continuous diversity’, to formulate the global and
local master equations and jump conditions for chemically reacting mixtures of
micro-structured media.

The concept of decomposition of a continuum into different components is
called the mesoscopic concept, which originally was proposed by Blenk et al.
(1991a,b, 1992) and Blenk & Muschik (1991) in the theory of liquid crystals,
where the liquid crystals were modelled as a mixture composed of different
continua with different microscopic orientations of the molecules. To be explicit,
instead of the macroscopic continuum level and the detailed microscopic
description, the mesoscopic concept is to enlarge the domain of the field
quantities by introducing the statistical distribution function of some specific
property of the material (Papenfuss 2000). This concept has been successfully
adopted in the modelling of liquid crystals (Muschik et al. 1995, 2000, 2004;
Muschik & Su 1997) and in materials with microcracks (Ván et al. 2000;
Papenfuss et al. 2003). Potential applications definitely deserve further studies.

In the following, a preliminary framework of the macroscopic solid and fluid
mixture for the modelling of MR materials is addressed in §2. In §3, the solid
continuum is further regrouped as a mesoscopic mixture distinguished by a newly
defined vector field, which bears a similar role as that of the microscopic director in
the mesoscopic theory of liquid crystals (Papenfuss 2000). Section 4 presents the
mesoscopic balance equations for the solid continuum and also introduces a new
finding called the ‘pseudo chemical reaction’, which comes from the property of
discontinuity in time for thevector l. Section 5gives themacroscopic field quantities
and balance equations from the summation and integration of those of individual
components of the whole mixture. The specific second moment equations for the
mesoscopic distribution are discussed in §6 by the specification of the mesoscopic
constitutive functions. Finally, general conclusions are given in §7.
2. Macroscopic solid and fluid mixture

The concept of a general mixture theory is to allow the different continua to
occupy a common physical space (Bowen 1976; Hutter & Jöhnk 2004). For MR
materials, Chen & Yeh (2002a) modelled them macroscopically in the presence of
a magnetic field as a mixture composed of a fluid continuum and an equivalent
Proc. R. Soc. A (2006)



1125Magnetorheological fluid
solid continuum. Let XF andXS be the material points and xF and xS denote the
motions of the fluid and solid continua,

xF Z xFðXF; tÞ; xS Z xSðXS; tÞ; ð2:1Þ
where the superscripts F and S represent the fluid and the solid. Since at time t,
two material points of the different continua meet at the same point x, we have

x Z xF ZxS:

The different material points of two continua will give rise to different material
time derivatives, which are the time derivatives keeping the respective material
points fixed. The velocity vectors vF and vS of the two continua at time t should
be given as

vF Z
dF
dt

xF; vS Z
dS
dt

xS; ð2:2Þ

where the notations dF/dt and dS/dt, respectively, designate the material time
derivatives with XF and XS fixed. For the mixture the mean velocity or the
velocity of the centre of mass at (x, t) is written as

v Z
d

dt
x Z

1

r
ðrFvFCrSvSÞ; ð2:3Þ

in which rF, rS and r(ZrFCrS) denote the densities of the fluid, of the solid and
of the mixture. We can further define the diffusion velocities for each continuum
and the relative velocity vector of the fluid with respect to the solid as

�vF Z vFKv; �vS Z vSKv; vR Z vFKvS: ð2:4Þ
By using equation (2.4), one can transform the material time derivatives, dF/dt
and dS/dt, to a more useful material time derivative d/dt following the
barycentric motion as

dF
dt

Z
d

dt
C �vF$VZ

d

dt
C

rSvR

r
$V; ð2:5Þ

dS
dt

Z
d

dt
C �vS$VZ

d

dt
K

rFvR

r
$V: ð2:6Þ

With no chemical reaction between the solid and the fluid, we recapitulate the
macroscopic balance equations for the fluid and solid continua of MR materials
as follows.

(i) Balances of mass:

vrF

vt
CV$ðrFvFÞZ 0;

vrS

vt
CV$ðrSvSÞZ 0: ð2:7Þ

(ii) Balances of linear momentum:

rF
dFv

F

dt
ZV$tF CPF CrFf F;

rS
dSv

S

dt
ZV$tS CM S$VBS CPSCrSf S:

ð2:8Þ
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(iii) Balances of energy:

v

vt
ðrFeFÞCV$ðrFeFvFÞZ tF : VvFKV$qF CrFrF CQF; ð2:9Þ

v

vt
ðrSeSÞCV$ðrSeSvSÞZ tS : VvSKV$qSKM S$

dSB
S

dt
CrSrS CQS:

ð2:10Þ
In the above equations, PF and PS are the momentum productions of the fluid
and of the solid, fF and f S, the external non-magnetic body forces of the fluid
and the solid, and QF and QS, the energy productions of the fluid and of the
solid. M S and BS represent the magnetization and magnetic flux of the solid, so
that M S$VBS in equation (2.8) is the magnetic body force of the solid and
KM S$ðdSBS=dtÞ in equation (2.10) is the energy supply due to the magnetic field
(Hutter & van de Ven 1978; Eringen & Maugin 1990). In equations (2.9) and
(2.10), eF and eS denote the internal energy densities of the fluid and the solid,

and rF and rS represent the external heat source of the fluid and solid. In order to
ensure that the conservations of linear momentum and energy of the mixture as a
whole hold true, the productions PF, PS, QF and QS shall be constrained by the
following conditions (Bowen 1976; Müller 1985):

PF CPS Z 0; ð2:11Þ

QF CvF$PF CQS CvS$PS Z 0: ð2:12Þ
With the specifications

reZ rFeF CrSeS; rr Z rFrFCrSrS;

q Z qF CqS CrFeF�vF CrSeS�vS; ð2:13Þ
and with the conditions (2.11) and (2.12), the energy balance equations of the
fluid and the solid can be combined to be

v

vt
ðreÞCV$ðrevÞZ tF : VvF C tS : VvSKV$qKM S$

dSB
S

dt
Crr CPS$vR:

ð2:14Þ
This is the macroscopic energy equation (3.6) used in the previous article (Chen
& Yeh 2002a). It should be noted that no effect of spin s is addressed in the above
discussion. While the spin effect is included, an additional power, c : VðQK1$sÞ,
contributed by couple stress c will be inserted in the energy equations (2.9),
(2.10) and (2.14). Here, the symbol Q represents the tensor of moment of inertia,
which will be used in the following discussion.
3. Distribution function of solid continuum

In the mesoscopic theory of liquid crystals, the orientation of a molecule nLC is a
mesoscopic variable to distinguish the different components of the mixture and
hence all field quantities and field equations can be defined on the nematic space
Proc. R. Soc. A (2006)



1127Magnetorheological fluid
R3
x!S2!Rt, where S2 stands for the unit sphere (Ehrentraut et al. 1997;

Muschik et al. 2000, 2004; Papenfuss 2000). Two mesoscopic velocities associated
with the liquid crystals can be defined as

vh
d

dt
x Z

vx

vt

����
X

; uh
d

dt
nLC Z

vnLC

vt

����
X

; ð3:1Þ

where X and d/dt indicate the material point and the material time derivative,
and v and u are the material velocity and the orientation change velocity.

The concept of the mesoscopic variable nLC cannot be directly applied to the
modelling of MR materials, in which the spherical particles are uniformly
suspended in the non-magnetic fluid so that no particular geometric property of
particles survives. However, in the presence of a magnetic field the particles will
be magnetized and aggregate to form an orderly geometric structure. This
phenomenon arises from the arrangement of particles rather than the intrinsic
geometry of the particles as in liquid crystals. Yeh & Chen (1997) and Chen &
Yeh (2002b) proposed a macroscopic internal variable with twofold average of
microscopic distance among particles to model the behaviour of MR materials.
Now in this paper we use a vector l as a measure of orientation and distance
among particles to characterize the aggregation of magnetized particles. The
vector l is assigned to each particle and is a relative distance vector rAB between
two nearest particles A and B. The length of l is the norm of rAB, i.e. jrABj, and
the orientation of l is defined such that the angle between rAB and the direction
of an applied magnetic field H should not be greater than 908. Since the
constraint condition cosðl;HÞR0 limits the range of l in the half space with
coordinates (l1, l2, l3), for analytic convenience we enlarge the space of l and
specify the symmetric condition as that used for the orientation nLC in liquid
crystals. In this way the reverse direction, Kl, has the same significance as l and
the distributions of Kl and l are identical. Moreover, it should be noticed that
the vector l will vanish when the applied magnetic field is turned off since the
vector l is a measure of the magnetic-induced structure which survives only in
the presence of a magnetic field. Besides, the orientation of l depends on the
direction of the applied magnetic field.

While comparing the vector l in MR materials with the vector nLC in liquid
crystals, it should be emphasized that the vector nLC is a true vector associated
with the molecules, and its evolution in time is continuous, whereas the vector l
is defined as a vector attached to the magnetized particles and its evolution in
time might be discontinuous. Discontinuity occurs, for example, when another
particle is also enlisted as the nearest neighbour to a considered particle since at
this time the vector l becomes the average of both of the relative distance
vectors. An illustration is given in figure 1, where, in addition to B, C becomes
the particle that is of equal distance to A. So the vector l becomes the average of
both of the relative distance vectors. The property of the discontinuity of l
resembles that of the discontinuity of the velocity c of a particle in the kinetic
theory of gases when a collision occurs. Similar to the conservation of linear
momentum before and after a collision, there is an analogous conservation while
the discontinuity of l happens. Since the vector l is a mesoscopic variable that
was used to distinguish the different components of the solid continuum mixture,
the analogous conservation amounts to the conservation of the mass productions
among these components of the solid mixture. However, it has been well known
Proc. R. Soc. A (2006)
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Figure 1. In the presence of the applied magnetic field H, the vector l attached to the considered
particle A is defined as the relative position vector from the particle A to its nearest particle B. At
time tZ�t the movement of the particles yields an equal distance between A and C to that between
A and B, which instantaneously makes the vector l become the average of the two relative position
vectors. Then at time tZ�tCDt a further change occurs when the particle C replaces B as the
nearest particle to A. The three configurations at tZ�tKDt, tZ�t, and tZ�tCDt manifest the time-
discontinuity of the vector l.
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that there is a production term in the mass balance equations in the theory of
mixture with chemical reactions. Therefore, it is reasonable to treat the process
of discontinuity of l as ‘a pseudo chemical reaction’ in the mesoscopic theory of
MR materials.

Moreover, the vector lZln can be expressed by its length l and its orientation
n, where n is a unit vector. The velocity _l of the change in length and the
orientation velocity _nhu are defined as

_l Z lim
Dt/0

lðtCDtÞKlðtÞ
Dt

; u Z lim
Dt/0

nðtCDtÞKnðtÞ
Dt

; ð3:2Þ

so that the material time rate of change of l is yielded by

vSl Z
dS
dt

l Z luC _ln: ð3:3Þ

Since n is a unit vector, the orientation velocity u must be perpendicular to n
and be a vector tangent to the surface of a unit sphere, i.e. n$uZ0. With the
introduction of the unit vector n, one can express the differential operator Vn by
the azimuthal part of the spherical coordinates (q, f),

Vn Z s
v

vq
C t

1

sin q

v

vf
; ð3:4Þ

where
sZ cos q cos fex Ccos q sin feyKsin qez ; ð3:5Þ

tZKsin fex Ccos fey; ð3:6Þ

with the unit base vectors (ex, ey, ez) in a Cartesian coordinate system. With the
help of Vn, we arrive at the definitions of the operators Vl and Vl

2 as

Vl Z
1

l
Vn Cn

v

vl
; V2

l ZVl$Vl Z
1

l2
v

vl
l2

v

vl

� �
C

1

l2
V2
n; ð3:7Þ
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1129Magnetorheological fluid
and some useful derivable identities

Vl l Z
1

l
Vn Cn

v

vl

� �
ðlnÞZnnC IKnn Z I; ð3:8Þ

Vl$l Z
1

l
Vn Cn

v

vl

� �
$ lnð ÞZVn$nC1Z 3; ð3:9Þ

VlðllÞZ
1

l
Vn Cn

v

vl

� �
ðllÞZ IlCnlnCslsCtltZ IlCðIlÞT; ð3:10Þ

Vl$ðllÞZ
1

l
Vn Cn

v

vl

� �
$ðllÞZn$

v

vl
ðl2nnÞC 1

l
Vn$ðl2nnÞZ 4l; ð3:11Þ

V2
l ðllÞZ 2I; ð3:12Þ

which will be used in §6. Here, IZnnCssCtt and the notation of tensor
product abZa5b for two arbitrary vectors a and b is used. The superscript ‘T’
in equation (3.10) indicates the transpose of the last two indices, i.e.

ðIlÞT Z ½ðnnCssC ttÞl�T Z ðnlnCslsC tltÞ:

For the solid continuum of MR materials we extend the six-dimensional nematic
space R3

x!S2!Rt to the seven-dimensional mesoscopic space R3
x!M!Rt,

where M is the manifold of the vector l. The length of l is limited to the range
[lmin, lmax], where lmin is the diameter of the magnetized particle and lmax is
constrained by the size of the materials. In the mesoscopic theory, the domain of
field quantities is the set of the mesoscopic space (x, l, t). The mesoscopic
mass density in this seven-dimensional space is denoted by r̂Sðx; l; tÞ. The
macroscopic mass density rS(x, t) then can be obtained by the integration of the
mesoscopic mass density over the manifold M,

rSðx; tÞZ
ð lmax

lmin

ð
S2
r̂Sðx; l; tÞl2 dn dl Z

ð
M
r̂Sðx; l; tÞdvM: ð3:13Þ

The mesoscopic distribution function, which is the probability density to find a
solid particle in space–time (x, t) with the variable l, can be defined as the
mesoscopic mass density divided by the macroscopic mass density (Blenk &
Muschik 1991),

f̂ ðx; l; tÞZ r̂Sðx; l; tÞ
rSðx; tÞ

: ð3:14Þ

From equation (3.14) there follows the normalization condition,ð
M
f̂ ðx; l; tÞdvM Z 1: ð3:15Þ

As soon as the distribution function f̂ has been defined, we can further give
the macroscopic solid material velocity vS(x, t) as the average of the mesoscopic
Proc. R. Soc. A (2006)
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solid material velocity v̂Sð†Þ over the manifold M:

vSðx; tÞZ
ð
M
f̂ ð†Þv̂Sð†ÞdvM; or

rSðx; tÞvSðx; tÞZ
ð
M
r̂Sð†Þv̂Sð†ÞdvM;

ð3:16Þ

where the abbreviation (†)Z(x, l, t) has been used. To distinguish the symbols
used in the macroscopic and mesoscopic space, e.g. rS(x, t) and r̂Sð†Þ,
the quantities with ˆ indicate the associated functions used in the mesoscopic
space. By means of the corresponding mesoscopic averaging similar to or the
same as equation (3.16), we will introduce other macroscopic quantities in later
sections.
4. Mesoscopic balance equations for the solid particles

In this modelling of MR fluids, the solid continuum is a mixture of different
components with indices l. Under the assumption that the fluid continuum is
spinless and shall be considered macroscopically, there is no fluid component at
the meso-continuum. In this mesoscopic approach the general mesoscopic
balance equations of the solid continuum read (Blenk et al. 1991a)

dS
dt

ð
U
F̂ð†Þdv dvM Z

ð
U
ðKV$F̂

fxð†ÞKVl$F̂
flð†ÞC F̂

pð†ÞC F̂
2ð†ÞÞdv dvM; ð4:1Þ

where U represents a region in R3
x!Rt!M. F̂

fxð†Þ and F̂
flð†Þ are the non-

convective fluxes through the surface in the configuration space Rx
3 and on the

manifold M. F̂
pð†Þ and F̂

2ð†Þ denote the production and the supply of F̂ð†Þ.
The total time derivative (dS/dt) in the first term of equation (4.1) can be moved
inside the integral by use of the generalized Reynolds transport theorem (Blenk
& Muschik 1991),

dS
dt

ð
U

F̂ð†Þdv dvM Z

ð
U

v

vt
F̂ð†ÞCV$ðv̂Sð†ÞF̂ð†ÞÞCVl$ðv̂Sl ð†ÞF̂ð†ÞÞ

� �
dv dvM:

ð4:2Þ

Supposing the field quantities are sufficiently smooth, we have the general
expression of mesoscopic balance equations in local form,

v

vt
F̂ð†ÞCV$ðv̂Sð†ÞF̂ð†ÞCF̂

fxð†ÞÞCVl$ðv̂Sl ð†ÞF̂ð†ÞCF̂
flð†ÞÞZ F̂

pð†ÞCF̂
2ð†Þ:

ð4:3Þ

For the mesoscopic balance of mass, we have

F̂h r̂Sð†Þ; F̂
fx
h0; F̂

fl
h0; F̂

p
h t̂ð†Þ; F̂

2
h0; ð4:4Þ

v

vt
r̂Sð†ÞCV$ðr̂Sð†Þv̂Sð†ÞÞCVl$ðr̂Sð†Þv̂S

l ð†ÞÞZ t̂ð†Þ; ð4:5Þ
Proc. R. Soc. A (2006)



1131Magnetorheological fluid
where t̂ð†Þ represents the mass production which arises from the mechanism that
other components l0 instantaneously change to the component l at time t. In
other words, it comes from the contribution of the time-discontinuity of l as has
been shown in figure 1. Notice that the analogous term of mass production
appears in the theory of mixture when the effect of chemical reaction is taken
into account. Since the conservation of total mass of the solid medium holds true,
the constraint condition, ð

M
t̂ð†ÞdvM Z 0; ð4:6Þ

must be obeyed.
Moreover, for the mesoscopic balance of linear momentum, we have

F̂h r̂Sð†Þv̂Sð†Þ; F̂
fx
hKt̂

Sð†Þ; F̂
fl
hKt̂

S
l ð†Þ; ð4:7Þ

F̂
p
hm̂lð†ÞC t̂ð†Þv̂Sð†ÞCP̂

Sð†Þ; ð4:8Þ

F̂
2
hM̂

Sð†Þ$VBSðx; tÞC r̂Sð†Þf̂ Sð†Þ; ð4:9Þ
v

vt
ðr̂Sð†Þv̂Sð†ÞÞCV$ðr̂Sð†Þv̂Sð†Þv̂Sð†ÞKt̂

Sð†ÞÞCVl$ðr̂Sð†Þv̂Sl ð†Þv̂Sð†ÞKt̂
S
l ð†ÞÞ

Z M̂
Sð†Þ$VBSðx; tÞC r̂Sð†Þf̂ Sð†ÞCm̂lð†ÞC t̂ð†Þv̂Sð†ÞCP̂

Sð†Þ;
ð4:10Þ

where t̂
Sð†Þ and t̂

S
l ð†Þ are, respectively, the solid mesoscopic stress tensor on the

configuration space and the solid momentum flux on the manifoldM. The supply
is composed of the contribution from the magnetic effect M̂

Sð†Þ$VBSðx; tÞ and
from the non-magnetic force r̂Sð†Þf̂ Sð†Þ. The production is the combination
of the three momentum productions m̂lð†Þ, t̂ð†Þv̂Sð†Þ, and P̂

Sð†Þ. The
first production m̂lð†Þ comes from other components of the solid mixture to
the solid component with mesoscopic variable l, the second one t̂ð†ÞvSð†Þ is due
to the mass production, and the last one P̂

Sð†Þ is from the carrying fluid to the
solid component with mesoscopic variable l. Different from the conservation of
mass for the solid continuum, the conservation of linear momentum for the solid
continuum cannot be held since there exists an exchange of linear momentum
between the solid and the fluid continua.

Third, with the specifications

F̂h r̂Sð†ÞŜð†ÞZ r̂Sð†Þðx!v̂Sð†ÞC ŝSð†ÞÞ; ð4:11Þ

F̂
fx
hKðx!ðt̂Sð†ÞÞTÞTKĉSð†Þ; ð4:12Þ

F̂
fl
hKðx!ðt̂Sl ð†ÞÞTÞTKĉSl ð†Þ; ð4:13Þ

F̂
p
hx!ðm̂lð†ÞC t̂ð†Þv̂Sð†ÞCP̂

Sð†ÞÞCm̂sð†Þ; ð4:14Þ

F̂
2
hx!ðM̂Sð†Þ$VBSðx; tÞÞC r̂Sð†Þx!f̂

Sð†ÞCM̂
Sð†Þ!BSðx; tÞ; ð4:15Þ
Proc. R. Soc. A (2006)
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the mesoscopic balance of angular momentum may be written in the form

v

vt
ðr̂Sð†ÞŜð†ÞÞCV$ðr̂Sð†Þv̂Sð†ÞŜð†ÞKðx!ðt̂Sð†ÞÞTÞTKĉSð†ÞÞ

CVl$ðr̂Sð†Þv̂S
l ð†ÞŜð†ÞKðx!ðt̂Sl ð†ÞÞTÞTKĉSl ð†ÞÞ

Zx!ðM̂Sð†Þ$VBSðx; tÞÞC r̂Sð†Þx!f̂
Sð†ÞCM̂

Sð†Þ!BSðx; tÞ

Cx!ðm̂lð†ÞC t̂ð†Þv̂Sð†ÞCP̂
Sð†ÞÞCm̂sð†Þ;

ð4:16Þ

where ŝSð†Þ, ĉSð†Þ, and ĉSl ð†Þ are, respectively, the spin density, the mesoscopic
couple stress tensor, and the angular momentum flux of the solid on the manifold
M. Ŝð†Þ is the total angular momentum. The production of spin from other
components of the solid continuum is assumed to be m̂sð†Þ, which is constrained
by the condition ð

M
m̂sð†ÞdvM Z 0: ð4:17Þ

This condition originates from the assumption that the carrying fluid is spinless
and then the production of spin from the fluid to the solid is zero. By introducing
the balance equation of linear momentum into the balance equation of angular
momentum, the balance equation of spin can be expressed as

v

vt
ðr̂Sð†ÞŝSð†ÞÞCV$ðr̂Sð†Þv̂Sð†ÞŝSð†ÞKĉSð†ÞÞCVl$ðr̂Sð†Þv̂Sl ð†ÞŝSð†ÞKĉSl ð†ÞÞ

Z e : t̂
Sð†ÞCM̂

Sð†Þ!BSðx; tÞCm̂sð†Þ;
ð4:18Þ

where the index form for e : t̂
S
is eijk t̂

S
ij with e the permutation symbol.

Fourth, if we consider

F̂h r̂Sð†ÞêSð†ÞZ r̂Sð†Þð1
2
v̂Sð†Þ$v̂Sð†ÞC 1

2
ŝSð†Þ$QK1$ŝSð†ÞC 3̂Sð†ÞÞ; ð4:19Þ

F̂
fx
hKt̂

Sð†Þ$v̂Sð†ÞKĉSð†Þ$QK1$ŝSð†ÞC q̂Sð†Þ; ð4:20Þ

F̂
fl
hKt̂

S
l ð†Þ$v̂Sð†ÞKĉSl ð†Þ$QK1$ŝSð†ÞC q̂S

l ð†Þ; ð4:21Þ

F̂
p
hðm̂lð†ÞCP̂

Sð†ÞÞ$v̂Sð†ÞCm̂sð†Þ$QK1$ŝSð†ÞCQSð†Þ

C t̂ð†Þ 1

2
v̂Sð†Þ$v̂Sð†ÞC 1

2
ŝSð†Þ$QK1$ŝSð†Þ

� �
; ð4:22Þ

F̂
2
h r̂Sð†Þr̂Sð†ÞCððM̂Sð†Þ$VÞBSðx; tÞC r̂Sð†Þf̂ Sð†ÞÞ$v̂Sð†Þ

Cðe : t̂Sð†ÞCM̂
Sð†Þ!BSðx; tÞÞ$QK1$ŝSð†ÞKM̂

Sð†Þ$ dS
dt

BSðx; tÞ;

ð4:23Þ
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for the mesoscopic balance equation of total energy of the solid in MR fluids, then
we have

v

vt
ðr̂Sð†ÞêSð†ÞÞCV$ðr̂Sð†Þv̂Sð†ÞêSð†ÞKt̂

Sð†Þ$v̂Sð†ÞKĉSð†Þ$QK1$ŝSð†ÞC q̂Sð†ÞÞ

CVl$ðr̂Sð†Þv̂S
l ð†ÞêSð†ÞKt̂

S
l ð†Þ$v̂Sð†ÞKĉSl ð†Þ$QK1$ŝSð†ÞC q̂S

l ð†ÞÞ

Z r̂Sð†Þr̂Sð†ÞCððM̂Sð†Þ$VÞBSðx; tÞC r̂Sð†Þf̂ Sð†ÞCm̂lð†ÞCP̂
Sð†ÞÞ$v̂Sð†Þ

Cðe : t̂Sð†ÞCM̂
Sð†Þ!BSðx; tÞCm̂sð†ÞÞ$QK1$ŝSð†Þ

KM̂
Sð†Þ$ dS

dt
BSðx; tÞCQ̂

Sð†ÞC t̂ð†Þð1
2
v̂Sð†Þ$v̂Sð†ÞC 1

2
ŝSð†Þ$QK1$ŝSð†ÞÞ;

ð4:24Þ
where r̂Sr̂S, q̂S, and q̂S

l are the non-magnetic solid supply, the mesoscopic solid
energy flux on the configuration space, and that on the manifold M, respectively.
Q is the tensor of moment of inertia. The total energy density of the solid
continuum êSð†Þ is composed of kinetic energy, rotational energy and internal
energy 3̂Sð†Þ. The energy production Q̂

Sð†Þ is included to account for the energy
exchange from the fluid and other components of the solid mixture to the solid
component with mesoscopic variable l. With the help of balance equations of
mass, linear momentum, and spin, the balance of total energy can be further
simplified to the balance of internal energy as

v

vt
ðr̂Sð†Þ3̂Sð†ÞÞCV$ðr̂Sð†Þv̂Sð†Þ3̂Sð†ÞC q̂Sð†ÞÞCVl$ðr̂Sð†Þv̂Sl ð†Þ3̂Sð†ÞC q̂S

l ð†ÞÞ

Z r̂Sð†Þr̂Sð†ÞKM̂
Sð†Þ$ dS

dt
BSðx; tÞCðt̂Sð†Þ : VC t̂

S
l ð†Þ : VlÞv̂Sð†Þ

CðĉSð†Þ : VC ĉSl ð†Þ : VlÞðQK1$ŝSð†ÞÞCQ̂
Sð†Þ:

ð4:25Þ
In addition, the balance of entropy is represented as the second law of
thermodynamics, which demands that the entropy of an isolated system never be
decreased. Since this law only seems to be valid in the macroscopic scale, no
mesoscopic balance equations of entropy are required.
5. Macroscopic field quantities and balance equations

In the literature, there exist a lot of research works on bridging the gap between
two different scales of space. The theory of electrodynamics is the first successful
paradigm to correlate the macroscopic EM fields with their microscopic
counterparts by the spatial average with respect to a continuous and smooth
test function, whose scale is large compared to the atomic dimension (de Groot &
Suttorp 1972; Jackson 1975). However, it should be noted that not all the EM
quantities can be achieved in this way. For example, polarization and
magnetization, which have their significance only on the macroscopic scale, are
brought out in the process of average of charge and current over space. Another
paradigm is the theory of extended thermodynamics, in which the macroscopic
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hydrodynamic theory and the microscopic kinetic theory of gases are linked
(Müller & Ruggeri 1998). Still another paradigm is the study of micromechanics
or statistical theory of granular mechanics, in which the microscopic forces
among particles are associated with the macroscopic stress tensor (Edwards &
Grinev 2001).

The macroscopic physical quantities of a mixture are the macroscopic averages
of individual quantities, and the macroscopic physical quantities in the
mesoscopic theory are the mesoscopic averages over the mesoscopic manifold.
For the macroscopic–mesoscopic mixture of MR fluids we combine both averages
to obtain the macroscopic quantities.

Now we consider the balance equation of mass. In view of equations (3.13) and
(3.16), we take the first step to integrate the mesoscopic balance of mass for the
solid continuum (4.5) over the manifold M and then have

v

vt
rSðx; tÞCV$ðrSðx; tÞvSðx; tÞÞZ 0; ð5:1Þ

which is the same expression as the second equation in (2.7) if the conditionð
M
Vlðr̂Sð†Þv̂Sl ð†ÞÞdvM Z 0 ð5:2Þ

is satisfied. This condition can be extended to a more general case, in whichð
M
Vlðv̂S

l ð†Þĝ1ð†ÞC ĝ2ð†ÞÞdvM Z 0 ð5:3Þ

holds true for any continuous function ĝ1 and the flux ĝ2. Condition (5.3) can be
easily proved by considering n$uZ0 and the fact that the boundary of M is null,
vMZ0, giving no rise of a flux on vM. The second step is to add the mass
balance of the fluid and solid continua in equation (2.7) to yield the macroscopic
balance equation of mass,

v

vt
rðx; tÞCV$ðrðx; tÞvðx; tÞÞZ 0; ð5:4Þ

where

rðx; tÞZ rFðx; tÞCrSðx; tÞZ rFðx; tÞC
ð
M
r̂Sð†ÞdvM; ð5:5Þ

rðx; tÞvðx; tÞZ rFðx; tÞvFðx; tÞCrSðx; tÞvSðx; tÞ

Z rFðx; tÞvFðx; tÞC
ð
M
r̂Sð†Þv̂Sð†ÞdvM: ð5:6Þ

Furthermore, for handling the balance of linear momentum we integrate the
mesoscopic balance of linear momentum (4.10) over the manifold M and then
arrive at

v

vt
ðrSðx; tÞvSðx; tÞÞCV$ðrSðx; tÞvSðx; tÞvSðx; tÞKtSðx; tÞÞ

ZM Sðx; tÞ$VBSðx; tÞCPSðx; tÞCrSðx; tÞf Sðx; tÞ; ð5:7Þ
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which is the same as the second equation in (2.8) if we require condition (5.3)
and set

tSðx; tÞZ
ð
M
½̂tSð†ÞKr̂Sð†Þðv̂Sð†ÞKvSðx; tÞÞðv̂Sð†ÞKvSðx; tÞÞ�dvM; ð5:8Þ

M Sðx; tÞZ
ð
M
M̂

Sð†ÞdvM; ð5:9Þ

f Sðx; tÞZ
ð
M
f̂ ð†Þf̂ Sð†ÞdvM; ð5:10Þ

PSðx; tÞZ
ð
M
ðm̂lð†ÞC t̂ð†Þv̂Sð†ÞCPSð†ÞÞdvM; ð5:11Þ

where PS(x, t) is the momentum production of the solid by the fluid continuum
at the point (x, t). The combination of the linear momentum balance equations
for the fluid and solid continua in equation (2.8) will give rise to

v

vt
ðrðx; tÞvðx; tÞÞCV$ðrðx; tÞvðx; tÞvðx; tÞKtðx; tÞÞ

ZM Sðx; tÞ$VBSðx; tÞCrðx; tÞf ðx; tÞ; ð5:12Þ

where

tðx; tÞZ tFðx; tÞC tSðx; tÞKðrF�vF�vF CrS�vS�vSÞ

Z tFðx; tÞKðrF�vF�vFCrS�vS�vSÞC
ð
M
½̂tSð†ÞKr̂Sð†Þðv̂Sð†Þ

KvSðx; tÞÞðv̂Sð†ÞKvSðx; tÞÞ�dvM; ð5:13Þ

rðx; tÞf ðx; tÞZ rFðx; tÞf Fðx; tÞC
ð
M
r̂Sð†Þf̂ Sð†ÞdvM: ð5:14Þ

As for the macroscopic balance of angular momentum, one usually considers the
balance of spin instead of the balance of total angular momentum. By the
mesoscopic average of (4.18) over the manifold M, the macroscopic balance of
spin for the solid continuum of MR materials can be written as

v

vt
ðrSðx; tÞsSðx; tÞÞCV$ðrSðx; tÞvSðx; tÞsSðx; tÞKcSðx; tÞÞ

Z e : tSðx; tÞCM Sðx; tÞ!BSðx; tÞ;
ð5:15Þ

with the following identifications:

rSðx; tÞsSðx; tÞZ
ð
M
r̂Sð†ÞŝSð†ÞdvM; ð5:16Þ

cSðx; tÞZ
ð
M
½ĉSð†ÞKr̂Sð†Þðv̂Sð†ÞKvSðx; tÞÞŝSð†Þ�dvM: ð5:17Þ
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Since we have assumed that the fluid continuum is spinless, the macroscopic
balance of spin for MR materials becomes

v

vt
ðrðx; tÞsðx; tÞÞCV$ðrðx; tÞvðx; tÞsðx; tÞKcðx; tÞÞ

Z e : tSðx; tÞCM Sðx; tÞ!BSðx; tÞ;
ð5:18Þ

where

rðx; tÞsðx; tÞZ rSðx; tÞsSðx; tÞZ
ð
M
r̂Sð†ÞŝSð†ÞdvM; ð5:19Þ

cðx; tÞZKrS�vSsS C

ð
M
½ĉSð†ÞKr̂Sð†Þðv̂Sð†ÞKvSðx; tÞÞŝSð†Þ�dvM: ð5:20Þ

The macroscopic balance equation of internal energy for the solid continuum of
MR materials can be obtained by integration of the corresponding mesoscopic
equation (4.25) over the manifold M as

v

vt
ðrSðx; tÞ3Sðx; tÞÞCV$ðrSðx; tÞvSðx; tÞ3Sðx; tÞCqSðx; tÞÞ

Z rSðx; tÞrSðx; tÞKM Sðx; tÞ$ dSB
S

dt
ðx; tÞC tSðx; tÞ : VvSðx; tÞ

CcSðx; tÞ : VðQK1$sSðx; tÞÞCQSðx; tÞ;

ð5:21Þ

with the specifications of the relations of the macroscopic and mesoscopic
quantities:

rSðx; tÞ3Sðx; tÞZ
ð
M
r̂Sð†Þ½3̂Sð†ÞC 1

2
dv̂Sð†Þ$dv̂Sð†Þ

C 1

2
dŝSð†Þ$QK1$d̂sSð†Þ�dvM; ð5:22Þ

qSðx; tÞZ
ð
M
½q̂Sð†ÞCðr̂Sð†Þ3̂Sð†ÞC 1

2
r̂Sð†Þdv̂Sð†Þ$dv̂Sð†Þ

Kðt̂Sð†ÞÞTÞ$dv̂Sð†ÞCð1
2
r̂Sð†ÞdŝSð†Þ$QK1$dŝSð†ÞÞdv̂Sð†Þ

KðĉSð†ÞÞT$QK1$dŝSð†Þ�dvM; ð5:23Þ

rSðx; tÞrSðx; tÞZ
ð
M
½r̂Sð†Þr̂Sð†ÞCðM̂Sð†Þ$VBSðx; tÞ

C r̂Sð†Þf̂ Sð†ÞÞ$dv̂Sð†ÞCðM̂Sð†Þ!BSðx; tÞ

Ce : t̂
Sð†ÞÞ$QK1$dŝSð†Þ�dvM; ð5:24Þ

QSðx; tÞZKPSðx; tÞ$vSðx; tÞC
ð
M
½Q̂Sð†ÞCðm̂lð†ÞCP̂

Sð†ÞÞ$v̂Sð†Þ

Cm̂sð†Þ$QK1$ŝSð†ÞC t̂ð†Þð1
2
v̂Sð†Þ$v̂Sð†Þ

C 1

2
ŝSð†Þ$QK1$ŝSð†ÞÞ�dvM; ð5:25Þ
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where d indicates deviation from the mean value,

dv̂Sð†Þh v̂Sð†ÞKvSðx; tÞ; dŝSð†Þh ŝSð†ÞKsSðx; tÞ:
Then, by the same manipulation for solid–fluid mixture as in §2, the energy
equation for the solid continuum in equation (5.21) can be combined with that
for the fluid continuum, (2.9), to obtain the macroscopic energy equation, (2.14),
for the MR materials. For those details we refer to §2. Note that the energy
equations for the solid, fluid, and the whole mixture will be used if one engages in
the discussion of constitutive modelling and the physics related to energy change,
such as thermal conduction and a variational approach.

From the above derivation, it becomes clear that the macroscopic quantities
are derived from the mesoscopic average of their corresponding mesoscopic
quantities plus other related mesoscopic quantities. We have also achieved a
clear picture of the finer composition of the various macroscopic balance
equations for the macroscopic–mesoscopic MR mixture.

For the whole system, especially for the mesoscopic system, to be complete, we
should both study the role played by the mesoscopic distribution function and
consider the constitutive equations characterizing the response of materials. In
this work, we primarily focus on the discussion of the mesoscopic distribution
function. The latter issue, that is a complete development of constitutive
modelling, is not treated here for the following reason. From a theoretical
viewpoint, one requires the knowledge of energy function and dissipative
mechanism of the system when the constitutive modelling in the mesoscopic
space is considered. In addition to the theoretical consideration such as the
restriction of the second law of thermodynamics and the principle of material
frame indifference, more experimental works are required for the development. In
the literature, Blenk et al. (1992) have derived the macroscopic constitutive
equations for liquid crystals induced by their mesoscopic orientation distribution.
Papenfuss & Muschik (1995) have considered the constitutive relations for two-
dimensional liquid crystals. Up to now, even though several researchers have
devoted effects to the discussion of mesoscopic constitutive relations, a complete
mesoscopic constitutive theory has still not been well developed (Muschik et al.
2004). The major problem lies in the fact that the constitutive modelling involves
not only macroscopic variables, but also mesoscopic variables in the higher-
dimensional mesoscopic space. For MR materials, the set of constitutive variables
could be specified by ðl; r̂Sð†Þ;Vr̂Sð†Þ;Vl r̂

Sð†Þ; rFðx; tÞ; qðx; tÞ;BSðx; tÞÞ or other
alternatives. It is obvious that the diversity of the set definitely gives rise to amuch
more complicated analysis, which deserves a forthcoming paper to deal with in a
systematic way and is thus beyond the scope of the current paper.
6. Second moment equations for the mesoscopic distribution function

The mesoscopic distribution f̂ ð†Þ in equation (3.14) embraces all the information
of the arrangement of solid particles in MR materials. This is similar to the fact
that in liquid crystals the orientation distribution function contains the
information of the orientation of microscopic molecules. It is also similar to
the fact that in the kinetic theory of gases the phase density fBðx; c; tÞ, which is
the number density of atoms at point x and time t with velocity c, provides the
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microscopic basis of macroscopic rational extended thermodynamics (Truesdell
1984; Müller & Ruggeri 1998; Liu 2002). The phase density in the kinetic theory
of gases obeys the Boltzmann equation,

vfB
vt

Cc$VfB C �F$VcfB Z

ð
ðf 0Bf 10B KfBf

1
BÞrg sin q dq de dc1; ð6:1Þ

where �F stands for the sum of the specific external body force and inertial
acceleration of a particle, and the right-hand side of equation (6.1) comes from
the contribution of collisions. By means of the phase density most macroscopic
thermodynamic quantities can be obtained by taking the moments with respect
to the velocity c or the peculiar velocity CZcKv as

Fi1i2/iN Z

ð
mci1ci2 /ciN fBdc; or Gi1i2/iN Z

ð
mC i1C i2 /C iN fBdc: ð6:2Þ

In particular the mass density r, linear momentum density rvi, internal energy
density re, and heat flux qi are related to the different orders of moments by

rZF; rvi ZFi; reZ 1

2
Gii; qi Z

1

2
Gijj : ð6:3Þ

The multiplication of the Boltzmann equation by mci1ci2 /ciN and then
integration over all c leads to

vFi1i2/iN

vt
C

vFi1i2/iNj

vxj
KNFi1i2/iNK1

�FiN K2NFi1i2/iNK1
WiNk ZSi1i2/iN ; ð6:4Þ

where Si1i2/iN represents the collision production and Wij is the matrix of angular
velocity of the frame with respect to an inertial frame. In equation (6.4) the zero
and first-order moment equations read

vr

vt
CV$ðrvÞZ 0; and

vrv

vt
CV$FT

i1i2Kr �FK2rW$v Z 0; ð6:5Þ

which represent the balance equations of mass and linear momentum.
The above approach can analogously be applied to the mesoscopic theory of

the solid continuum of MR materials, if the role of the phase density is replaced
by the mesoscopic distribution function f̂ ð†Þ. Analogous to that the phase
density satisfies the Boltzmann equation, then by use of the definition of f̂ ð†Þ in
equation (3.14), the distribution function is governed by the equation (Blenk
et al. 1991a)

vf̂ ð†Þ
vt

CV$ðf̂ ð†Þv̂Sð†ÞÞCVl$ðf̂ ð†Þv̂Sl ð†ÞÞC f̂ ð†Þ v

vt
C v̂Sð†Þ$V

� �
ln rSðx; tÞ

Z
t̂ð†Þ

rSðx; tÞ
h �̂tð†Þ; ð6:6Þ

or else

vf̂ ð†Þ
vt

CvSðx; tÞ$Vf̂ ð†ÞCVl$ðf̂ ð†Þv̂S
l ð†ÞÞ

CV$ðdv̂Sð†Þf̂ ð†ÞÞCf̂ ð†Þdv̂Sð†Þ$Vln rSðx; tÞZ �̂tð†Þ; ð6:7Þ
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which is exactly the mesoscopic balance equation of mass (4.5) in terms of the
distribution function f̂ ð†Þ. �̂tð†Þ, appearing on the right-hand side of equation
(6.6) or (6.7), represents the production from the pseudo-chemical reaction. Then
one can follow a similar procedure used in extended thermodynamics, which has
been mentioned in equation (6.2), to associate the distribution function with the
related macroscopic quantities by taking the moments with respect to the vector
l over the manifold M as

Aa1a2/am
ðx; tÞh

ð
M
f̂ ð†Þla1

la2
/lam

dvM; ð6:8Þ

where Aa1a2/am
is a tensor of order m. Since the distribution function f̂ ð†Þ is

endowed with the symmetry condition

f̂ ðx; l; tÞZ f̂ ðx;Kl; tÞ;
the tensors of odd orders must vanish. Then, multiplication of (6.7) by la1

la2
/lam

and integration over the manifold M will lead to the general evolution
equation for the macroscopic internal variable Aa1a2/am

ðx; tÞ as (Muschik et al.
2000, 2004)

dS
dt

Aa1a2/am
ðx; tÞC

ð
M
la1

la2
/lam

Vl$ðf̂ ð†Þv̂Sl ð†ÞÞdvMCV$

ð
M
dv̂Sð†Þla1

la2

/lam
f̂ ð†ÞdvMC

ð
M
la1

la2
/lam

f̂ ð†Þdv̂Sð†Þ$V ln rSðx; tÞ dvM

Z

ð
M
la1

la2
/lam

�̂tð†ÞdvM; ð6:9Þ

where equation (6.8) has been used. Equation (6.9) shows that the macroscopic
evolution equation for Aa1a2/am

ðx; tÞ is derived from the mesoscopic distribution
function. In order to get a more simplified form of equation (6.9), we require a
further assumption and more constitutive information on the mesoscopic
background such as explicit expressions for the functions v̂Sð†Þ, v̂S

l ð†Þ, and �̂tð†Þ.
For simplicity we concentrate on the discussion of the second moment of the

distribution function and from equation (6.9) we have

dS
dt

A2ðx; tÞC
ð
M
llVl$ðf̂ ð†Þv̂S

l ð†ÞÞdvM

CV$

ð
M
dv̂Sð†Þllf ð†ÞdvMC

ð
M
ll f̂ ð†Þdv̂Sð†Þ$V ln rSðx; tÞdvM Z

ð
M
ll �̂tð†Þdv ;

ð6:10Þ
where A2ðx; tÞZ

Ð
f̂ ð†Þll dvM. The reduced macroscopic form of equation (6.10)

can be achieved only if the mesoscopic constitutive expressions for v̂Sð†Þ, v̂Sl ð†Þ,
and �̂tð†Þ have been established. For the explicit specification of these
three functions, we propose first that the composition of the state space Z is
composed of the four mesoscopic variables: l, r̂Sð†Þ, Vr̂Sð†Þ and Vl r̂

Sð†Þ, and
the four macroscopic variables: temperature q, magnetic flux BS(x, t), rate
of deformation tensor DSðx; tÞðZ 1

2 ðVv
SCðVvSÞTÞÞ, and second moment of
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the distribution function A2(x, t), i.e.

Z Z fl; r̂Sð†Þ;Vr̂Sð†Þ;Vl r̂
Sð†Þ; qðx; tÞ;BSðx; tÞ;DSðx; tÞ;A2ðx; tÞg:

The macroscopic variables q, BS, and DS are used to account for the influences of
temperature, magnetic field and flow on the mesoscopic functions. The variable
A2 is included to serve as internal variable in the constitutive consideration.
Second, from the definition of v̂S

l ð†Þ in equation (3.3) and by requiring that the
distributions of l and Kl be equal, the mesoscopic functions v̂Sð†Þ and v̂Sl ð†Þ are
then constrained by the symmetry conditions

v̂SðKlÞZ v̂SðlÞ; v̂Sl ðKlÞZKv̂Sl ðlÞ; ð6:11Þ
which manifest that v̂Sð†Þ is an even function of l and v̂S

l ð†Þ is an odd one. Hence,
equation (6.11) will serve as a guiding rule to determine the expressions for the
constitutive functions, v̂Sð†Þ and v̂S

l ð†Þ. Two special cases of the second moment
equation are now considered.

Case (i): for analytic convenience, we only take into account the linear relation
in l by assuming that the constitutive functions, which satisfy the symmetry
conditions in equation (6.11), are in the form of

v̂S
l ð†ÞZa1Vlln r̂Sð†ÞC l$ða2A2 Ca3B

SBS Ca4D
SÞ

Za1Vlln r̂Sð†ÞC l$Cðx; tÞ; ð6:12Þ

v̂Sð†ÞZbV ln r̂Sð†Þ; ð6:13Þ

�̂tð†ÞZ 0: ð6:14Þ
In equation (6.12) we have set CZCTZa2A2Ca3B

SBSCa4D
S. The

parameters a1, a2, a3, a4 and b are assumed to be functions of the temperature
q. By inserting the constitutive functions (6.12), (6.13) and (6.14) into (6.10), it
follows that

dS
dt

A2ðx; tÞC
ð
M
llVl$½a1Vl f̂ ð†ÞC f̂ ð†Þl$C �dvMCV$ðbVA2 CbV ln rSðx; tÞA2Þ

CbðV ln rSðx; tÞ$VA2CA2V ln rSðx; tÞ$V ln rSðx; tÞÞ
ZV$ðvSðx; tÞA2ÞCA2v

Sðx; tÞ$V ln rSðx; tÞ:
ð6:15Þ

For more detailed manipulation of equation (6.15), we have the following
reformulations:

dS
dt

A2KV$ðvSA2ÞKA2v
S$V ln rS Z

v

vt
A2 CA2

vln rS

vt
; ð6:16Þð

M
ðV2

l f̂ ð†ÞÞll dvM Z

ð
M
f̂ ð†ÞV2

l ll dvM Z 2I; ð6:17Þ
ð
M
Vl$ðf̂ ð†Þl$CÞll dvM ZK

ð
M
f̂ ð†Þl$C$VlðllÞdvM

ZKC :

ð
M
f̂ ð†Þl½IlCðIlÞT�dvM ZKðC$A2CA2$CÞ;

ð6:18Þ
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where I is the identity tensor and condition (5.3) that the boundary of M is null
has been used. In addition, by the mesoscopic average of v̂Sð†Þ and from
equations (3.16) and (6.13), we obtain

vS ZbV ln rS; ð6:19Þ

vln rS

vt
ZK

b

rS
V2rS ZKbðV2ln rS CV ln rS$V ln rSÞ: ð6:20Þ

Then, in view of equations (6.16)–(6.20), equation (6.15) can be further
simplified to

v

vt
A2 C2a1IKðC$A2 CA2$CÞCbðV2A2C2V ln rS$A2ÞZ 0; ð6:21Þ

which is an evolution equation for the second-order internal variable A2 on the
base of the mesoscopic constitutive requirements (6.12), (6.13) and (6.14). This is
different from the evolution equation of internal variable obtained from the
macroscopic internal variable theory (Maugin & Muschik 1994a,b), in which,
besides the macroscopic constitutive requirements, the major restriction on this
equation is the second law of thermodynamics.

Case (ii): if the higher-order terms involving lll, VVr̂Sð†Þ and VVA2 are also
considered, we assume constitutive functions, which still satisfy the symmetry
conditions in equation (6.11), are in the form of

v̂Sl ð†ÞZa1Vlln r̂
Sð†Þ

Cl$ a2A2Ca3B
SBSCa4D

SCa5

VVr̂Sð†Þ
r̂Sð†Þ

Ca6ll :A2A2Ca7ll :VVA2

� �
;

ð6:22Þ

v̂Sð†ÞZvSðx; tÞ; ð6:23Þ

�̂tð†ÞZ0: ð6:24Þ

Then by inserting equations (6.22), (6.23) and (6.24) into (6.10) and after a
simple calculation, we have

dS
dt

A2ðx; tÞZ2a1IK2ðC$A2ÞsymK
2a5

rSðx; tÞ
ðVV$ðA2r

SÞÞsym

K2a6ðAT
2 $ðA4 :A2ÞÞsymK2a7ðA4 : $VVA2Þsym; ð6:25Þ

where the superscript sym represents the symmetric part and the operator ‘:$’
in A4 : $VVA2 means ðA4Þijkl v

vxi
v
vxj

ðA2Þkm. In equation (6.25) it can be seen

that the higher-order terms with lll will induce the higher-order moment
A4Z

Ð
f̂ ð†Þllll dvM in the second moment equation of the mesoscopic distribution

function. For this second moment equation including higher-order moment, a
cut-off procedure or a closure relation will be required for the solvability of this
equation (Papenfuss 2004).
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7. Conclusions

The macroscopic–mesoscopic concept is presented in this paper to study the
response of MR materials. This twofold mixture represents a macroscopic solid–
fluid continuum, where the solid continuum, which is endowed with the internal
structure due to the arrangement of particles, is a delicate mesoscopic mixture
composed of different components with different mesoscopic variables l’s. Since
these variables perform jumps in orientation with time, this introduces a
production of orientational mass that affects the balance of evolution equation
for the orientation mass function in the solid micro-continuum. The mesoscopic
mass balance gives rise to an equation of the distribution function f̂ ð†Þ, and the
role of the production term in this equation is analogous to that of the collision
term in the Boltzmann equation. With the multiplication of this equation by
la1

/lam
and then with the integration over the manifold M, one immediately

obtains the macroscopic mth moment equation for the mesoscopic distribution
function. Two special cases are briefly studied by adequately specifying the
expressions of the mesoscopic constitutive functions v̂S

l ð†Þ, v̂Sð†Þ and �̂tð†Þ.
The mesoscopic concept used in this paper mainly follows the one proposed by

Blenk et al. (1991a) and their subsequent works on liquid crystals. However, four
extensions are made compared with Blenk et al.’s works. First, we have applied
the mesoscopic concept to the modelling of MR fluids. Once the mesoscopic
variable l was defined, the procedure to derive the balance equations of liquid
crystals made by the above research group could be adopted to establish the
balance equations of the solid continuum of MR materials. The other three
extensions then follow: (i) the mesoscopic variable l adopted in this paper is a
man-made vector and it could be discontinuous in time, which does not occur for
the director of liquid crystals; (ii) the concept of macroscopic–mesoscopic
mixture is introduced so that the mesoscopic mixture becomes merely the solid
component of the MR material and (iii) the magnetic field is not only included as
a parameter in the derivation, but it also plays the key role to create the
mesoscopic l field.

The mesoscopic approach provides more fundamental knowledge of the
behaviour of materials with internal structure. For MR materials with magnetic-
based structures, the stress tS(x, t) in equation (5.13) expressed by this approach
is implicitly relevant to the magnetic field since, according to the definition of l in
§3, no such vector l could be defined while the magnetic field is turned off. As for
the determination of the magnitude of magnetic dependence of stress, more
systematic mesoscopic constitutive information about r̂Sð†Þ, v̂Sð†Þ and t̂ð†Þ is
definitely required.

The role played by the vector l is similar to that played by the velocity vector
c in the Boltzmann equation. Since the appearance of c in the phase density of
the Boltzmann equation gives an evolution of the particle distribution,
consideration of l in the mesoscopic distribution provides information of the
arrangement of the solid particles of MR fluids. Moreover, even through the
originality of the mesoscopic equation for the distribution function (6.6) is
different from that of the Boltzmann equation, the similarity of both equations
such as lKc correspondence and production–collision analogy provides an
extension of the study of this mesoscopic theory to an unexplored realm that
deserves future study.
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