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In this study, we continue with a recursive renormalization group (RG) analysis of incompressible
turbulence, aiming at investigating various turbulent properties of three-dimensional magneto-
hydrodynamics (MHD). In particular, we are able to locate the fixed point (i.e. the invariant effective
eddy viscosity) of the RG transformation under the following conditions. (i) The mean magnetic
induction is relatively weak compared to the mean flow velocity. (ii) The Alfvén effect holds, that is, the
fluctuating velocity and magnetic induction are nearly parallel and approximately equal in magnitude. It
is found under these conditions that re-normalization does not incur an increment of the magnetic
resistivity, while the coupling effect tends to reduce the invariant effective eddy viscosity. Both the
velocity and magnetic energy spectra are shown to follow the Kolmogorov k�5=3 in the inertial subrange;
this is consistent with some laboratory measurements and observations in astronomical physics. By
assuming further that the velocity and magnetic induction share the same specified form of energy
spectrum, we are able to determine the dependence of the (magnetic) Kolmogorov constant CK (CM) and
the model constant CS of the Smagorinsky model for large-eddy simulation on some characteristic
wavenumbers.
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1. Introduction

Recently, the authors1,2) carried out a recursive renorma-
lization group (RG) analysis of incompressible turbulence
for flow turbulence and thermal turbulent transport. In this
study, we continue with this previous RG analysis for
magneto-hydrodynamic (MHD) turbulence, aiming at in-
vestigating various transport properties, in particular, the
coupling effects between the flow and magnetic induction
fields on the kinetic energy spectrum and the effective eddy
viscosity.

The plasma science is widely applied to many areas from
laser skill, thin film produce, nuclear rocket, even to
astronomical physics (for example, solar wind, solar flares
and coronal structures). Like in ordinary Newtonian fluids,
MHD turbulence is expected to arise in plasma or
magnetized fluids as the Reynolds number is increased
beyond some critical value. In spite of the already scarce
literature, the interest of MHD turbulence may further be
divided into two-dimensional and three-dimensional turbu-
lence. Kim and Yang3) studied the scaling behavior of the
randomly stirred MHD plasma in two dimensions and were
able to show existence of the scaling solution at the fixed
point of the RG transformation and derive the dependence of
the power exponent of the energy spectrum on the driving
Gaussian noise. Liang and Diamond4) also presented their
study for two-dimensional MHD turbulence by introducing
the velocity stream function and the magnetic flux function
in MHD equations. However, the latter authors showed no
existence of a fixed point of the RG transformation and
especially suggested that the applicability of RG method to
turbulent system is intrinsically limited, especially in the
case of systems with dual-direction energy transfer.

In contrast to flow in two dimensions, the effect of dual-

direction energy transfer becomes weak in three dimensions
(cf. McComb5)). It would therefore be legitimate to employ
the RG analysis for MHD turbulence in three dimensions. In
the literature, there are some measured evidences about the
validity of the Kolmogorov spectrum for the three-dimen-
sional MHD turbulence. Alemany et al.6) designed an
equipment in the laboratory which produced turbulence by
passing magnetized fluid to a mesh under an additional
magnetic induction. In the area of astronomical physics,
Matthaeus et al.7) measured the magnetic energy spectrum
of the solar wind, while Leamon et al.8) measured the MHD
turbulence within the coronal mass ejection. Both of their
results suggested the Kolmogorov power law for the energy
spectrum. Besides, Biskamp9) mentioned that the Kolmo-
gorov constant depends on the precise definition of the
average magnetic induction, and hence on the geometry of
the large scale eddies. On the theoretical side, Hatori10)

obtained the Kolmogorov spectrum for the three-dimen-
sional MHD turbulence, but suggested that the Kolmogorov
constant is universal. Verma11) constructed a self-consistent
renormalization group procedure for MHD turbulence and
also found that the energy spectrum for the velocity obeys
the Kolmogorov spectrum. It is the purpose of the present
study to provide a recursive renormalization group analysis
for MHD turbulence in three dimensions with the specific
points of interest as follows. We will obtain the energy
spectra for both of the velocity and magnetic induction
fields, look for the invariant effective eddy viscosity and
determine the dependence of the (magnetic) Kolmogorov
constant CK (CM) and the model constant CS for the
Smagorinsky model for large-eddy simulation (LES).

Let us give a brief description of the present work. MHD
is governed by a coupling set of equations, meanwhile, the
MHD turbulence considered is further assumed to be
isotropic, homogeneous and stationary. It is found con-
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venient to introduce the Elsässer variables to write the
equations for the velocity and magnetic induction fields in a
symmetric form. In §3, a recursive RG analysis is carried out
for the MHD equations in the wavenumber domain and a
recursive relationship for the effective eddy viscosity �nðkÞ
between two successive steps is established. The resulting
expression is complicated enough and is apparently not
amenable to further RG analysis. Instead, we restrict
ourselves to the case when the following conditions hold.
(i) The mean magnetic induction is relatively weak
compared to the mean flow velocity. (ii) The Alfvén effect
holds, that is, the fluctuating velocity and magnetic induction
are nearly parallel and approximately equal in magnitude.
As a matter of fact, the two conditions imply a negligible
effect of the subgrid cross helicity between the velocity and
magnetic fields. In spite of these restrictions, the present RG
analysis still warrants a sufficient interest as we investigate
several observations in the area of astronomical physics. In
§4, the energy spectra of the velocity and the magnetic fields
are determined through use of the RG transformation, i.e. the
recursive relation. Both spectra are found to follow the
Kolmogorov k�5=3 law in the inertial subrange. The results
are consistent with the experimental results of Alemany et
al.,6) and the observational results of Matthaeus et al.7) From
a different approach, Chen and Montgomery12) obtained the
same power law in the inertial subrange by using some
multiple-scale self-consistent calculations of turbulent MHD
transport coefficients. In §5, the fixed point of the RG
equation is located to give the invariant effective eddy
viscosity �ðkÞ and magnetic resistivity �ðkÞ. By assuming
further a combination form of the energy spectra proposed
respectively by Pao13) and Quarini and Leslie,14) the
invariant effective eddy viscosity is then employed in §6
to determine the dependence of the (magnetic) Kolmogorov
constant CK (CM) and the Smagorinsky constant CS on the
cutoff wavenumber kc, the wavenumber ks of the largest
eddies and the wavenumber kp that peaks in the energy
spectrum. Finally, concluding remarks are drawn in §7.

2. Magnetohydrodynamic Equations

In considering MHD turbulence, we shall take the SI
units. The magnetized fluid is assumed to be incompressible
(constant density �) and have a constant permeability �0. It
is convenient to simply set � ¼ 1 and �0 ¼ 1. In doing do,
the magnetic induction B and the velocity v have the same
dimension because of the dimensional relationship
½B� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�0�½��

p
. Let us start with the treatment of Alfvén16)

and Cowling,17) and write down the following magnetohy-
drodynamic equations.
(i) Continuity equation:

r 
 v ¼ 0;

where v is the velocity.
(ii) Momentum equation:

dv

dt
¼ �rpþ J � Bþ �0r2vþ g;

where J is the electric current density, B the magnetic
induction, �0 the molecular viscosity and g the
gravitation.

(iii) Electromagnetic equations:

r �Eþ
@B

@t
¼ 0;

and

r � B ¼ J

where E is the electric field, and we have neglected the
displacement current. The Ohm’s law takes the form

J ¼ �0ðEþ v� BÞ; ð1Þ

where �0 is the electric conductivity. Let us take r� on the
both hand sides of eq. (1) and reorganize the electromagnetic
equations to obtain

@B

@t
¼ r � ðv� BÞ þ �0r2B;

where �0 ¼ 1=�0 is the magnetic resistivity. In summary, we
have the following MHD equations for use,

@v=@t þ ðv 
 rÞv ¼ �rpþ ðr � BÞ � Bþ �0r2v;

@B=@t ¼ r � ðv� BÞ þ �0r2B;

(
ð2Þ

with the solenoidal equations

r 
 v ¼ 0;

r 
 B ¼ 0;

�

where the gravitation is incorporated into p. It is convenient
to introduce the Elsässer variables (cf. ref. 18) for eq. (2),
defined by

 ¼ vþ B;

� ¼ v� B:

�

Equation (2) can then be transformed to

@=@t þ ð� 
 rÞ ¼ �rp� þ 
0r2þ �0r2�;

@�=@t þ ð 
 rÞ� ¼ �rp� þ 
0r2�þ �0r2;

(
ð3Þ

where p� ¼ pþ ðB 
 BÞ=2, and we have set


0 ¼ ð�0 þ �0Þ=2;
�0 ¼ ð�0 � �0Þ=2:

�

It is obvious from the definitions of , � that they are also
solenoidal, i.e.

r 
 ¼ r 
� ¼ 0:

Since RG analysis will be performed in the wavenumber
domain, the next goal is to Fourier transform eq. (3) into the
wavenumber domain. First of all, take r
 on the both sides
of eq. (3) to obtain

r2p� ¼ �
@2

@x
@x�

��: ð4Þ

Let us now introduce the following operators in the
wavenumber space

D
�ðkÞ ¼ �
� �
k
k�

k2
;

and

M
�ðkÞ ¼ ½k�D
ðkÞ þ kD
�ðkÞ�=2i:

By using the Elsässer variables with the help of eq. (4), we
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can transform eq. (3) into the wavenumber domain as
follows,

L<ðk; tÞ

ðk; tÞ
�
ðk; tÞ

� �
¼M
�ðkÞ

Z
d3j

��ð j; tÞðk� j; tÞ
�ð j; tÞ�ðk� j; tÞ

� �
;

ð5Þ

where the matrix L<ðk; tÞ is defined by

L<ðk; tÞ ¼
@=@t þ 
0k

2 �0k
2

�0k
2 @=@t þ 
0k

2

 !
:

For later use, we shall need the following statistical
correlations:

hu
ðk; tÞu�ðk0; tÞi ¼ D
�ðkÞ�ðkþ k0ÞQðkÞ;
hu
ðk; tÞB�ðk0; tÞi ¼ D
�ðkÞ�ðkþ k0ÞRðkÞ;
hB
ðk; tÞB�ðk0; tÞi ¼ D
�ðkÞ�ðkþ k0ÞSðkÞ;

8><
>: ð6Þ

where QðkÞ is the kinetic energy spectrum, SðkÞ the magnetic
energy spectrum and RðkÞ the cross energy spectrum. It is
noted that these relationships are valid for isotropic,
homogeneous and stationary turbulence; see, for example,
McComb5) for the details.

3. Renormalization Group Analysis for MHD Turbu-
lence

The basic idea of recursive RG analysis is to divide the
wavenumber space ð0; k0Þ, where k0 is Kolmogorov’s scale,
to a supergrid region ð0; kcÞ and a subgrid region ðkc; k0Þ. The
subgrid modes are then removed shell by shell by taking the

subgrid average over a spherical shell ðknþ1; knÞ, as shown in
Fig. 1. At the present stage, the cutoff ratio, defined by � ¼
knþ1=kn is maintained a constant, and will be later set to tend
to 1 as the differential version of the RG analysis leading to
the invariant effective eddy viscosity is sought.

In this section, we will follow the renormalization group
analysis that we have developed in refs. 1 and 2. First of all,
in order to distinguish the supergrid and subgrid modes, we
introduce the following notations:
(i) for 
 field,


ðk; tÞ ¼
<


 ðk; tÞ for jkj < k1;

>

 ðk; tÞ for jkj > k1;

�

(ii) for �
 field,

�
ðk; tÞ ¼
�<


 ðk; tÞ for jkj < k1;

�>

 ðk; tÞ for jkj > k1:

�

The momentum equations for the supergrid modes can be
written

L<ðk; tÞ
<


 ðk; tÞ

�<

 ðk; tÞ

 !
¼ M
�ðkÞ

Z
d3j


�<

� ð j; tÞ
<
 ðk� j; tÞ þ 2�<

� ð j; tÞ
>
 ðk� j; tÞ þ�>

� ð j; tÞ
>
 ðk� j; tÞ

�

<

� ð j; tÞ�
<
 ðk� j; tÞ þ 2<

� ð j; tÞ�
>
 ðk� j; tÞ þ>

� ð j; tÞ�
>
 ðk� j; tÞ

�
 !

; ð7Þ

and the momentum equations for the subgrid modes can be written

L>ð jÞ
>

� ð j; tÞ

�>
� ð j; tÞ

 !
¼ M��0 0 ð jÞ

Z
d3j0


�<

�0 ð j
0; tÞ<

 0 ð j� j0; tÞ þ 2�<
�0 ð j

0; tÞ>
 0 ð j� j0; tÞ þ�>

�0 ð j
0; tÞ>

 0 ð j� j0; tÞ
�


<

�0 ð j
0; tÞ�<

 0 ð j� j0; tÞ þ 2<
�0 ð j

0; tÞ�>
 0 ð j� j0; tÞ þ>

�0 ð j
0; tÞ�>

 0 ð j� j0; tÞ
�

 !
; ð8Þ

and we have assumed that Markovian approximation holds
for the subgrid modes (Rose19) and McComb20)). Its physical
ground is that the subgrid modes are considered to evolve
much faster than the supergrid modes, which implies that the
subgrid modes relax to the steady state while the supergrid
modes are still evolving. The matrix L>ðjÞ is defined by

L>ð jÞ ¼

0 �0

�0 
0

� �
j2:

Before substantial progress can be made with the RG
analysis, we shall make the following statistical hypotheses.
(i) The MHD fields have ensemble-mean-zero fluctuation,

h>

 ðk; tÞi ¼ h�>


 ðk; tÞi ¼ 0:

(ii) Supergrid components are considered to be statistically
independent of subgrid averaging (cf. McComb5) and
Zhou15)),

h<

 ðk; tÞi ¼ <


 ðk; tÞ;
h�<


 ðk; tÞi ¼ �<

 ðk; tÞ:

�

This assumption is simple (but not void) though its
validity may be restrictive. But RG theory based on this
assumption has not been explored to its full strength. Indeed,
as shown in,1,2) the RG results based on this assumption
were found to be in remarkably close agreement with
computed/measured data.

0 kc kn k2 k1 k0

Fig. 1. The termini ki for recursive renormalization with a fixed cutoff

ratio � ¼ knþ1=kn. Recursive renormalization analysis starts at the

Kolmogorov’s scale k0, and ends at the cutoff wavenumber kc.
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Performing subgrid averaging of eq. (7) with use of (i) and (ii), we may obtain the averaged equation for the supergrid
modes,

L<ðk; tÞ
<


 ðk; tÞ
�<


 ðk; tÞ

� �
¼ M
�ðkÞ

Z
d3j

�<
� ð j; tÞ

<
 ðk� j; tÞ þ h�>

� ð j; tÞ
>
 ðk� j; tÞi

<
� ð j; tÞ�

<
 ðk� j; tÞ þ h>

� ð j; tÞ�
>
 ðk� j; tÞi

 !
; ð9Þ

This subgrid averaged equation for the supergrid modes will be contrasted to eq. (5). The comparison between eqs. (5) and
(9) suggests that the ensemble averaging terms on the right hand side of eq. (9) contribute respectively to the effective eddy
viscosity and effective magnetic resistivity.

Now we return to the original variables u and B by rotating the matrices L< and L> 45 degrees counterclockwise. If we
choose a set of new base vectors which are the eigenvectors of matrices L< and L>, eq. (9) takes the following expression

L0ðk; tÞ
u<
 ðk; tÞ

B<

 ðk; tÞ

 !
¼ M
�ðkÞ

Z
d3j

u<� ð j; tÞu
<
 ðk� j; tÞ � B<

� ð j; tÞB
<
 ðk� j; tÞ þ hu>� ð j; tÞu

>
 ðk� j; tÞ � B>

� ð j; tÞB
>
 ðk� j; tÞi

B<
� ð j; tÞu

<
 ðk� j; tÞ � u<� ð j; tÞB

<
 ðk� j; tÞ þ hB>

� ð j; tÞu
>
 ðk� j; tÞ � u>� ð j; tÞB

>
 ðk� j; tÞi

 !
ð10Þ

where

L0ðk; tÞ ¼
@=@t þ �0k

2 0

0 @=@t þ �0k
2

 !
:

Similarly, based on the new basis, eq. (8) for the subgrid modes can be transformed into the form,

Gð jÞ
u>� ð j; tÞ

B>
� ð j; tÞ

 !
¼ M��0 0 ð jÞ

Z
d3j0

�

"
u<�0 ð j

0; tÞu< 0 ð j� j0; tÞ � B<
�0 ð j

0; tÞB<
 0 ð j� j0; tÞ

B<
�0 ð j

0; tÞu< 0 ð j� j0; tÞ � u<�0 ð j
0; tÞB<

 0 ð j� j0; tÞ

 !

þ 2
u<�0 ð j

0; tÞu> 0 ð j� j0; tÞ � B<
�0 ð j

0; tÞB>
 0 ð j� j0; tÞ

B<
�0 ð j

0; tÞu> 0 ð j� j0; tÞ � u<�0 ð j
0; tÞB>

 0 ð j� j0; tÞ

 !

þ
u>�0 ð j

0; tÞu> 0 ð j� j0; tÞ � B>
�0 ð j

0; tÞB>
 0 ð j� j0; tÞ

B>
�0 ð j

0; tÞu> 0 ð j� j0; tÞ � u>�0 ð j
0; tÞB>

 0 ð j� j0; tÞ

 !#
; ð11Þ

where

Gð jÞ ¼
�0j

2 0

0 �0j
2

 !
:

The next step is to obtain the four correlations in (10) by making use of eq. (11). First of all, multiplying the factor
u> ðk� j; tÞ on both hand sides of eq. (11), and then taking subgrid averaging yields

Gð jÞ
� u>� ð j; tÞu> ðk� j; tÞ

B>
� ð j; tÞu

>
 ðk� j; tÞ

�
¼ 2M��0 0 ð jÞ

Z
d3j0

hu> 0 ð j� j0; tÞu> ðk� j; tÞiu<�0 ð j
0; tÞ � hB>

 0 ð j� j0; tÞu> ðk� j; tÞiB<
�0 ð j

0; tÞ

hu> 0 ð j� j0; tÞu> ðk� j; tÞiB<
�0 ð j

0; tÞ � hB>
 0 ð j� j0; tÞu> ðk� j; tÞiu<�0 ð j

0; tÞ

 !
: ð12Þ

On the other hand, multiplying the factor B>
 ðk� j; tÞ on both hand sides of eq. (11), and then taking subgrid averaging yields

Gð jÞ
� u>� ð j; tÞB>

 ðk� j; tÞ

B>
� ð j; tÞB

>
 ðk� j; tÞ

�
¼ 2M��0 0 ð jÞ

Z
d3j0

hu> 0 ð j� j0; tÞB>
 ðk� j; tÞiu<�0 ð j

0; tÞ � hB>
 0 ð j� j0; tÞB>

 ðk� j; tÞiB<
�0 ð j

0; tÞ

hu> 0 ð j� j0; tÞB>
 ðk� j; tÞiB<

�0 ð j
0; tÞ � hB>

 0 ð j� j0; tÞB>
 ðk� j; tÞiu<�0 ð j

0; tÞ

 !
: ð13Þ

Next, we rewrite eq. (11) by changing the index � to , and changing the wavenumber j to k� j, to obtain
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Gðjk� jjÞ
u> ðk� j; tÞ

B>
 ðk� j; tÞ

 !
¼ M�0 0ðk�jÞ

Z
d3j0

�

"
u<�0 ð j

0; tÞu< 0 ðk� j� j0; tÞ � B<
�0 ð j

0; tÞB<
 0 ðk� j� j0; tÞ

B<
�0 ð j

0; tÞu< 0 ðk� j� j0; tÞ � u<�0 ð j
0; tÞB<

 0 ðk� j� j0; tÞ

 !

þ 2
u<�0 ð j

0; tÞu> 0 ðk� j� j0; tÞ � B<
�0 ð j

0; tÞB>
 0 ðk� j� j0; tÞ

B<
�0 ð j

0; tÞu> 0 ðk� j� j0; tÞ � u<�0 ð j
0; tÞB>

 0 ðk� j� j0; tÞ

 !

þ
u>�0 ð j

0; tÞu> 0 ðk� j� j0; tÞ � B>
�0 ð j

0; tÞB>
 0 ðk� j� j0; tÞ

B>
�0 ð j

0; tÞu> 0 ðk� j� j0; tÞ � u>�0 ð j
0; tÞB>

 0 ðk� j� j0; tÞ

 !#
: ð14Þ

Multiplying the factor u>� ðj; tÞ on both sides of eq. (14), and then taking subgrid averaging yields

Gðjk� jjÞ
� u>� ð j; tÞu> ðk� j; tÞ

u>� ð j; tÞB
>
 ðk� j; tÞ

�
¼ 2M�0 0 ðk� jÞ

Z
d3j0

hu> 0 ðk� j� j0; tÞu>� ð j; tÞiu
<
�0 ð j

0; tÞ � hB>
 0 ðk� j� j0; tÞu>� ð j; tÞiB

<
�0 ð j

0; tÞ

hu> 0 ðk� j� j0; tÞu>� ð j; tÞiB
<
�0 ð j

0; tÞ � hB>
 0 ðk� j� j0; tÞu>� ð j; tÞiu

<
�0 ð j

0; tÞ

 !
: ð15Þ

Multiplying the factor B>
� ðj; tÞ on both sides of eq. (14), and then taking subgrid averaging yields

Gðjk� jjÞ
� B>

� ð j; tÞu
>
 ðk� j; tÞ

B>
� ð j; tÞB

>
 ðk� j; tÞ

�
¼ 2M�0 0 ðk� jÞ

Z
d3j0

hu> 0 ðk� j� j0; tÞB>
� ð j; tÞiu

<
�0 ð j

0; tÞ � hB>
 0 ðk� j� j0; tÞB>

� ð j; tÞiB
<
�0 ð j

0; tÞ

hu> 0 ðk� j� j0; tÞB>
� ð j; tÞiB

<
�0 ð j

0; tÞ � hB>
 0 ðk� j� j0; tÞB>

� ð j; tÞiu
<
�0 ð j

0; tÞ

 !
: ð16Þ

Let us focus on the first equations of (12) and (15). Recall the correlations defined in (6). If we take the proper rearrangement
of the indices and make change of variables, it is quite straightforward to prove that the right hand sides of first equations of
(12) and (15) are identical under the operation of M
�

R
d3j. Applying the said operation and adding these two together

yields

M
�ðkÞ
Z

d3jhu>� ð j; tÞu
>
 ðk� j; tÞi ¼ 4M
�ðkÞ

Z
d3j

M�0 0 ðk� jÞ
�0j2 þ �0jk� jj2

Z
d3j0

�
hu> 0 ðk� j� j0; tÞu>� ð j; tÞiu

<
�0 ð j

0; tÞ � hB>
 0 ðk� j� j0; tÞu>� ð j; tÞiB

<
�0 ð j

0; tÞ
�
: ð17Þ

(i) For hu>� ðj; tÞu> ðk� j; tÞi, it follows from eq. (17),

M
�ðkÞ
Z

d3jhu>� ð j; tÞu
>
 ðk� j; tÞi ¼ 4M
�ðkÞ

Z
d3j

�
M�0 0 ðk� jÞD 0�ðjÞD
�0 ðkÞ

�0j2 þ �0jk� jj2

Qð jÞu<
 ðk; tÞ � Rð jÞB<


 ðk; tÞ
�

¼ �2

Z
d3j

Lðk; k� jÞ
�0j2 þ �0jk� jj2


Qð jÞu<
 ðk; tÞ � Rð jÞB<


 ðk; tÞ
�
; ð18Þ

where we have used the relationships:

M
�ðkÞD
�0 ðkÞ ¼ M�0�ðkÞ;

and

Lðk; k� jÞ ¼ �2M�0�ðkÞM�0 0 ðk� jÞD 0�ð jÞ

¼
ðk4 � 2k3j�þ kj3�Þð1� �2Þ

jk� jj2
: ð19Þ

A similar procedure can be applied to obtain other correlations.
(ii) For hB>

� ðj; tÞB>
 ðk� j; tÞi, we have from the second equations of (13) and (16)

M
�ðkÞ
Z

d3jhB>
� ð j; tÞB

>
 ðk� j; tÞi

¼ �2

Z
d3j

Lðk; k� jÞ
�0j2 þ �0jk� jj2


Rð jÞB<


 ðk; tÞ � Sð jÞV<

 ðk; tÞ

�
; ð20Þ
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(iii) For hB>
� ðj; tÞu> ðk� j; tÞi, we obtain from the second equation of (12) and the first equation of (16)

M
�ðkÞ
Z

d3jhB>
� ð j; tÞu

>
 ðk� j; tÞi

¼ �2

Z
d3j

Lðk; k� jÞ
�0j2 þ �0jk� jj2


Qð jÞB<


 ðk; tÞ � Sð jÞB<

 ðk; tÞ

�
; ð21Þ

(iv) For hu>� ðj; tÞB>
 ðk� j; tÞi, we obtain from the first equation of (13) and the second equation of (15)

M
�ðkÞ
Z

d3jhu>� ð j; tÞB
>
 ðk� j; tÞi

¼ �2

Z
d3j

Lðk; k� jÞ
�0j2 þ �0jk� jj2


Qð jÞB<


 ðk; tÞ � Sð jÞB<

 ðk; tÞ

�
: ð22Þ

Collecting the above results (i)–(iv) by substituting eqs. (18), (20), (21) and (22) in eq. (10) yields

L0ðk; tÞ
u<
 ðk; tÞ

B<

 ðk; tÞ

 !

¼ M
�ðkÞ
Z

d3j
u<� ð j; tÞu

<
 ðk� j; tÞ � B<

� ð j; tÞB
<
 ðk� j; tÞ

B<
� ð j; tÞu

<
 ðk� j; tÞ � u<� ð j; tÞB

<
 ðk� j; tÞ

 !

� 2

Z
d3jLðk; k� jÞ

QðjÞu<
 ðk; tÞ � RðjÞB<

 ðk; tÞ

�0j2 þ �0jk� jj2
�
RðjÞB<


 ðk; tÞ � SðjÞu<
 ðk; tÞ
�0j2 þ �0jk� jj2

QðjÞB<

 ðk; tÞ � SðjÞB<


 ðk; tÞ
�0j2 þ �0jk� jj2

�
QðjÞB<


 ðk; tÞ � SðjÞB<

 ðk; tÞ

�0j2 þ �0jk� jj2

0
BBB@

1
CCCA: ð23Þ

Apparently, eq. (23) is not amenable to renormalization because of the difficulty in singling out increments of the effective
eddy viscosity and of the magnetic resistivity. To alleviate this problem, we consider the two conditions: (i) the mean
magnetic induction is relatively weak compared to the mean flow velocity, and (ii) the Alfvén effect holds, that is the
fluctuating velocity and magnetic induction are nearly parallel and approximately equal in magnitude. Those two conditions
directly imply that QðjÞu<
 ðk; tÞ � RðjÞB<


 ðk; tÞ and SðjÞu<
 ðk; tÞ � RðjÞB<

 ðk; tÞ, and then eq. (23) can be simplified as follows:

L1ðk; tÞ
u<
 ðk; tÞ

B<

 ðk; tÞ

 !

¼ M
�ðkÞ
Z
�1

d3j
u<� ð j; tÞu

<
 ðk� j; tÞ � B<

� ð j; tÞB
<
 ðk� j; tÞ

B<
� ð j; tÞu

<
 ðk� j; tÞ � u<� ð j; tÞB

<
 ðk� j; tÞ

 !
; ð24Þ

where

L1ðk; tÞ ¼
@=@t þ �1ðkÞk2 0

0 @=@t þ �1ðkÞk2

 !
:

The effective eddy viscosity and magnetic resistivity after the first-step renormalization are given by �1ðkÞ and �1ðkÞ as
follows

�1ðkÞ ¼ �0 þ ��0ðkÞ;

and

�1ðkÞ ¼ �0 þ ��0ðkÞ;

where

��0ðkÞ ¼ 2

Z
�0

d3j
Lðk; k� jÞ

k2

�
QðjÞ

�0j2 þ �0jk� jj2
þ

SðjÞ
�0j2 þ �0jk� jj2

�
; ð25Þ

and

��0ðkÞ ¼ 2

Z
�0

d3j
Lðk; k� jÞ

k2

�
QðjÞ � SðjÞ

�0j2 þ �0jk� jj2
�

QðjÞ � SðjÞ
�0j2 þ �0jk� jj2

�
: ð26Þ

The integrals in (25) or (26) are performed over the
intersection of two spherical shells:

�0ðkÞ ¼ f jjk1 < j jj; jk� jj < k0g:

Let us now discuss the validity of the conditions (i) and
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(ii). In light of their effects, these conditions amount to
neglecting the effects of the subgrid cross helicity between
the velocity and magnetic fields. Nevertheless, there are
important cases of application of the present formulation.

In astronomical physics, the typical velocity is often larger
than the magnetic induction, for example, in solar wind and
in solar flares. For comparison in correct dimension, we have
to recover the velocity v to v

ffiffiffiffiffiffiffiffi
�0�

p
. Inside the solar interior,

the typical temperature at the core is about 1:5� 107 K, and
the density about 1:5� 105 kg/m3. In the outer edge of the
core, about 1:75� 105 km from the center, the density drops
to 2� 104 kg/m3. In the Radiative Zone, the density drops
from 2� 104 kg/m3 to 2� 102 kg/m3. At solar surface the
temperature has dropped to 5:7� 103 K and the density is
only 2� 10�4 kg/m3, and the magnetic induction is about
7:75� 10�4 tesla. Near the solar surface, the solar wind bulk
speed is typically from 2� 105 m/s to 2� 106 m/s. The
hydrogen and helium are diamagnetic materials and their
magnetic susceptibilities are all quite small (about 10�9),
thus �0 ’ �0 (vacuum) for hydrogen and helium. From
these data, the order of v

ffiffiffiffiffiffiffiffi
�0�

p
is therefore in the range of 1–

10. At solar surface, the velocity scaled as v
ffiffiffiffiffiffiffiffi
�0�

p
is larger

than the magnetic induction B in magnitude by 4 to 5 orders.

As an another example, the highest recorded speed of solar
flares is 1,500 km/s, but 100–300 km/s is more typical, with
sizable variation. The velocity scaled as v

ffiffiffiffiffiffiffiffi
�0�

p
is still

several orders larger than B in magnitude. In deriving eq.
(24), we consider also the Alfvén effect16) in the order
analysis of the above discussion that assumes that the mean
of magnetic induction B is not small, and the fluid takes
large Reynolds number, then the Lorentz force will become
important and make effect on the small scale velocity
flucation v>, such that the small scale motions transform into
Alfvén waves and this results in that v>ðx; tÞ � B>ðx; tÞ ’ 0,
and thus v>ðx; tÞ ’ B>ðx; tÞ.

4. Determination of the Energy Spectrum

For MHD turbulence, we shall consider two kinds of
energy contribution with wavenumber vectors lying within
the spherical shell between k and k þ dk:

EvðkÞdk ¼ 4�k2QðkÞdk
EMðkÞdk ¼ 4�k2SðkÞdk

:

(
ð27Þ

Substituting (27) into eqs. (25) and (26) respectively yields

��0ðkÞ ¼
Z
�0

d3j
Lðk; k� jÞ
2�j2k2

�
Ev0ð jÞ

�0j2 þ �0jk� jj2
þ

EM
0 ð jÞ

�0j2 þ �0jk� jj2

�
; ð28Þ

and

��0ðkÞ ¼
Z
�0

d3j
Lðk; k� jÞ
2�j2k2

�
Ev0ð jÞ � EM

0 ð jÞ
�0j2 þ �0jk� jj2

�
Ev0ð jÞ � EM

0 ð jÞ
�0j2 þ �0jk� jj2

�
: ð29Þ

Equations (28) and (29) are respectively the increments of the effective eddy viscosity and magnetic resistivity after the first
step of renormalization. Repeating the RG procedure for nþ 1 times, we obtain the subgrid-averaged equations for the
supergrid modes,

Lnþ1ðk; tÞ
u<
 ðk; tÞ

B<

 ðk; tÞ

 !

¼ M
�ðkÞ
Z
�nþ1

d3j
u<� ð j; tÞu

<
 ðk� j; tÞ � B<

� ð j; tÞB
<
 ðk� j; tÞ

B<
� ð j; tÞu

<
 ðk� j; tÞ � u<� ð j; tÞB

<
 ðk� j; tÞ

 !
;

and the recursive relationship is established as follows:

�nþ1ðkÞ ¼ �nðkÞ þ ��nðkÞ;
and

�nþ1ðkÞ ¼ �nðkÞ þ ��nðkÞ;

where

��nðkÞ ¼
Z
�n

d3j
Lðk; k� jÞ
2�j2k2

�
Evnð jÞ

�nð jÞj2 þ �nðk � jÞjk� jj2
þ

EM
n ð jÞ

�nð jÞj2 þ �nðk � jÞjk� jj2

�
; ð30Þ

and

��nðkÞ ¼
Z
�n

d3j
Lðk; k� jÞ
2�j2k2

�
Evnð jÞ � EM

n ð jÞ
�nð jÞj2 þ �nðk � jÞjk� jj2

�
Evnð jÞ � EM

n ð jÞ
�nð jÞj2 þ �nðk � jÞjk� jj2

�
: ð31Þ

with �nðkÞ ¼ f jjknþ1 < j jj; jk� jj < kng. The typical beha-
vior of the increment of the effective eddy viscosity ��nðkÞ is
shown in Fig. 2, while the increment of the magnetic
resistivity ��nðkÞ is small due to large cancellation of the two
integrands. There are two physical quantities in eqs. (30) and
(31); they are the wavenumber k, the kinetic energy

dissipation rate "v and the magnetic energy dissipation rate
"M. It is therefore natural to propose the following scaling
laws respectively for Evn and EM

n :
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Evnð jÞ ¼ CK"
a
v j
b�nð j=kpÞ;

EM
n ð jÞ ¼ CM"

c
Mj

d’nð j=kpÞ;

(
ð32Þ

where kp denotes the wavenumber that peaks in the energy
spectrum, CK is the Kolmogorov constant and CM may be
termed the magnetic Kolmogorov constant. Both scaling
functions of �nð j=kpÞ, ’nð j=kpÞ will be specified more
precisely later. In analogy to (32) we may assume that there
are dimensionless effective eddy viscosity �̂�nð j=kpÞ and
effective eddy resistivity �̂�nð j=kpÞ, such that

�nð jÞ ¼ Ce
K"

f
v j
g�̂�nð j=kpÞ;

�nð jÞ ¼ Ch
M"

i
Mj

l�̂�nð j=kpÞ:

(
ð33Þ

Next, set � ¼ j=k and substitute the first equation of (33) into
eq. (30); this yields

��nðkÞ ¼
Z

���n

d3�
ð1� 2��þ �3�Þð1� �2Þ

2�ð1þ �2 � 2��Þ�
C1�e

K "a�fv kb�g�1�b�2�ð j=kpÞ
�̂�nð�Þ�2 þ �̂�nð�Þð1þ �2 � 2��Þ

þ
C1�h

M "c�iM kd�l�1�d�2’ð j=kpÞ
�̂�nð�Þ�2 þ �̂�nð�Þð1þ �2 � 2��Þ

�
; ð34Þ

where we have used the shorthand � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2 � 2��

p
, and

� denotes the direction cosine between k and j. In order that
both sides of eq. (34) are consistent in dimension, we must
have the following relationships:

b� g ¼ d � l;

e ¼ h ¼ 1=2;

f ¼ a=2;

g ¼ ðb� 1Þ=2:

8>>><
>>>:

ð35Þ

The same argument is applied to eq. (31), that is,

��nðkÞ ¼
Z

���n

d3�
ð1� 2��þ �3�Þð1� �2Þ

2�ð1þ �2 � 2��Þ�
CK�

a
vk

b�b�ð j=kpÞ � CM"
c
Mk

d�d’ð j=kpÞ
Ch

M"
i
Mk

lþ1�l�̂�nð�Þ�2 þ Ce
K�

f
v kgþ1�g�̂�nð�Þð1þ �2 � 2��Þ

�
CK�

a
vk

b�b�ð j=kpÞ � CM"
c
Mk

d�d’ð j=kpÞ
Ce

K"
f
v kgþ1�g�̂�nð�Þ�2 þ Ch

M�
i
Mk

lþ1�l�̂�nð�Þð1þ �2 � 2��Þ

�
:

ð36Þ

The consistency in dimension on both sides of eq. (36) gives
another three independent relationships:

a ¼ c;

b ¼ d;

i ¼ c=2:

8><
>: ð37Þ

So far, eqs. (35) and (37) contain eight independent
relations, and we still need two more constraints to
determine the overall ten exponents. For this, the eddy
dissipation equations for both of the velocity and magnetic
induction will be employed; they are

"v ¼
Z knþ1

0

2�k2EvðkÞdk;

"M ¼
Z knþ1

0

2�k2EMðkÞdk:

8>>><
>>>:

ð38Þ

From (32) and (33), we have

"v ¼ 2kð3bþ5Þ=2
n C

3=2
K "3a=2v

Z �

0

�̂�nð ~kkÞ ~kkð3bþ3Þ=2d ~kk;

"M ¼ 2kð3dþ5Þ=2
n C

3=2
M "

3c=2
M

Z �

0

�̂�nð ~kkÞ ~kkð3dþ3Þ=2d ~kk;

8>>><
>>>:

ð39Þ

where we have set ~kk ¼ k=knþ1 and � ¼ knþ1=kn. Dimen-
sional consistency on both sides of eq. (39) gives

a ¼ 2=3; b ¼ �5=3:

Finally, we obtain by substituting these values in eq. (37),
then in (35)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

k

vi
sc

ou
s 

in
cr

em
en

t

Fig. 2. The typical behavior of the increment of the effective eddy

viscosity �� versus the normalized wavenumber k (0 � k � 1), as the

cutoff ratio � ¼ kn=knþ1 is close to 1.
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c ¼ 2=3;

d ¼ �5=3;

g ¼ l ¼ �4=3;

f ¼ i ¼ 1=3:

8>>><
>>>:

With all the exponents determined, the kinetic energy
spectrum and the magnetic energy spectrum take respec-
tively the following expressions:

EvnðkÞ ¼ CK"
2=3
v k�5=3�nðk=kpÞ;

EM
n ðkÞ ¼ CM"

2=3
M k�5=3’nðk=kpÞ;

(
ð40Þ

and the effective eddy viscosity and the magnetic resistivity
take respectively the expressions:

�nðkÞ ¼ C
1=2
K "1=3v k�4=3�̂�nðk=kpÞ;

�nðkÞ ¼ C
1=2
M "

1=3
M k�4=3�̂�nðk=kpÞ;

(
ð41Þ

Equation (40) shows that the energy spectrum have the
dependence of the power law of k�5=3 which is exactly the
Kolmogorov energy spectrum. Compared with laboratory
experiments, the result is consistent with Alemany’s6)

measurement in passing a magnetized fluid to a grid mesh.
Part of their experimental results are shown in Fig. 3, for
which, they provided a energy spectrum of the type:

Evðk; tÞ �
"2=3v k�5=3

½1þ NðtÞ�2=3
:

Except the time dependence, our RG result is in good
agreement with their experimental results. There are some

other evidences from observations in astronomical physics
that also support this Kolmogorov spectrum law. Matthaeus
et al.7) discovered that the magnetic energy spectrum
measured in the solar wind is often found to be close to
k�5=3, as shown in Fig. 4. Velli et al.21) investigated a new
phenomenology which involves the solar wind fluctuations
near the sun and leads to a kinetic power spectrum scaling as
k�
 where 
 ’ 1 for the largest scales, and 
 ’ 1:5{1:7 for
the small scales. Moreover, the recent observations by
Leamon et al.8) (the January 1997 event which involves the
solar coronal mass ejections), also showed a power law,
scaled as k�1:67.

5. Equation of the Invariant Effective Eddy Viscosity

The purpose of this section is to look for the invariant
effective eddy viscosity by pursuing a differential version of
the recursive relationship. Recall that the basic idea under-
lining the recursive RG analysis is to divide the wavenumber
space ð0; k0Þ to a supergrid region ð0; kcÞ and a subgrid region
ðkc; k0Þ; the subgrid modes are then removed piece by piece
by taking subgrid averaging over a spherical shell ðknþ1; knÞ.
The result will certainly depend on the cutoff ratio
� ¼ knþ1=kn; and thus the invariant (limiting) effective
eddy viscosity should be sought by taking the limiting
operation � ! 1.

First of all, we rescale the wavenumber by setting ~kk ¼
k=knþ1 and rewrite eqs. (30) and (31) by expressing the
results of (40) and (41) in the form:

E
(

k
)

10-8 10-7 10-6 10-5 10-4

10-5

10-4

10-3

10-2

10-1

0

Slope=-5/3

wavenumber (1/km)

10

Fig. 4. The observational results of magnetic energy spectrum of the solar

wind at 2.8AU. from Matthaeus et al.7) The solar wind velocity is

442 km/s, and the total fluctuation energy is 4:8� 10�12 erg/cm3. EðkÞ has
a power-law slope of k�1:7�0:1. It is also noted that Biskamp9) (p. 203)

mentioned that the numerical simulations showed also that EM is close to

k�5=3.

Fig. 3. The experimental results of energy spectrum of velocity from

Alemany et al.,6) for various values of the magnetic induction (B ¼ 0T;

B ¼ 0:25T) and velocity (V ¼ 10 cm/s; V ¼ 20 cm/s).
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��nðkÞ ¼ k
�8=3
nþ1

Z
~��n

d3 ~jj
ð ~kk4 � 2 ~kk3�þ ~kk ~jj3�Þð1� �2Þ

2�~jj2 ~kk2ð ~kk2 þ ~jj2 � 2 ~kk ~jj�Þ�
CK"

2=3
v

~jj�5=3�ð~jj= ~kkpÞ
�̂�nð jÞ~jj2 þ �̂�nðjk� jjÞð ~kk2 þ ~jj2 � 2 ~kk ~jj�Þ

þ
CM"

2=3
M

~jj�5=3’ð~jj= ~kkpÞ
�̂�nð jÞ~jj2 þ �̂�nðjk� jjÞð ~kk2 þ ~jj2 � 2 ~kk ~jj�Þ

�
; ð42Þ

and

��nðkÞ ¼ k
�8=3
nþ1

Z
~��n

d3 ~jj
ð ~kk4 � 2 ~kk3�þ ~kk ~jj3�Þð1� �2Þ

2�~jj2 ~kk2ð ~kk2 þ ~jj2 � 2 ~kk ~jj�Þ�
CK"

2=3
v

~jj�5=3�ð~jj= ~kkpÞ � CM"
2=3
M

~jj�5=3’ð~jj= ~kkpÞ
�̂�nð jÞ~jj2 þ �̂�nðjk� jjÞð ~kk2 þ ~jj2 � 2 ~kk ~jj�Þ

�
CK"

2=3
v

~jj�5=3�ð~jj= ~kkpÞ � CM"
2=3
M

~jj�5=3’ð~jj= ~kkpÞ
�̂�nð jÞ~jj2 þ �̂�nðjk� jjÞð ~kk2 þ ~jj2 � 2 ~kk ~jj�Þ

�
ð43Þ

According to eqs. (42) and (43), we may assume that �nðkÞ ¼ ktn ~��nð ~kkÞ, and �nðkÞ ¼ ktn ~��nð ~kkÞ where t is an undetermined
parameter. With this scaling law, combining the recursive relationship of viscosity and eq. (42) gives

ktnþ1 ~��nþ1

�
~kk
�
¼ ktn ~��n

�
~kk�
�
þ k�8=3�t

n � ~��n
�
~kk�
�
;

ktnþ1 ~��nþ1

�
~kk
�
¼ ktn ~��n

�
~kk�
�
þ k�8=3�t

n � ~��n
�
~kk�
�
:

(
ð44Þ

For consistency of the dimension on both sides of eq. (44), we must have t ¼ �8=3� t, and thus t ¼ �4=3. It follows by
dividing by k�4=3

nþ1 on both sides of eq. (44),

~��nþ1

�
~kk
�
��

�4
3 ~��n

�
~kk�
�
¼ �

�4
3 � ~��n

�
~kk�
�
;

~��nþ1

�
~kk
�
��

�4
3 ~��n

�
~kk�
�
¼ �

�4
3 � ~��n

�
~kk�
�
:

8<
: ð45Þ

Now we write � ¼ 1� �, and let n ! 1, equivalently, we have � ! 0, ~��n ! ~�� and ~��n ! ~��. Then for n� 1, eq. (45)
becomes �

~kk
d ~��
�
~kk
�

d ~kk
þ

4

3
~��
�
~kk
��
� ¼

ð1� �Þ
�4
3

2�

Z
~��n

d3 ~jj

�
~kk4 � 2 ~kk3 ~jj�þ ~kk ~jj3�

�
ð1� �2Þ

~jj2 ~kk2
�
~kk2 þ ~jj2 � 2 ~kk ~jj�

�
�
�

CK"
2=3
v

~jj�5=3�ð~jj= ~kkpÞ
~��
�
~jj
�
j ~jjj2 þ ~��

�
j~kk� ~jjj

���~kk� ~jj
��2� þ CM"

2=3
M

~jj�5=3’ð ~jj= ~kkpÞ
~��
�
~jj
�
j ~jjj2 þ ~��

�
j~kk� ~jjj

���~kk� ~jj
��2�
 

þ O
�
�2
�
; ð46Þ

and �
~kk
d ~��
�
~kk
�

d ~kk
þ

4

3
~��
�
~kk
��
� ¼

�
1� �

��4
3

2�

Z
~��n

d3 ~jj

�
~kk4 � 2 ~kk3 ~jj�þ ~kk ~jj3�

��
1� �2

�
~jj2 ~kk2ð ~kk2 þ ~jj2 � 2 ~kk ~jj�Þ

�

(
CK"

2=3
v

~jj�5=3�ð ~jj= ~kkpÞ � CM"
2=3
M

~jj�5=3’ð ~jj= ~kkpÞ
~��
�
~jj
�
j ~jjj2 þ ~��

�
j~kk� ~jjj
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; ð47Þ

where �ð ~��nÞ denotes the measure of the set ~��n, under the limit of n! 1, the measure of ~��n had evaluated in1) to be

�
�
~��n

�
¼ 2� ~kk�þ Oð�2Þ:

Therefore in the limit of � ! 0, eqs. (46) and (47) simply become

~kk
d~��ð ~kkÞ
d ~kk

þ
4

3
~��
�
~kk
�
¼
�
CK"

2=3
v �ð1= ~kkpÞ
~��ð1Þ

þ
CM"

2=3
M ’ð1= ~kkpÞ
~��ð1Þ

� ~kk

4

�
1�

� ~kk

2

�2�
;

~kk
d ~��ð ~kkÞ
d ~kk

þ
4

3
~��
�
~kk
�
¼ 0:

8>>><
>>>:

ð48Þ

Notice that the right hand side of the second equation of (48) vanishes, since the two integrands in eq. (43) will cancel out
each other exactly in the limit of n ! 1. The two equations in (48) can be readily solved to yield
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and

�ðkÞ ¼ C
1=2
M "

1=3
M k4=3c k�4=3�̂�nðkc=kpÞ; ð50Þ

where kc denotes the cutoff wavenumber. It is appropriate to
term �ðkÞ and �ðkÞ the invariant effective eddy viscosity and
the invariant effective magnetic resistivity, respectively. It is
notable that the RG procedure does not incur an increment of
the magnetic resistivity �ðkÞ, which obeys the second
equation of (48) and must scale as in eq. (50) being
proportional to "

1=3
M k�4=3. On the other hand, because of the

minus sign in front of the terms containing CM (or �M) in the
expression (49), the effect of the magnetic effect on the

effective eddy viscosity is to reduce the latter in magnitude,
but not to change its basic behavior.

6. Evaluation of the Kolmogorov Constant and Sma-
gorinsky Model

The results of §5 will be applied here to evaluate the
Kolmogorov and Smagorinsky constants. First of all, we set

�ðkÞ ¼ C
1
2
K"

1
3
vFðkÞ, then (49) can be written

FðkÞ ¼ FðkcÞk
4
3
c �

135

364
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k
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c ; ð51Þ

where we used the result of (50), and set � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CM=CK

p ffiffiffiffiffiffiffiffiffiffiffiffi
"M="v

3
p

. Let us now consider a cutoff kc for the
first expression of (38) and then substitute the first
expression of (40) and (51) in it; this yieldsZ kc

ks

2k2�ðkÞEðkÞdk

¼ 2C
3
2
K"v

Z kc

ks

FðkÞk
1
3�ðk=kpÞdk

¼ "v;

where ks denotes the wavenumber of the largest eddy
existing in the flow. Canceling out � on both sides, we obtain
the Kolmogorov constant CK in terms of the three
characteristic wavenumbers kc, kp and ks:

CK ¼
�
2

Z kc

ks

FðkÞk
1
3�ðk=kpÞdk

��2
3

: ð52Þ

Similarly, substituting the second expression of (40) and
(50) in the second expression of (38) gives

CM ¼
�
2k

4
3
c �̂�ðkc=kpÞ

Z kc

ks

k�1’ðk=kpÞdk
��2

3

: ð53Þ

So far, we have not given a precise form for � and ’. Let
us assume further that both the velocity and magnetic
induction fields share the same form of the energy spectrum
which is a combination form of the scaling laws proposed
respectively by Pao,13) and Leslie and Quarini,14) that is,

�ðk=kpÞ ¼ Ap

�
k

kp

�
exp

�
�3

2
C

�1
2

K "
�1
3
v �ðkÞk

4
3

�
;

and
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�
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�
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2
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�1
2
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3
M �ðkÞk

4
3

�
:

It follows immediately from (40) that

EvðkÞ ¼ Ap

�
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�
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2=3
v k�5=3 exp

�
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3
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�1
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K "�1=3

v �ðkÞk4=3
�
;

ð54Þ

and

EMðkÞ ¼ Ap

�
k

kp

�
CM"

2=3
M k�5=3 exp

�
�

3

2
C

�1
2

M "
�1=3
M �ðkÞk4=3

�
:

ð55Þ

In these formulas, we have the factor

ApðxÞ ¼
xsþ5=3

1þ xsþ5=3
;

to take care of energy-containing eddies, where s is a flow
parameter. If we consider the leading term of (51) and apply
(54) to (52), we may rewrite (52) in a more precise form as
follows:

CK ¼
�

2M

sþ 5=3
e�1:5M log

�
ðkc=kpÞsþ5=3 þ 1

ðks=kpÞsþ5=3 þ 1

� �2
3

; ð56Þ

where we denote
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Following the same calculations as in the above, we may also obtain
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: ð57Þ

As a matter of fact, Biskamp9) indicated that the Kolmogorov constant depends on the precise definition of the averge
magnetic induction, and hence on the geometry of the large scale eddies. Here, we have provided two relationships which
show how the large-scale eddies can influence not only the Kolmogorov constant CK but also the magnetic Kolmogorov
constant CM, as shown in (56) and (57). The large-scale eddies with the wavenumbers kp and ks indeed play an important role
in deciding both of CK and CM. Here we recall that, kp denotes the 1/(geometric size) of the energy-containing eddies and ks
denotes the 1/(geometric size) of the largest eddies in fluid.

In order to carry out large eddy simulation (LES) for MHD turbulence, we need to evaluate the Smagorinsky constant for
MHD turbulence by using (49). First of all, we suppose no matter whenever we perform the RG analysis, the cutoff kc is
always very close to the Kolmogorov scale k0, that is, we may replace kc by k0 in (49). In doing so, we evaluate the effective
eddy viscosity at k ¼ kc which is far from k0. Then (49) becomes
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Since kc=k0 � 1, we can make the following approximation
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where

H1 ¼ C
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K "�1=3
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Next, we express "v in the resolvable velocity,
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Substituting it in eq. (59) yields
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Solving the above algebraic equation for �ðkcÞ and replacing kc by 2�=$ where $ denotes the cutoff size, we obtain
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ð60Þ

This is the Smagorinsky constant, where we have left two
undetermined parameters H1 and H2, which require two

additional conditions to be fully determined.
In summary, the closed-form solutions (49) and (50) for
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�ðkÞ and �ðkÞ have enabled derivation of the functional
dependence of CK, CM and CS in (56), (57) and (60),
respectively. In other words, these numbers CK, CM and CS

are not genuine constants but dependent upon the character-
istic wavenumbers kp and ks of the energy-containing eddies.
Namely, the theory requires an input of the large-eddy
wavenumbers kp and ks from observations and/or experi-
ments. The value of ks is approximately that of kp. This was
done in our early study for incompressible flow turbulence as
well as in thermal-fluid turbulence; the range of variation of
the relevant Kolmogorov’s and Batchelor’s constants were
found in close agreement with experiments (cf. Chang et
al.1) and Lin et al.2)).

7. Concluding Remarks

In this study, we have extended our previous RG analysis
of incompressible flow turbulence to incompressible MHD
turbulence.

The Elsässer variables are introduced to write the MHD
equations for the velocity and magnetic induction fields in a
symmetric form. RG analysis is then performed in the
wavenumber domain. Taking subgrid averaging of the
equation governing the supergrid modes yields a renorma-
lizable form of the MHD equations. To proceed further with
the RG transformation, we have to impose the following two
assumptions. (i) The mean magnetic induction is relatively
weak compared to the mean flow velocity. (ii) The Alfvén
effect holds, that is, the fluctuating velocity and magnetic
induction are nearly parallel and approximately equal in
magnitude. That these conditions still warrant sufficient
interest are illustrated by some available data from
observations in astronomical physics. Under these condi-
tions, renormalization does not incur an increment of the
magnetic resistivity �, while the coupling effect tends to
reduce the invariant effective eddy viscosity �ðkÞ. Both the
velocity and magnetic energy spectra are shown to follow
the Kolmogorov k�5=3 in the inertial subrange; this is
consistent with some available laboratory measurements and
observations in astronomical physics. Furthermore, by
assuming that the velocity and magnetic induction fields
share the same combined form of the energy spectra
proposed respectively by Pao, and Leslie and Quarini, we
are able to determine the dependence of the Kolmogorov
constant CK and the magnetic Kolmogorov constant CM on
the characteristic wavenumbers kc, kp and ks. The results are
applied to obtain the dependence of the Smagorinsky
constant CS for large-eddy simulation, which however
contains two undetermined constants to be resolved.

In spite of the present success, it must be stressed upon
that the imposed conditions (i) and (ii) imply a negligible
effect of the subgrid cross helicity between the velocity and
magnetic fields. There are cases where the effect is important
and which may lead to quite different energy spectrum. In an
early study, Kraichnan22) derived a k�3=2 energy spectrum of

the inertial subrange when the magnetic energy in the sub-
inertial wavenumbers exceeds the total energy in the inertial
subrange. Pouquet et al.23) had an intensive study on strong
MHD helical turbulence and the nonlinear dynamo effect.
Recently, Nakayama,24,25) obtained also the k�3=2 energy
spectrum in the inertial subrange by constructing a spectral
theory of strong shear Alfvén turbulence anisotropized by
the presence of a uniform mean magnetic field. Of particular
interest, we refer to Yoshizawa et al.26) for reviewing the
importance of the cross-helicity effect, and more generally
for an extensive review of turbulence theories and modeling
of fluids and plasmas.

Acknowledgement

The authors are grateful to an anonymous referee for his/
her helpful comments and pointing out some recent and
important references. The work is supported in part by the
National Science Council of the Republic of China under
Contracts No. NSC89-2212-E002-067 and No. NSC90-
2212-E-002-238.

1) C. C. Chang, B. S. Lin and C. T. Wang: submitted for publication.

2) B. S. Lin, C. C. Chang and C. T. Wang: Phys. Rev. E 63 (2000)

016304.

3) C. B. Kim and T. J. Yang: Phys. Plasmas 6 (1999) 2714.
4) W. Z. Liang and P. H. Diamond: Phys. Fluids B 5 (1993) 63.

5) W. D. McComb: The physics of fluid turbulence (Oxford University

Press, New York, 1990).

6) A. Alemany, R. Moreau, P. L. Sulem and U. Frisch: J. de Méca.
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