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Solvable model in renormalization group analysis for effective eddy viscosity
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This study presents a solvable model in renormalization group analysis for the effective eddy viscosity. It is
found fruitful to take a simple hypothesis that large-scale eddies are statistically independent of those of
smaller scales. A limiting operation of renormalization group analysis yields an inhomogeneous ordinary
differential equation for the invariant effective eddy viscosity. The closed-form solution of the equation facili-
tates derivations of an expression of the Kolmogorov constantCK and of the Smagorinsky model for large-
eddy simulation of turbulent flow. The Smagorinsky constantCS is proportional toCK

3/4. In particular, we shall
illustrate that the value ofCK ranges from 1.35 to 2.06, which is in close agreement with the generally accepted
experimental values (1.2;2.2).
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The development of renormalization-group~RG! analysis
for turbulence has been difficult as many of the RG studie
one form of approach or another do not sound either m
ematically or physically consistent. As Frisch@1# said in his
notable book, ‘‘Twenty years later turbulence remains u
solved. However, RG methods stand a good chance of p
ing a role in the solution of problem of turbulence.’’

Nelkin @2# could possibly be among the earliest pione
who studied the renormalization group theory of turbulen
But there are now basically two different RG approaches
fluid turbulence. One, known ase-RG, was originated by
Forster, Nelson, and Stephen@3# and has been developed b
others@4#; and the other, known as recursive RG, was ba
on the works of Rose@5#, Rose and Sulem@6# and also has
been developed by some other authors@7#, in particular, the
works McComb and Watt@8,9# are most relevant to the
present study. Among several outstanding difficulties t
there is no closed-form solution for the effective eddy v
cosity due to complicated recursive equations has preve
further development of recursive renormalization gro
analysis@10#.

In this analysis, we start with the approach of recurs
RG, examine the detailed procedure, and show where
proposed procedure deviates from the existing one. The
assumption made in the study is a typical hypothesis
large-scale eddies are considered to be statistically inde
dent of those of smaller scales~cf. McComb @14#, p. 356!.
This assumption issimple but not voidthough its validity
may be restrictive. In our opinion, RG theory based on t
assumption has not been explored to its full strength,
indeed significant new results can be obtained, as descr
in the abstract and in this text. In the meantime, reports
some successful applications of the present formulation
RG analysis to turbulent thermal transport@15# and magne-
tohydrodynamic turbulence@16# are available. In the presen
study, the flow turbulence considered is assumed to be
tropic, stationary, and homogeneous. The theory starts
the incompressible Navier-Stokes equation, which we h
in the wave number space as~cf. McComb@14#, p. 56!
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1n0k2Dua~k,t !5E d3 jM abg~k!ub~ j ,t !ug~k2 j ,t !.

~1!

The basic idea of recursive RG analysis is to divide
wave number space (0,k0), wherek0 is Kolmogorov’s scale,
in a supergrid (0,kc) and a subgrid region (kc ,k0); the sub-
grid modes are then removed shell by shell by taking
subgrid average over a spherical shell (kn11 ,kn), as shown
in Fig. 1.

Let us now proceed with the first step toward subg
modeling, i.e., to consider the effect of removing the fi
subgrid shellk1,k,k0 from the Navier-Stokes equation i
the RG procedure. To distinguish modes, we have to in
duce the following notation:

ua~k,t !5H ua
,~k,t ! for uku,k1

ua
.~k,t ! for uku.k1 ,

~2!

where the supergridua
,(k,t) has support inuku,k1, while

the subgridua
.(k,t) has support inuku.k1. Now we adopt

the typical assumption by taking the ensemble average o
the particular subgrid shell modes under the consideratio
obtain ~cf. McComb@14#, p. 356!

^ua
.~k,t !&50; ^ua

,~k,t !&5ua
,~k,t !, ~3!

where the origin of the first one is the consideration of t
bulence field with ensemble-mean-zero fluctuation, while
second one holds because the supergrid components are
sidered to be statistically independent of the subgrid avera

For the subgrid rangek1,u j u,k0, Eq. ~1! becomes

FIG. 1. The terminiki for recursive renormalization with a fixed
cutoff ratio L5kn11 /kn . Recursive renormalization analys
starts at the Kolmogorov’s scalek0, and ends at the cutoff wave
numberkc .
©2003 The American Physical Society01-1
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~n0 j 2!ub
.~ j ,t !5Mbb8g8~ j !E d3 j 8@ub8

,
~ j 8,t !ug8

,
~ j2 j 8,t !

12ub8
,

~ j 8,t !ug8
.

~ j2 j 8,t !

1ub8
.

~ j 8,t !ug8
.

~ j2 j 8,t !#; ~4!

while for thosek in the supergrid range ofuku,k1, Eq. ~1!
becomes

S ]

]t
1n0k2Dua

,~k,t !5Mabg~k!E d3 j @ub
,~ j ,t !ug

,~k2 j ,t !

12ub
,~ j ,t !ug

.~k2 j ,t !

1ub
.~ j ,t !ug

.~k2 j ,t !#, ~5!

where we follow the Markovian approximation that in eve
rescaling, the subgrid velocity fieldua

. evolves faster than
the supergrid velocity fieldua

, so that]ua
./]t can be ne-

glected in Eq.~4!. Let us observe that the second term on
right-hand side~RHS! of Eq. ~5! has simply ensemble mea
zero for the subgrid shell average under the hypothesi
statistical independence of the supergrid and the sub
modes. It is therefore more natural to work directly with E
~5! by taking the subgrid average to obtain, without negle
ing any contribution, the renormalized Navier-Stokes eq
tion:

S ]

]t
1n0k2Dua

,~k,t !5Mabg~k!E d3 j @ub
,~ j ,t !ug

,~k2 j ,t !

1^ub
.~ j ,t !ug

.~k2 j ,t !&#. ~6!

Equation~6! bears a close analogy with the original Navie
Stokes equation~1! except the second quadratic term on t
RHS. It is our proposal that we work directly with Eq.~6! by
looking into further details of the second term on the RHS
Eq. ~6! to produce a workable form of the effective edd
viscosity.

Multiply both sides of Eq.~4! by ug
.(k2 j ,t) and then

take the ensemble average over the subgrid shell modes
the other hand, we make use of Eq.~4! by renaming the
indexb by g andj by k2 j , followed by multiplying on both
sides byub

.( j ,t). Applying these results with proper rea
rangement of the indices and change of variables to obt

Mabg~k!E d3 j ^ub
.~ j ,t !ug

.~k2 j ,t !&

54Mabg~k!E d3 j
Mgb8g8

.
~k2 j !

n0u j u21n0uk2 j u2
Dg8b~ j !

3Dab8~k!Q~ j !ua
,~k,t !. ~7!

Substitute Eq.~7! in Eq. ~6! and rewrite the result as

S ]

]t
1n1~k!k2Dua~k,t !5Mabg~k!E d3 jub~ j ,t !ug~k2 j ,t !,

~8!
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n

wheren1(k) is called the effective eddy viscosity after th
first subgrid modeling,

n1~k!5n01dn0~k!.

After removing thenth shell, we have the relationship

nn11~k!5nn~k!1dnn~k!, ~9!

with

dnn~k!5
1

2pEVn

d3 j
En~ j !L~k,k2 j !

j 2k2@nn~ j !u j u21nn~ uk2 j u!uk2 j u2#
,

~10!

whereVn(k)5$ j ukn11,u j u, uk2 j u,kn%, and see the work
of McComb @14# ~p. 234! for L(k,k2 j ).

Next, we shall determine the energy spectrum for the
tire range of wave numbers, which is supposed to be a c
bination form of the scaling laws proposed, respectively,
Pao@12# and Leslie and Quarini@13#:

En~ j !5ApS j

kp
DCKen

aj yexpS 2
3

2
CK

21/2nn~ j !en
bj zD , ~11!

whereAp(x)5xs15/3/(11xs15/3); kp is the wave number a
which the spectrum is the maximum, a good choice for
exponents is 4 ~see, e.g., Leslie and Quarini@13#!; CK is the
Kolmogorov constant;e denotes the energy dissipation rat
and a, b, y, z are the undetermined parameters. In order
extract the correct dimension ofnn(k) from Eq. ~10!, let us
introduce a dimensionless variableh5 j /k, then Eq.~10!,
with the proposed energy spectrum~11!, becomes

dnn~k!5
ky21

2p E
V̄n

d3h

expS 23

2
CK

21/2nn~ j !en
bhzkzD

nn~kh!h21nn~kz!~11h222hm!

3
ApCKen

ahy22~122hm1h3m!~12m2!

11h222hm
, ~12!

where we used the shorthandz5A11h222hm andm de-
notes the direction cosine betweenk and j . Equation~12!
should give a consistent dimension on both sides. The o
dimensional factors appearing in the numerator of the in
grand arek ande; this suggests that there is a dimensionle
effective eddy viscosityn̂n(h) such that

nn~ j !5nn~kh!5CK
p en

qkr n̂n~h! for all n. ~13!

Substituting Eq.~13! in Eq. ~12! yields the following ex-
pression:
1-2
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dnn~k!5
CK

12pen
a2qky212r

2p

3E
V̄n

d3h

expS 23

2
CK

21/2nnen
bhzkzD

n̂n~h!h21 n̂n~z!~11h222hm!

3
Aphy22~122hm1h3m!~12m2!

11h222hm
. ~14!

This implies that

p5
1

2
, q5

a

2
, r 5

y21

2
,

and thus

nn~k!5CK
1/2en

a/2k(y21)/2n̂n~h!. ~15!

On the other hand, it is natural to require that the dissipa
equation holds,*0

kn112nn(k)k2En(k)dk5en , Substituting
Eq. ~11! and Eq.~15! into the dissipation equation givesa
5 2

3 and y52 5
3 . Moreover, the above results should ma

the whole exponential factor dimensionless; this impliesb
521/3, z54/3. Substitute all the values of the exponents
Eq. ~11!; the renormalized energy spectrum reads

En~ j !5ApCKen
2/3j 25/3expS 23

2
CK

21/2en
21/3nn~ j ! j 4/3D .

~16!

Equation~16! shows that the renormalized energy spectr
remains consistent with Kolmogorov’s25/3 law. It is the
purpose of this study to look for the invariant effective ed
viscosity by pursuing a differential version of recursive R
analysis with the limiting operationL→1. First of all, we
rescale the wave number by settingk̃5k/kn11 and substitute
this in Eq.~10!, with use of Eq.~9!, to obtain

kn11
t ñn11~ k̃!5kn

t ñn~ k̃L!1kn
28/32tdñn~ k̃L!. ~17!

For consistency of the dimension on both sides of Eq.~17!,
we must havet524/3. It is followed by division on both
sides of Eq.~17! by kn11

24/3,

ñn11~ k̃!2L24/3ñn~ k̃L!5L24/3dñn~ k̃L!. ~18!

Now we writeL512j and letn→`, equivalently, we have
j→0 andñn→ ñ, then Eq.~18! becomes, forn@1,

k̃
dñ~ k̃!

dk̃
1

4

3
ñ~ k̃!5CKe2/3ApS 1

k̃p
D k̃

4
F12S k̃

2
D 2G

3
exp@21.5CK

21/2ñ~1!e21/3#

ñ~1!
, ~19!
04730
n

which is an inhomogeneous ordinary differential equatio
sought for the invariant effective eddy viscosityñ( k̃). The
equation is particularly useful because it can be exa
solved to yield

n~k!5Fn~kc!kc
4/32

135

364
M ~kc!Gk24/3

2M ~kc!F 3

52S k

kc
D 3

2
3

7 S k

kc
D Gkc

24/3, ~20!

where

M ~kc!5CKe2/3ApS kc

kp
Dexp@21.5CK

21/2e21/3n~kc!kc
4/3#

4n~kc!kc
4/3

.

The purpose is to determine the value ofn at kc . If kc /k0
!1, we can make the approximationAp'1 and obtain

n~kc!'CK
1/2e1/3FF~k0!k0

4/3

2
135

364

exp@21.5F~k0!k0
4/3#

4F~k0!k0
4/3 Gkc

24/3. ~21!

Let us write n(k)5Ck
1/2e1/3F(k), we have n(kc)

5CK
1/2e1/3F(kc), and therefore the above result is equivale

to the approximation

F~kc!kc
4/3'F~k0!k0

4/32
135

364

exp@21.5F~k0!k0
4/3#

4F~k0!k0
4/3

. ~22!

Let us defineB( k̃)5CK
21/2e21/3kc

4/3n(k) and rearrange it to

n(k)5B( k̃)CK
1/2e1/3kc

24/3. Replacekc by k0 in n(k) and then
evaluaten at k5k0 to obtain the molecular viscosityn0 in
the form

B~1!CK
1/2e1/3k0

24/35n05CK
1/2e1/3F~k0!

where the second equality comes simply from the definit
of F(k). Comparison between both sides givesF(k0)k0

4/3

5B(1). The value of B(1) is now estimated according t
the Edwards-Fokker-Planck theory~cf. McComb @14#, p.
268!, which implies a constraint that our notation can
written asCKD/„B(1)CK

1/2
…

251, whereD is a constant. Ac-
cording to this testing field model, Kraichnan@11# has the
estimateD50.44, whence we haveB(1)5A0.4450.6633,
and therefore

F~kc!kc
4/3'B~1!2

135

364

e21.5B(1)

4B~1!
50.6116.

Finally, we obtain by substituting this result in Eq.~21!,

n~kc!'0.6116CK
1/2e1/3kc

24/3. ~23!
1-3
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Next by recalling Eq.~16!, we can now obtain the Kolmog
orov constant through substitutingn(k)5CK

1/2e1/3F(k) in the
energy dissipation equation; this leads to

CK5H 2E
ks

kc
F~k!Apk1/3exp@21.5F~k!k4/3#dkJ 22/3

.

~24!

Numerical evaluation of the integral for variouskc , kp , and
ks enables us to have a close look at the dependence ofCK .
Figure 2~a! shows the plotted result. The behavior ofCK is
observed to be dependent upon the value ofkp ; the higher
the value ofkp , the higher is theCK curve. On the left end of
the figure, the wave number is conceived to be falling in
inertial subrange; the value ofCK lies between 1.35 and

FIG. 2. A plot of the Kolmogorov and the Smagorinsky co
stants forks5450 at various cutoff sizes.~a! The Kolmogorov con-
stantCK versus the cutoff wave numberkc ; ~b! the Smagorinsky
constantCS versus the cutoff wave numberkc . Each curve is fur-
ther specified by the wave numberkp of the energy peak, which
ranges from 500 to 1000; the upper curve corresponds to higherkp .
04730
e

2.06, which is comparable to the generally accepted exp
mental value 1.2– 2.2~cf. McComb@14#, p. 379!. It is also of
interest to integrate Eq.~24! using Eq.~20! by neglecting the
second part on the RHS. This gives

CK5H 0.4887

s1
5

3

F ln
~kc /kp!s15/311

~ks /kp!s15/311
G J 22/3

. ~25!

The approach of recursive renormalization is naturally link
to the ideas of~effective! eddy viscosity and subgrid-scal
modeling. The section is devoted to the derivation of t
Smagorinsky model and determination of the Smagorin
constant. Following Yakhot and Orszag@4# we first substitute
CK in n(kc) and expresse in the resolvable velocity,

e5
n~kc!

2 S ]ui
,

]xj
1

]uj
,

]xi
D 2

,

which yields with the use of Eq.~21!, the Smagorinsky con-
stant

CS5
1

4A2p2
~0.6633CK

1/2!3/250.0097CK
3/4. ~26!

In parallel to Fig. 2~a! for CK of Eq. ~25!, Fig. 2~b! shows
the corresponding plot for the Smagorinsky constantCS of
Eq. ~26!. SinceCS is simply proportional toCK

3/4, the Sma-
gorinsky constantCS is expected to behave similarly as th
Kolmogorov constantCK . That is,CS should in general be
the function of the cutoff sizeD as well as the wave number
kp and ks , which correspond, respectively, to the energ
containing eddies and the largest-scale eddies existing in
flow.
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