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Micromorphic modeling of granular dynamics

Kuo-Ching Chen∗ Jeng-Yin Lan
Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan

Abstract

This paper provides micromorphic modeling of a granular material. Micromorphic mod-

eling treats an individual particle as a microelement and the particle composition in a repre-

sentative volume element as a macroelement. By specifying the volume of a macroelement,

continuum volume-type quantities such as mass density, body force, body couple, kinetic

energy density, internal energy density, specific heat supply, etc., are determined by tak-

ing the averages of their discrete counterparts in a macroelement. The discrete expressions

for the divergence of surface-type quantities (fluxes) are obtained with the help of discrete-

continuum analogy for the discrete balance equations. We demonstrate that the discrete for-

mulation of stress tensor in the dynamic condition, which involves both contributions from

body forces and relative particle accelerations in a macroelement, can be simply expressed

in terms of contact forces and branch vectors. This study constructs complete discrete-type

and continuum-type balance equations for a granular material in a macroelement and at a

macroscopic point, using the discrete-continuum correspondence for these field quantities.

Keywords: Granular materials; Microcontinuum; Continuum mechanics

1 Introduction

Microcontinuum field theory has been developed by Eringen and Suhubi (1964) and Eringen

(1964; 1999; 2001) to characterize detailed behaviors of materials with internal degrees of

freedom. A microcontinuum can be categorized into micromorphic, microstretch, and mi-

cropolar continua according to different macroelement internal deformations. The success of

this theory over the past four decades has been justified in applications describing peculiar

responses of liquid crystals, polymers, suspensions, and many kinds of materials. The pur-

pose of this study is to discuss the feasibility and applicability of the microcontinuum theory

∗Corresponding author. Tel.: +886-2-3366-5676; fax: +886-2-2932-2714. E-mail address:
kcc@spring.iam.ntu.edu.tw (K.C. Chen)
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to characterize the dynamics of a single-phase granular material.

A granular material is an aggregate of a large number of discrete solid grains. Two dif-

ferent approaches model the mechanical behaviors of granular materials: the microscopic

discrete-particle approach and the macroscopic continuum mechanical approach. The dis-

crete element method and the molecular dynamics method are usually employed to depict

individual particle motion in a granular system (Goldhirsch and Goldenberg, 2004). Ho-

mogenization helps to formulate granular material macro fields in terms of corresponding

micro-fields, such as contact forces and displacements between particles (Chang and Liao,

1994). The continuum theory provides another useful approach to dealing with the mechanics

of granular materials, contrary to discrete treatments. This approach has been successfully

applied to analyze the motion of avalanches, debris, and mud flows of granular matters

(Takahashi, 1991; Hutter et al., 1996).

A complete understanding of the mechanics of granular materials under the continuum

mechanical approach is currently still lacking. This lack is due to the internal structural

complexity of these materials and a lack of considering macroscopic influence contributed

by the characteristic length of these materials. Specifically, in addition to standard bal-

ance equations in continuum mechanics, another equation is necessary to account for the

effects caused by internal relative motion of particles. Recognizing that pore space plays

an important role in granular material behavior, Goodman and Cowin (1972) developed a

continuum theory for these materials which treats the solid volume fraction as an internal

variable and then proposes an equilibrated force balance equation for this variable. Other

internal variables for a granular material have also been investigated, among which particle

rotation has received much attention. Treating particle rotation as an internal variable is

partly responsible for driving the development of micropolar continuum studies on granular

materials. Early treatments of the mechanics of materials with internal rotation trace back to

Voigt and Cosserat brothers. Later studies concentrate on developing micropolar continuum

theories (Toupin, 1964; Eringen, 1964; Green, 1965; Mindlin, 1965; Nowacki, 1986).

The significant effect of microrotation in metals has so far not received experimental sup-

port to date, even though micropolar theories have predicted several interesting phenomena

in materials. However, micropolar effect might be taken into account in other materials,

such as human compact bones, for which some experimental observations suggest that a

micropolar solid seems to be a more accurate model (Yang and Lakes, 1982). Moreover,

experimental evidence (Oda, 1997) showing the important role of discrete granular parti-

cle rotation in the development of shear band reinforces the viability of micropolar theory
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applicability to granular media, especially in a loosely packed state. As for theoretical treat-

ments, researchers have used micropolar theories to analyze the deformation and flow of

granular materials (Kanatani, 1979; Chang and Ma, 1991). Recently, Goddard (2005) pro-

posed an energy-based homogenization method to derive the quasi-static continuum models

of discrete granular media, obtaining the higher-order stresses for micropolar continua by

expanding particle displacements and forces in terms of their polynomial representations.

Froiio et al. (2006) established a mathematical framework to develop linear-momentum

and angular-momentum balance laws for granular materials by introducing the concepts of

“part”, “granular surface”, “separately additive function”, and “flux”. Other excellent works

also investigate micropolar continuum applicability to granular materials (Chang and Ma,

1990; Ehlers and Volk,1998; Bardet and Vardoulakis, 2001; Tordesillas and Walsh, 2002;

Kruyt, 2003; Ehlers et al., 2003; Chang and Kuhn, 2005).

This study proposes a micromorphic model, accounting for both microstructural mo-

tions of granular media – the bulk motion due to arrangement and compressibility of grains

(Goodman-Cowin treatment) and the rotational motion of grains (micropolar treatment).

The current work links a representative volume element (RVE) and a macroelement (Eringen,

1999), treating a macroelement as a region for averaging discrete quantities. By specifying

a macroelement volume, we obtain micromorphic continuum quantities in terms of discrete

quantities. Special emphasis is paid to the general discrete formulation of the stress tensor,

in which contact forces between grains, volumetrical forces of grains, and grain accelerations

relative to the macroelement’s center of mass (COM) are taken into account. The six dis-

crete balance equations – mass, microinertia, linear momentum, angular momentum, energy,

and entropy are formulated within a macroelement, and then transformed to their contin-

uum correspondences. In the past, Babic (1997) and Zhu and Yu (2002) have proposed a

space-time averaging technique to link discrete balance equations to the standard continuum

balance equations mentioned above. Besides the five equations, micromorphic modeling in

the current study helps to provide a new balance equation – the microinertia balance equa-

tion, which describes the evolution of second-order moment of mass density. This equation

can be used to characterize grain arrangement in a macroelement.

This paper is organized as follows. Section 2 briefly reviews the background of a microcon-

tinuum. Section 3 presents the micromorphic model by proposing a macroelement-particle

treatment. Proposing a macroelement correlates the volume-type and surface-type contin-

uum quantities for a granular material with their discrete counterparts. Section 4 provides

discrete macroelement-particle-based balance equations and derives their corresponding con-
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tinuum balance equations. Section 5 states conclusions and final remarks.

2 Formulation of field equations for a microcontinuum

A material body B in the microcontinuum theory is treated as a collection of deformable

macroelements {ΔB}. A macroelement, whose mass, volume, and mass density are respec-

tively denoted by dm, dV , and ρ(= dm/dV ), contains many microelements, having mass dm′,

volume dV ′, and mass density ρ′ = dm′/dV ′, such that ρdV =
∫

ΔB ρ′dV ′ and dV =
∫

ΔB dV ′,

where the quantities with “prime” above indicate those of a microelement. A macroelement

ΔB(X,Ξ) can be characterized by its center of mass C and vectors Ξ’s relative to C, where

the vector X represents the position vector of C and the vector Ξ describes the intrinsic struc-

ture of the macroelement. This vector Ξ measures the position vector of a microelement

relative to the macroelement’s COM.

The kinematics of a macroelement ΔB can be described by the two mappings:

X → x = x̂(X, t), (1)

Ξ → ξ = ξ̂(X,Ξ, t), (2)

where X and Ξ are measured in the reference configuration, and x and ξ are the correspond-

ing vectors of X and Ξ in the current configuration. The first mapping is the macromotion

and the second one is the micromotion. The macromotion is mathematically described by

the deformation gradient F, and under a linear approximation the micromotion can be char-

acterized by the deformable directors χ such that we have the two relations:

dx = F · dX, ξ = χ · Ξ. (3)

The complete set of balance equations in the microcontinuum field theory is (Eringen,

1999)
dρ

dt
+ ρ∇ · v = 0, (4)

di

dt
− ν · i − i · νT = 0, (5)

ρ
dv

dt
−∇ · t − ρf = 0, (6)

ρσ −∇ · μ − (t − τ )T − ρl = 0, (7)

ρ
dε

dt
− tT : (∇v − ν) − τ T : ν − μ

... ∇ν + ∇ · q − ρr = 0, (8)

ρ
dη

dt
+ ∇ · Φ − γ = 0. (9)
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These equations represent the balance of mass, microinertia, linear momentum, momentum

moment, internal energy, and entropy, respectively. Here, d/dt is the total time derivative

and the superscript “T” means the transpose. The operators “ : ” and “
... ” stand for the

double and triple contractions in the last two and three indices such that for a (k + 2)-

order tensor a and a (l +2)-order tensor b with components ai1i2...ik+2
and bi1i2...il+2

, we have

(a : b) = ai1i2...ikmnbi1i2...ilmn and (a
... b) = ai1i2...ik−1mnpbi1i2...il−1mnp. The sixteen quantities

ρ,v, i, ν, t, f , σ, μ, τ , l, ε,q, r, η, Φ, and γ are respectively the mass density, the velocity

field, the microinertia tensor, the microgyration tensor, the stress tensor, the body force, the

spin inertia per unit mass, the stress momentum tensor, the microstress, the body couple

per unit mass, the internal energy density, the heat flux vector, the heat source, the entropy

density, the entropy flux, and the entropy production.

The success of the macroscopic field theory of a microcontinuum can be found not only

in its application to modeling the behavior of a lot of substances but also in its support from

a microscopic derivation (Oevel and Schröter, 1981; Chen and Lee, 2003). Whether or not

the microcontinuum equations can be applied to a discrete granular system heavily depends

on the interpretation and formulation of continuum quantities in terms of corresponding

discrete quantities. The next section discusses an approach to modeling a granular system

as a microcontinuum.

3 Micromorphic modeling

Producing macroscopic quantities of a granular assembly requires choosing a suitable spatial

domain, over which those quantities can be obtained by taking the average of their corre-

sponding microscopic counterparts. Tordesillas and Walsh (2002) treated a particle and its

contact particles as a domain to link discrete mechanical quantities with micropolar contin-

uum quantities. This treatment recognizes that homogenizing a large number of particles

cannot delineate the evolution of shear bands, only a few particles wide. Thus, a fundamental

problem in presenting a good macroscopic description of a granular system is to determine

the size of an RVE, or how many grains should be contained in an RVE? Researchers to

date have not reached a consensus on determining the extent of an RVE. Basically, a good

macroscopic description requires the following condition

λP < λR < λD, (10)

where λP , λR, and λD denote the characteristic lengths of a granular particle, an RVE, and

the whole granular system, respectively. The following derivation follows this constraint
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Figure 1: A spherical RVE containing N particles is adopted. In the center-of-mass coordinate
system, the position of a particle is decomposed into the position vector of the COM of all particles
in the RVE and the position relative to the COM. For convenience of expression, the particles are
symbolically represented in a spherical form.

condition.

3.1 RVE, macroelement, and macroscopic point

In the reference configuration, let’s consider a spherical RVE with radius rR and denote the

number of particles in the RVE by N . For the sake of simplicity, we assume that particles are

spherical because the effect of particle shape does not explicitly enter into the formulation of

our modeling. This does not contradict with the fact that the geometric shape of particles

has a great influence on the response of granular materials such as shear bands induced

by biaxial forces (Powrie et al., 2005). Indeed, particle shape will indirectly contribute to

the granular dynamics by influencing the distributions of particle mass and contact forces,

which in turn determine the related continuum quantities, such as the microinertia tensor

and stress tensor.

Figure 1 shows that the position vector of a particle i in the RVE, xi, can be represented

by the position of the COM of all particles in the RVE, x, and the position relative to the

COM, ξi. To be explicit, we set

xi = x + ξi. (11)

Introducing the coordinate system (x, ξi) provides (3N + 3) translational degrees of free-

dom (DOFs) for all particles in the RVE, greater than the original 3N translational DOFs,

described by the N vectors xi. However, this center-of-mass coordinate system implicitly
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imposes three additional constraint conditions

∑N
i=1 ξi = 0. Together with the other 3N

DOFs for N -particle spins, there are 6N numbers of independent DOFs for the RVE.

The construction of continuum field quantities from discrete quantities requires the spec-

ification of the volume of domain for averaging. Using the notion of macroelement in micro-

continuum field theory, an RVE is inappropriately viewed as a macroelement because an RVE

is usually treated as a fixed domain in the reference configuration and a macroelement is a

moving material element. This study accordingly defines a macroelement in this micromor-

phic modeling as a moving domain composed of those particles in an RVE. A microelement

in this modeling is meanwhile adopted as a single particle. Furthermore, we adopt the cell

volume of the Dirichlet tessellation (Dirichlet, 1850; Oda and Iwashita, 1999) as the basic

volume unit, which includes the volume of a single particle and partial spatial volume of

surrounding void. Let ΔV i be the cell volume of particle i in the Dirichlet tessellation, and

the macroelement volume be the sum of the cell volumes of all particles in the macroelement,

i.e., ΔV =
∑N

i=1 ΔV i. Macroelement volume ΔV is notably time-dependent.

This work images and assumes a macroelement as a macroscopic “point”, and assigns the

position of this macroscopic point as the macroelement’s COM, in order to have a continuum

description of the discrete system. In this manner, all related macroscopic quantities at a

macroscopic point x are given as the average of their corresponding discrete counterparts over

the macroelement. With the definition of a macroscopic point, the relative position vectors

ξi are treated as internal DOFs at point x and these internal DOFs evidently characterize

the particle arrangement in an RVE.

Similar to the decomposition of the position vector in Eq. (11), the velocity of particle i

in a macroelement measured at the origin of a Cartesian coordinate can be written as

vi = v + ξ̇
i
, (12)

where v is the velocity of the macroelement’s COM, and ξ̇
i
represents the velocity of particle

i measured from the COM.

3.2 Discrete-continuum relations for volume-type quantities

As soon as specifying the volume of a macroelement, one can readily construct the rela-

tions between the other macroscopic field quantities and their discrete counterparts. These

macroscopic quantities can be separated into two categories: (i) volume-type quantities such

as mass density, specific body force, specific body couple, entropy density, kinetic energy

density, and internal energy density, and (ii) surface-type quantities, including stress tensor,

couple stress, and heat flux.
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With the volume ΔV of a macroelement, the discrete-continuum correspondences for

the mass density ρ, body force density f , body couple tensor l, spin density s, total angular

momentum density S, kinetic energy density T , internal energy density ε, and entropy density

η of a granular assembly can be readily found as

1

ΔV

N∑
i=1

mi =
m

ΔV
= 〈ρ〉 → ρ(x, t), (13)

1

ΔV

N∑
i=1

mif i = 〈ρf〉 → ρ(x, t)f(x, t), (14)

1

ΔV

N∑
i=1

mif i ⊗ ξi = 〈ρl〉 → ρ(x, t)l(x, t), (15)

1

ΔV

N∑
i=1

misi = 〈ρs〉 → ρ(x, t)s(x, t), (16)

1

ΔV

N∑
i=1

mi
(
xi × vi + si

)
= 〈ρS〉 → ρ(x, t)S(x, t), (17)

1

ΔV

[
1

2
mv · v +

1

2

N∑
i=1

mi(ξ̇
i · ξ̇i

+ si · θi−1 · si)

]
= 〈T 〉 → T (x, t), (18)

1

ΔV

N∑
i=1

miεi = 〈ρε〉 → ρ(x, t)ε(x, t), (19)

1

ΔV

N∑
i=1

miηi = 〈ρη〉 → ρ(x, t)η(x, t), (20)

where the quantities between left and right angles indicate the discrete averages in a macroele-

ment and they are assigned to the point x, which is the COM for the macroelement. Here,

f i, si, θi, εi, and ηi are the specific body force, spin density, tensor of moment of inertia,

specific internal energy, and specific entropy for particle i in a macroelement. The operator

“⊗” is referred to the tensor product and m stands for the total mass of the macroelement.

It is straightforward to express the linear momentum at the point x as

1

ΔV

N∑
i=1

mivi = 〈ρv〉 → ρ(x, t)v(x, t). (21)

Substituting Eq. (12) into Eq. (21) yields

N∑
i=1

miξ̇
i
= 0, (22)
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which reflects the fact that the momentum measured at the macroelement’s COM is zero.

The total angular momentum at the point x is composed of the “spin” angular momen-

tum in a macroelement characterizing particle spin and the “orbital” angular momentum

of particles about the origin of the coordinate system. The orbital angular momentum is

expressed by
∑N

i=1 mi (xi × vi), and, using Eqs. (11), (12) and (22), it can be transformed

to a simple form:

m (x × v) +
N∑

i=1

mi
(
ξi × ξ̇

i
)

.

The kinetic energy at the point x contains three parts: (i) the kinetic energy of macroele-

ment’s COM with velocity v, (ii) the relative kinetic energy of particle i with relative velocity

ξ̇
i
, and (iii) the spin energy of particle i with angular velocity θi−1 · si.

In addition to the general quantities in standard continuum mechanics, microcontinuum

field theory introduces a new quantity, called microinertia density i, to account for the

second-moment of inertia of a macroelement. The importance of the symmetric second-

order microinertia tensor, i = (1/ρdV )
∫

ΔB ρ′ξ ⊗ ξdV ′, lies in the manifestation of mass

distribution in a macroelement. This is the very reason why microcontinuum theory is a

suitable candidate for describing a granular material, since the particle arrangement is crucial

to determining several physical quantities of this material. With reference to the definition

of the microinertia density, this study proposes the discrete-continuum correspondence for

ρi to be

1

ΔV

N∑
i=1

miξi ⊗ ξi = 〈ρi〉 → ρ(x, t)i(x, t), (23)

for a micromorphic modeling of a granular material.

3.3 Discrete-continuum relation for surface-type quantities–stress
tensor

Consider the proposition of the macroscopic definition of stress tensor. For a microcontinuum

the stress tensor t at a point x is formulated as

(n · t) dS =

∫
T(n′

ζ)dS ′, (24)

where T(n′
ζ) is the traction exerting on the surface of a microelement with surface element dS ′

and its unit normal n′
ζ . The surface element dS and its unit normal n of the macroelement

satisfy the relation: ndS =
∫

n′
ζdS ′.

For a granular material, due to its discrete nature, various definitions of stress tensor

in terms of discrete contact forces and related quantities have been proposed (Bagi, 1996).
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Two approaches to this end can be found. The first approach adopts the basic definition

of stress tensor by finding the average force on an arbitrary plane that cuts the packing

(Jagota et al., 1988). The second approach defines the volume-average stress within a finite-

size domain that contains several particles (Rothenburg and Selvadurai, 1981; Kanatani,

1981; Christoffersen et al., 1981). In a static condition, the second approach suggests that

the definition of stress tensor should be

〈t〉 =
1

V

∑
c

bc ⊗ Fc, (25)

where V , Fc, and bc are the volume of the domain in question, the contact force, and the

branch vector connecting the centers of two particles in contact, respectively. The summation∑
c is performed over all internal contacts within the domain of interest. Note that the

definition (25) is also valid when both the volumetric loads and the contacting forces are

taken into account (Bagi, 1999). This study will apply the definition (25) to dynamic cases

by treating the inertia term as a volumetric load. The analysis is as follows.

From the continuum point of view, the linear momentum balance equation helps to

express the stress tensor t and its spatial gradient ∇ · t as

tji = (xjtki),k − xjtki,k = (xjtki),k − xj (ρv̇i − ρfi) , tji,j = (tji),j , (26)

with mass density ρ, acceleration v̇i, and specific body force fi. Choosing a suitable domain

V , the volume-average stress tensor 〈tji〉 and the volume-average stress gradient 〈tji,j〉 in

this domain are

〈tji〉 =
1

V

∫
V

(
(xjtki),k − xjtki,k

)
dV =

1

V

∮
∂V

nkxjtkidS − 1

V

∫
V

xj(v̇i − fi)ρdV, (27)

〈tji,j〉 =
1

V

∫
V

tji,jdV =
1

V

∮
∂V

njtjidS. (28)

For a granular assembly, if (n · tdS) corresponds to contact force Fc, then, analogous to the

expressions (27) and (28), the stress tensor t and its divergence of a granular assembly are

1

ΔV

∑
(b)c

xc ⊗ Fc − 1

ΔV

N∑
i=1

mixi ⊗ (v̇i − f i)

=
1

ΔV

⎡
⎣x ⊗ (Fc

t + mfb − mv̇) +
∑
(b)c

rc ⊗ Fc −
N∑

i=1

miξi ⊗ (ξ̈
i − f i)

⎤
⎦→ t(x, t), (29)

1

ΔV

∑
(b)c

Fc → ∇ · t, (30)
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Figure 2: The position of a contact point c can be decomposed by xc = x + rc. The vector rc is
the position of contact point measured from the macroelement’s COM, x. Two particles interact
each other through a contact force Fc and a possible contact couple moment mc.

where the kinematic relations (11) and (12) are employed and xc represents the contact

point position. As Fig. 2 illustrates, the position of a contact point c can be decomposed

through the relation: xc = x + rc, where rc is the contact point position measured from

the macroelement’s COM, i.e., x. In Eq. (29), Fc
t(=

∑
(b)c F

c) is the total contact force

acting on the macroelement and
∑

(b)c denotes the summation over points of contacts with

the boundary of the macroelement. The equivalent body force per unit mass fb is defined as

mfb =

N∑
i=1

mif i.

Thus, the balance of linear momentum for a macroelement implies

Fc
t + mfb − mv̇ = 0, (31)

which helps to reduce Eq. (29) to

1

ΔV

⎡
⎣∑

(b)c

rc ⊗ Fc −
N∑

i=1

miξi ⊗ (ξ̈
i − f i)

⎤
⎦→ t(x, t). (32)

In the absence of acceleration and volumetric (body) forces, the discrete-continuum corre-

spondence (32) for the stress tensor becomes

1

ΔV

∑
(b)c

rc ⊗ Fc → t(x, t). (33)
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If the volumetric forces f i are the same for all particles i such as gravity force, the discrete

formulation of the stress tensor in Eq. (33) still holds for static conditions (Bagi, 1999).

However, in dynamic conditions, Eq. (32) shows that the discrete formulation of stress tensor

for a granular assembly involves a contribution due to relative accelerations of particles in a

macroelement. It should be emphasized that, since relative accelerations rather than absolute

accelerations of particles are involved in the general expression of the stress tensor, the form

of (32) is not changed when we alter the coordinate system, i.e., the stress expression satisfies

the objectivity condition.

In addition, the discrete formulation of stress tensor in Eq. (32) can be further modified

by taking into account the balance of linear momentum for a single particle i, i.e., miv̇i =

mif i +
∑

(i)c F(i)c. Accordingly, Eq. (29) can be transformed into

1

ΔV

∑
(b)c

xc ⊗ Fc − 1

ΔV

N∑
i=1

mixi ⊗ (v̇i − f i)

=
1

ΔV

⎡
⎣∑

(b)c

xc ⊗ Fc −
N∑
i

xi ⊗
⎛
⎝∑

(i)c

F(i)c

⎞
⎠
⎤
⎦→ t(x, t),

where
∑

(i)c denotes the summation over contact points for the particle i, and F(i)c stands

for the contact forces on the i-particle. Bagi’s (1999) definition of the branch vector is

bc = xi − xj in the inside of the macroelement, and is bc = κc for those faces on the

boundary, where κc refers to those position vectors measured from the centers of mass of

boundary particles to their contact points with boundary. With the aid of this definition,

the standard expression of stress tensor (1/ΔV )
∑

c b
c ⊗ Fc is readily recovered, where it

should be noted that the sum is over all contacts, i.e., internal and boundary. This derivation

manifests that in terms of the branch vector the discrete formulation of stress tensor does

not involve body forces and particle accelerations.

It is evident that the balance equation of linear momentum helps to determine the dis-

crete formulation of stress tensor for a granular material. Similarly, other balance equations

will help to formulate the continuum expressions of surface-type related quantities, such as

the divergences of couple stress tensor and heat flux. The following section continues this

discussion.

4 Macroelement-particle-based balance equations

This study uses an RVE in the reference configuration to identify a macroelement, then

proposes the macroelement-particle treatment to define macroscopic quantities, which are
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assigned to the macroelement’s COM. With this modeling, various mechanical balance equa-

tions in a macroelement can be transformed into their corresponding continuum limits

through the following analysis.

4.1 Mass balance equation

Since a macroelement is a material element, the total mass of a macroelement should be

conserved. Using the definition of mass density in Eq. (13), we calculate

d

dt

( m

ΔV

)
= m

d

dt

(
1

ΔV

)
. (34)

The volume change of a macroelement can be caused by particle rearrangement and particle

compressibility in this macroelement. Because the continuum limit of the time rate of change

of ΔV can be found to be ΔV (∇ · v), the continuum counterpart of Eq. (34) is reduced to

the standard continuum expression of the mass balance equation:

dρ

dt
+ ρ∇ · v = 0. (35)

4.2 Microinertia balance equation

In the micromorphic modeling of a granular material, the microinertia density ρi character-

izes particle arrangement in a macroelement. Taking the total time derivative of the discrete

analogy of ρidV , given in Eq. (23), yields

d

dt

(
N∑

i=1

miξi ⊗ ξi

)
=

N∑
i=1

miξi ⊗ ξ̇
i
+

(
N∑

i=1

miξi ⊗ ξ̇
i

)T

. (36)

To describe the motion of particles relative to the macroelement’s COM, this study denotes

by α the orbital angular momentum tensor per unit volume, i.e.,

1

ΔV

N∑
i=1

miξi ⊗ ξ̇
i
= 〈ρα〉 → ρ(x, t)α(x, t). (37)

Thus, it follows from Eq. (36) that the continuum counterpart of microinertia balance

equation is
di

dt
− α − αT = 0. (38)

4.3 Linear momentum balance equation

While deriving the discrete expression of stress tensor in the previous section, the discrete

balance equation of linear momentum for a macroelement has been proposed, i.e., Eq. (31).
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By means of the discrete-continuum correspondences in Eqs. (13) and (30), the linear mo-

mentum balance equation at a macroscopic point is directly obtained from the continuum

limit of Eq. (31):

ρ
dv

dt
−∇ · t − ρfb = 0. (39)

4.4 Angular momentum balance equation (without particle spin)

In classical dynamics, it is well-known that the Euler equation governs angular momentum

evolution of a system, and its vectorial form reads

dHp

dt
= Mp, (40)

with the angular momentum Hp and moment Mp relative to a point p. This equation is

valid only when one of the following conditions is satisfied: (i) the point p is the system’s

COM; (ii) the point p is fixed in space or moves with a constant velocity; and (iii) the point

p is accelerating toward or away from the COM. Let the point p be the fixed origin o of the

Cartesian coordinate and choose the system as a macroelement. Without taking particle

spin and contact couple moment into account, the angular momentum balance equation of

a macroelement should be
dHo

dt
= Mbody

o + Msur
o , (41)

where Ho, Mbody
o , and Msur

o are respectively the angular momentum and two moments

contributed from body and surface forces. They are expressed as

Ho =

N∑
i=1

mixi × vi, (42)

Mbody
o =

N∑
i=1

mixi × f i, (43)

Msur
o =

∑
(b)c

xc × Fc. (44)

Substituting Eqs. (42), (43), and (44) into (41) leads to the discrete formulation of angular

momentum balance equation:

d

dt

(
N∑

i=1

miξi × ξ̇
i

)
=

N∑
i=1

miξi × f i + mx × (fb − v̇) +
∑
(b)c

xc × Fc. (45)
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In this derivation, the angular momentum (42) is simplified by the two identities

N∑
i=1

mix × ξ̇
i
= 0, (46)

N∑
i=1

miξi × v = 0, (47)

which are derived by accounting for the macroelement’s COM coordinate system and by

using Eqs. (11) and (12).

To obtain the continuum counterpart of the discrete angular momentum balance equation,

we transform each term in Eq. (45) from the discrete expression to its continuum analogy.

First, with the help of mass conservation and Eq. (37), we can find that

1

ΔV

d

dt

(
N∑

i=1

miξi × ξ̇
i

)
=

d

dt

(
1

ΔV

N∑
i=1

miξi × ξ̇
i

)
− d

dt

(
1

ΔV

) N∑
i=1

miξi × ξ̇
i → ρe · α̇,

(48)

where e is the third-order permutation symbol. Second, recalling Eq. (15), we arrive at

1

ΔV

N∑
i=1

miξi × f i → −ρe · l. (49)

Third, from Eqs. (30) and (31), we obtain the correspondence:

m

ΔV
x × (fb − v̇) → −x × (∇ · t). (50)

Fourth, expressing the continuum limit of the moment from surface force and using the

Cauchy first principle T(n) = n · t and the divergence theorem leads to

1

ΔV

∑
(b)c

xc × Fc → 1

V

∮
∂V

y ×T(n)dSy =
1

V

∮
∂V

(x + ζ) ×T(n)dSy

=
1

V
x ×

∮
∂V

T(n)dSy − 1

V
e :

∫
V

∇y · (t ⊗ ζ) dVy, (51)

where y is a dummy coordinate and T(n) is the traction on the surface element dSy. The

position vector of a point, y, within the volume V can be expressed by y = x + ζ, where

x is the position of the center of mass of V , and ζ is the coordinate relative to the mass

center. The first term on the right hand side of Eq. (51) represents the moment produced

by the total outer contact forces of the macroelement, and the expression of the second term

suggests that the definitions of the volume-averages of the couple stress μ and its divergence

can be

〈μijk〉 =
1

V

∫
V

tijζk dV, (52)

〈μijk,i〉 =
1

V

∫
V

(tijζk),i dV. (53)
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Unlike the discrete formulation of stress tensor (32), couple stress μ is a higher-order stress

and is defined under the continuum framework. Equations (52) and (53) show that the

definition of μ involves stress tensor t, so the discrete formulation of couple stress tensor, if

it is strongly required, is still undetermined in this study.

Now, by virtue of Eqs. (48), (49), (50), (51), and (53), the continuum counterpart of the

discrete angular momentum balance equation (45):

e :

(
ρ
dα

dt
+ ρl + ∇ · μ

)
= 0, (54)

is readily obtained. In order to be compatible with Eq. (7) in the microcontinuum field

theory, we introduce a symmetric tensor τ , called microstress tensor, which helps to extend

the vectorial balance equation of angular momentum (54) to a tensorial equation (Eringen,

1999; Chen, 2007)

ρ
dα

dt
+ ρl + ∇ · μ = τ . (55)

This microstress tensor, or called microstress average, is a result of the stresses averaged

over all particles in the inner structure of the macroelement from the microscopic atomic

viewpoint (Chen et al., 2004). The issue of finding the discrete formulation of the microstress

tensor, however, awaits further study.

In addition, two differences can be observed when we compare Eq. (55) with the balance

equation of momentum moment (7). The first difference is that there is no stress tensor term

in Eq. (55), and the second is that the spin inertia per unit mass σ in Eq. (7), defined as

(1/ΔV )
∑N

i=1 miξ̈
i⊗ξi → ρσ, is replaced by the rate of orbital angular momentum tensor α̇.

The reason for the first difference lies in the fact that the stress tensor in our micromorphic

modeling is symmetric, leading to its vanishing in Eq. (54). The symmetry can be readily

verified by performing the operation “e :” on the discrete formulation of stress tensor (32),

i.e.,

1

ΔV

⎡
⎣∑

(b)c

rc × Fc −
N∑

i=1

miξi × (ξ̈
i − f i)

⎤
⎦→ e : t,

from which we obtain e : t = 0 by using the angular momentum balance equation (45). This

fact is also compatible with Bagi’s (1999) conclusion that the stress tensor in the volume-

average expression is symmetric when grains are in moment equilibrium. As for the second

difference, we notice that

1

ΔV

N∑
i=1

miξ̇
i⊗ξ̇

i
=

{
d

dt

(
1

ΔV

N∑
i=1

miξi ⊗ ξ̇
i

)
− d

dt

(
1

ΔV

) N∑
i=1

miξi ⊗ ξ̇
i

}
− 1

ΔV

N∑
i=1

miξi⊗ξ̈
i
,
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which yields the following correspondence:

1

ΔV

N∑
i=1

miξ̇
i ⊗ ξ̇

i → ρα̇ − ρσT . (56)

The symmetry of the left-hand side indicates that e : α̇ = e : σT , which explains the second

difference.

4.5 Angular momentum balance equation (with particle spin)

The total angular momentum in a macroelement is composed of two parts: the orbital and

spin angular momenta. The spin angular momentum describes particle rotation and the

orbital angular momentum depicts particle motion relative to the macroelement’s COM.

The original derivation of the microcontinuum field theory does not provide the possibility

of the latter part. Taking the spin contribution into account, the total angular momentum

per unit mass is

S = s + e : α. (57)

Then, analogous to Eq. (45), the total discrete formulation of angular momentum balance

equation (41) becomes

d

dt

(
N∑

i=1

mi(ξi × ξ̇
i
+ si)

)
−
∑
(b)c

xc×Fc−
∑
(b)c

mc =
N∑

i=1

mi(ξi×f i+gi)+mx×(fb − v̇) , (58)

where the newly introduced spin-related quantities mc and migi represent the local surface

couple moment acting on contact point c and the body couple for the particle i, respectively.

Equation (16) and the following two correspondences:

1

ΔV

N∑
i=1

migi → ρg(x, t), (59)

1

ΔV

∑
(b)c

mc → 1

V

∮
∂V

mdS =
1

V

∫
V

∇ · cdV, (60)

present the discrete-continuum relations for the three additional spin contributions, where

the continuum counterpart of mc is denoted by mdS. This study further assumes that the

local surface couple moment m plays a role similar to the traction in continuum mechanics

such that the analogous Cauchy first principle is satisfied. To be explicit, the relation

m = n · c holds, in which c is the local couple stress tensor. Equations (59) and (60)

express the two discrete-continuum correspondences for the local body couple per unit mass

g and the divergence of local couple stress ∇ · c. Setting the volume V as a macroelement
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and assigning the volume-average of ∇ · c at the point x, the continuum counterpart of the

balance equation of angular momentum with particle spin being included can be deduced

from Eq. (58) to be

e :

(
ρ
dα

dt
+ ρl + ∇ · μ

)
+ k = 0, (61)

where

k = ρ
ds

dt
− ρg −∇ · c, (62)

is a spin-related quantity. Using the two abbreviated notations C = c − μ : e and G =

g − l : e, Eq. (61) can be written as

ρ
dS

dt
−∇ · C − ρG = 0. (63)

4.6 Energy balance equation

The total energy at a point x in this macroelement-particle treatment is comprised of the

kinetic energy of the macroelement’s COM, the kinetic energy relative to the macroelement’s

COM, the spin energy, and the internal energy. Equations (18) and (19) show the discrete

formulation of the total energy of a macroelement. The energy balance law states that the

change of a system’s total energy is balanced by mechanical work and heat input to the

system. Applying this law to a macroelement immediately leads to

d

dt

[
1
2
mv · v +

N∑
i=1

mi(εi + 1
2
ξ̇

i · ξ̇i
+ 1

2
si · θi−1 · si)

]

= W1 + W2 + W3 + W4 + Q1 + Q2, (64)

where W1, W2, W3, and W4 are the four types of mechanical powers done by body force,

surface force, body couple, and surface couple, respectively. Q1 and Q2 are the energy supply

rates due to radiation and heat conduction. The discrete formulations of the four mechanical

powers are

W1 =

N∑
i=1

mif i · vi = mfb · v +

N∑
i=1

mif i · ξ̇i
, (65)

W2 =
∑
(b)c

Fc · vc, (66)

W3 =

N∑
i=1

migi · ŝi = mg · ŝ +

N∑
i=1

migi · Δ(ŝi), (67)

W4 =
∑
i,c

mi,c · ŝi. (68)

18



 

 

 

ACCEPTED MANUSCRIPT 

 
Here, ŝi(= θi−1 · si) is the angular velocity of particle i, with the moment of inertia θi−1

.

ŝ is the average angular velocity of the macroelement. The difference of angular velocity

Δ(ŝi) is defined by Δ(ŝi) = ŝi − ŝ. mi,c represents the local couple moment exerting on the

contact point c of particle i. To obtain the continuum limit of the four mechanical powers,

this study finds the following two correspondences:

1

ΔV

∑
(b)c

Fc · vc → 1

V

∮
∂V

(n · t) · v dS =
1

V

∫
V

(
tT : ∇v + (∇ · t) · v) dV, (69)

1

ΔV

∑
i,c

mi,c · ŝi → 1

V

∮
∂V

(n · c) · ŝ dS =
1

V

∫
V

(
cT : ∇ŝ + (∇ · c) · ŝ) dV, (70)

where use has made of the divergence theorem and Eq. (62).

Moreover, the discrete expressions of the two energy supply rates are

Q1 =

N∑
i=1

miri, (71)

Q2 = −
∑
(b)c

qc, (72)

where ri is the energy radiation rate per unit mass for particle i. Here, it is assumed that

heat only conducts through contact point between two particles, and qc represents the heat

outflow through the contact point c per unit time. The continuum limits of the two energy

supply rates, i.e., the specific heat supply r and the divergence of heat flux ∇ · q, are found

to be
1

ΔV

N∑
i=1

miri = 〈ρr〉 → ρ(x, t)r(x, t), (73)

1

ΔV

∑
(b)c

qc → 1

V

∮
∂V

nkqkdS =
1

V

∫
V

qk,kdV = 〈qk,k〉 → qk,k(x, t). (74)

It is worthwhile to mention that the discrete formulation of heat flux q (Babic, 1997) can

be suggested to be

〈qk〉 =
1

V

∫
V

((xkql),l − xkql,l) dV =
1

V

(∮
∂V

xknlqldS −
∫

V

xkql,ldV

)

→ 1

ΔV

⎛
⎝∑

(b)c

xc
kq

c −
N∑

i=1

xi
kq

ic

⎞
⎠ =

1

ΔV

∑
c

bc
kq

c, (75)

where bc is the branch vector as mentioned in Sec. 3. In this derivation we have assumed

that Eq. (74) holds for a single particle, i.e., qi
k,kΔVi →

∑
qic, with qic being the rate of heat

outflow through the contact point c of the particle i.
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Finally, the balance equation of internal energy, which is obtained from Eq. (64) by

accounting for Eqs. (39), (62), (69), (70), (73), and (74), is written as

ρε̇e − tT : ∇v − cT : ∇ŝ + k · ŝ + ∇ · q − ρre = 0, (76)

where εe and re are the equivalent internal energy and the equivalent energy supply, respec-

tively, and their discrete counterparts are

1

ΔV

N∑
i=1

mi(εi + 1
2
ξ̇

i · ξ̇i
+ 1

2
Δsi · θi−1 · Δsi) = 〈ρεe〉 → ρ(x, t)εe(x, t), (77)

1

ΔV

N∑
i=1

mi
(
ri + f i · ξ̇i

+ gi · Δ(ŝi)
)

= 〈ρre〉 → ρ(x, t)re(x, t). (78)

Comparing Eq. (76) and the energy balance equation in the microcontinuum field theory

shown in Section 2 reveals that the macroelement-particle-based equation is more general in

describing the evolution of a granular material within a continuum framework. Two reasons

for this are as follows. (i) This modeling does not introduce the gyration tensor ν, which

describes the motion of a microelement relative to the macroelement’s COM. Therefore, the

condition ξ̇ = ν · ξ, which is the requirement for a micromorphic continuum of grade one, is

not necessary. (ii) This modeling takes into account particle spin represented by local spin,

which is missing in the original microcontinuum theory. The macroelement-particle-based

balance equation can reduce to Eq. (8) if the two requirements are satisfied: (i) the particle

spin is discarded, and (ii) the condition ξ̇ = ν · ξ is adopted, i.e., every ξ in a macroelement

has the same gyration. This reduction involves the following two operations:

d

dt

(
N∑

i=1

(1
2
miξ̇

i · ξ̇i
)

)
=

[
(ν · ν + ν̇) ·

(
N∑

i=1

(miξi ⊗ ξi)

)]
: ν, (79)

N∑
i=1

mif i · ξ̇i
=

(
N∑

i=1

mif i ⊗ ξi

)
: ν, (80)

and the definitions of energy supply r and equivalent heat flux qe in the form of

r = re − l : ν, (81)

qe = q + μ : ν. (82)

Hence, Eq. (76) is simplified to

ρ
dε

dt
− tT : ∇v − τ : ν − μ

... ∇ν + ∇ · qe − ρr = 0, (83)

which is in the form of the internal energy equation (8) of a micromorphic continuum of

grade one.
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4.7 Entropy balance equation

For a complete description of thermodynamical phenomena, one should introduce the entropy

as an additional variable to account for the irreversibility of a system (Jou et al., 2001). Let

the entropy Λ be an extensive quantity and its time rate of change be written as

dΛ

dt
=

deΛ

dt
+

diΛ

dt
, (84)

where deΛ/dt represents the rate of entropy exchanged from the system boundary. If we

disregard the entropy supply, then diΛ/dt denotes the entropy production generated inside

the system. According to the second law of thermodynamics, diΛ/dt must be a non-negative

quantity if the second law also holds at any macroscopic point. For a macroelement, the

explicit form of Eq. (84) gives

d

dt

( N∑
i=1

miηi

)
= −

∑
(b)c

Φc +

N∑
i=1

γi, (85)

where ηi, Φc, and γi are the specific entropy for particle i, the entropy outflow through

the contact point c per unit time, and the entropy production, respectively. Given that

the continuum limits of the two macroscopic fields, namely, the entropy flux Φ and the

entropy production per unit volume γ, can be obtained from their corresponding discrete

counterparts:

1

ΔV

∑
(b)c

Φc → 1

V

∮
∂V

nkΦkdS =
1

V

∫
V

Φk,kdV = 〈Φk,k〉 → Φk,k(x, t), (86)

1

ΔV

N∑
i=1

γi = 〈γ〉 → γ(x, t), (87)

the continuum correspondence of Eq. (85) takes the form

ρ
dη

dt
+ ∇ · Φ − γ = 0, (88)

which is exactly the balance equation of entropy (9).

5 Concluding remarks

This paper discusses the modeling of a discrete granular system as a micromorphic continuum

by using an RVE to identify a macroelement and treating a single particle as a microele-

ment. The relative position vectors of particles in a macroelement are interpreted as internal

degrees of freedom at a macroscopic point. Proposing the macroelement-particle treatment
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helps to construct a bridge between the discrete and continuum quantities for a granular

material. After specifying the volume of a macroelement to determine the continuum field

quantities from their discrete counterparts, this study formulates the discrete expressions

of balance equations in a macroelement. The derived discrete balance equations are Eqs.

(34), (36), (31), (58), (64), and (85). Then these equations are transformed into their con-

tinuum counterparts, i.e., Eqs. (35), (38), (39), (63), (76), and (88), which govern the time

evolutions for the field quantities (ρ, i,v, α, s, εe, η). Disregarding the entropy equation, the

external sources in these equations are (fb, l, g, re), and other quantities (t, μ, c,q) should be

determined by proposing additional constitutive relations. A slight difference between our

derived continuum equations and those in the microcontinuum theory can be found. That

is, our system rotation consists of two parts. The reason for this is that choosing a granular

particle as a microelement leads to microelement spins.

The volume-type field quantities are readily constructed by performing the discrete-

continuum analogy. However, surface-type quantities can not be obtained in such a straight-

forward manner. The general discrete expression for stress tensor of granular materials is

obtained with the help of linear momentum balance equation, and we show that this expres-

sion involves not only the standard expression in a static condition, (1/ΔV )
∑

(b)c r
c ⊗ Fc,

but also the contributions due to specific body forces and particle differences in acceleration.

Furthermore, we show that the stress formulation can be expressed as (1/ΔV )
∑

c b
c ⊗ Fc

while introducing the branch vector bc, and the stress tensor is symmetric by accounting for

the balance of angular momentum.

This macroelement-particle treatment has three major advantages, listed as follows.

First, this modeling presents detailed information on particle arrangement at a macroscopic

point that other continuum mechanical approaches cannot reach. Second, this modeling

connects the theory of micromechanics (Nemat-Nasser and Hori, 1993) and the microcon-

tinuum field theory in two ways. On the one hand, it drives the study of micromechanics to

dynamic applications and, on the other hand, it extends the study of a microcontinuum to

a discrete system. The third advantage of this modeling is that it offers a convenient way

to link discrete and continuum quantities of a granular material. It finds continuum field

quantities by taking continuum analogies of corresponding discrete quantities. Based on this

modeling, we can formulate the local form of balance equations for a granular continuum,

i.e., balance equations of mass, microinertia, linear momentum, angular momentum, energy,

and entropy, from their discrete balance equations for a macroelement.

Furthermore, it has been shown that a micromorphic continuum is endowed with three
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types of internal deformation at every macroscopic point, namely, rotational, dilatancy,

and shearing. The three types of deformation can be mathematically characterized by the

antisymmetric part, the bulk symmetric part, and the deviatoric symmetric part of micro-

continuum field quantities (Chen and Lan, 2008). This micromorphic modeling provides a

more general understanding of granular dynamics in that it can not only be reduced to the

micropolar modeling of a granular assembly (Kanatani, 1979; Chang and Ma, 1991) by just

considering the rotational degree of freedom, but it can also be simplified to the Goodman-

Cowin theory (1972), where the dilatant effect at a macropoint for granular materials is

taken into account (Chen and Lan, 2008).

Finally, we discuss some issues which remain unresolved. First, kinematic variables used

in this dynamic study of a discrete granular system are position vector, velocity vector,

acceleration vector, and angular velocity vector. However, this study does not discuss strain

measure, which is the dominant kinematic variable in a quasi-static case and an essential

quantity in constitutive analysis. This topic requires further investigation. Second, this

study presents a simple derivation of continuum quantities for a granular assembly using

discrete-continuum correspondence. The detailed discussion on space and time continuity

for these continuum quantities is not addressed here. Our ensuing study will account for

the weighting function around the space point x and time t (Zhu and Yu, 2002) to provide

a more precise micromorphic continuum description. Third, As for a real application of the

micromorphic model to granular materials, thorough studies on the specification of suitable

boundary conditions and the determination of constitutive relations are urgently required.

Introducing this macroelement-particle treatment, an advanced perspective on a granular

material might be proposed: this material could be conceived as a micromorphic medium

of multi-grade N . The number N is the particle number in a macroelement, and is not a

constant in space and time. Although the general theory for a micromorphic medium of

grade N is yet to be developed, a simplification has been made of the grade one theory and

serves to present valuable information about mechanical properties of a granular medium.
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Dirichlet, G.L., 1850. Über die Reduktion der positiven Quadratischen Formen mit drei anbes-
timmten ganzen Zahlen. Journal für die reine und angewandte Mathematik 40, 209–227.

Ehlers, W., Volk, W., 1998. On theoretical and numerical methods in the theory of porous media
based on polar and non-polar elastoplastic solid materials. International Journal of Solids
and Structures 35, 4597–4617.

Ehlers, W., Ramm, E., Diebels, S., D’Addetta, G.A., 2003. From particle ensembles to cosserat
continua: homogenization of contact forces towards stresses and couple stresses. International
Journal of Solids and Structure 40, 6681–6702.

Eringen, A.C., 1964. Simple microfluids. International Journal of Engineering Science 2, 205–217.

Eringen, A.C., 1999. Microcontinuum Field Theories I: Foundations and Solids, Springer-Verlag,
New York.

Eringen, A.C., 2001. Microcontinuum Field Theories II: Fluent Media, Springer-Verlag, New
York.

24



 

 

 

ACCEPTED MANUSCRIPT 

 
Eringen, A.C., Suhubi, E.S., 1964. Nonlinear theory of simple micro-elastic solids I. International

Journal of Engineering Science 2, 189–203.

Froiio, F., Tomassetti, G., Vardoulakis, I. 2006. Mechanics of granular materials: The discrete
and the continuum descriptions juxtaposed. International Journal of Solids and Structure
43, 7684–7720.

Goddard, J. D., 2005. A general micromorphic theory of kinematics and stress in granular media.
In R. Garcia-Rojo et al. (eds.), Powders and Grains, Vol. I, Taylor & Francis Group, London,
129–133.

Goldhirsch, I., Goldenberg, C., 2004. Stress in dense granular materials. In Hinrichsen, H., Wolf,
D.E (eds), The Physics of Granular Media. Wiley-VCH, Weinheim, 3–22.

Goodman, M.A., Cowin, S.C., 1972. A continuum theory for granular materials. Archive for
Rational Mechanics and Analysis 44, 249–266.

Green, A.E., 1965. Micro-materials and multipolar continuum mechanics. International Journal
of Engineering Science 3, 533–537.

Hutter, K., Svendsen, B., Rickenmann, D., 1996. Debris flow modeling: a review. Continuum
Mechanics and Thermodynamics 8, 1–35.

Jagota, A., Dawson, P.R., Jenkins, J.T., 1988. An anisotropic continuum model for the sintering
and compaction of powder packings. Mechanics of Materials 7, 255–269.

Jou, D., Casas-Vázquez, J., Lebon, G., 2001. Extended Irreversible Thermodynamics, Springer-
Verlag, Berlin.

Kanatani, K., 1979. A micropolar continuum theory for the flow of granular materials. Interna-
tional Journal of Engineering Science 17, 419–432.

Kanatani, K., 1981. A theory of contact force distribution in granular materials. Powder Tech-
nology 28, 167–172.

Kruyt, N.P., 2003. Statics and kinematics of discrete cosserat-type granular materials. Interna-
tional Journal of Solids and Structure 40, 511–534.

Mindlin, R.D., 1965. Stress functions for a Cosserat continuum. International Journal of Solids
and Structure 1, 265–271.

Nemat-Nasser, S., Hori, M., 1993. Micromechanics: Overall Properties of Heterogeneous Materi-
als. North-Holland, Netherlands.

Nowacki, W., 1986. Theory of Asymmetric Elasticity. PWN—Polish Scientific Publishers, War-
saw.

Oda, M., 1997. A micro-deformation model for dilatancy of granular materials. In C.S. Chang,
A. Misra, R.Y. Liang & M. Babic (eds), Mechanics of Deformation and Flow of Particulate
Materials. ASCE, 24–37.

Oda, M., Iwashita, K., 1999. Mechanics of Granular Materials. Balkema Publishers, Netherlands.
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