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Solvable model in renormalization group analysis for effective eddy viscosity
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This study presents a solvable model in renormalization group analysis for the effective eddy viscosity. It is
found fruitful to take a simple hypothesis that large-scale eddies are statistically independent of those of
smaller scales. A limiting operation of renormalization group analysis yields an inhomogeneous ordinary
differential equation for the invariant effective eddy viscosity. The closed-form solution of the equation facili-
tates derivations of an expression of the Kolmogorov constagnand of the Smagorinsky model for large-
eddy simulation of turbulent flow. The Smagorinsky constagis proportional toCﬁ"‘. In particular, we shall
illustrate that the value d@ ranges from 1.35 to 2.06, which is in close agreement with the generally accepted
experimental values (1-22.2).
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The development of renormalization-gro(RG) analysis d ) Ny . _
for turbulence has been difficult as many of the RG studies in (E + vok )Ua(k,t)Z f djM g (K)ug(j,t)u,(k—j,t).
one form of approach or another do not sound either math- (1)

ematically or physically consistent. As Frisgh| said in his
notable book, “Twenty years later turbulence remains un-  ne pasic idea of recursive RG analysis is to divide the

solved. However, RG methods stand a good chance of play;. e number space (G), wherek, is Kolmogorov's scale,

ing a role in the solution of problem of turbulence.” ; id d barid ionk. k-): th b-
Nelkin [2] could possibly be among the earliest pioneersIn a supergrid (&) and a subgrid regionks  ko); the su

: e grid modes are then removed shell by shell by taking the
who studied the renormalization group theory of turbulenceSubgrid average over a spherical shéll (;,k), as shown
But there are now basically two different RG approaches ta, Fig. 1. Lo/
fluid turbulence. One, known as-RG, was originated by
Forster, Nelson, and Stephg3] and has been developed by
others[4]; and the other, known as recursive RG, was base
on the works of Ros¢5], Rose and Sulerfb] and also has
been developed by some other authidfk in particular, the
works McComb and Wat{8,9] are most relevant to the
present study. Among several outstanding difficulties that
there is no closed-form solution for the effective eddy vis-
cosity due to complicated recursive equations has prevented
further development of recursive renormalization group
analysis{10]. where the supergridi; (k,t) has support ifk|<k,, while

In this analysis, we start with the approach of recursive, subgridu? (k,t) has support ifk|>k,. Now we adopt

RG, examine the detailed procedure, and show where o h : . .
proposed procedure deviates from the existing one. The ke € typlt_:al assumption by taking the ensemble average over
' e particular subgrid shell modes under the consideration to

assumption made in the study is a typical hypothesis that, - "
large-scale eddies are considered to be statistically indepeR-btam(Cf' McComb([14], p. 359

dent of those of smaller scalésf. McComb[14], p. 356. - _ _

This assumption isimple but not voicthough its validity (Uy (k,1))=0;5 (uy(k,))=ug (K1), 3

may be restrictive. In our opinion, RG theory based on this

assumption has not been explored to its full strength, andvhere the origin of the first one is the consideration of tur-
indeed significant new results can be obtained, as describeslilence field with ensemble-mean-zero fluctuation, while the
in the abstract and in this text. In the meantime, reports ogecond one holds because the supergrid components are con-
some successful applications of the present formulation ofidered to be statistically independent of the subgrid average.

Let us now proceed with the first step toward subgrid
odeling, i.e., to consider the effect of removing the first
ubgrid shellk;<k<k, from the Navier-Stokes equation in

the RG procedure. To distinguish modes, we have to intro-
duce the following notation:

us(k,t) for |k|<k,

2
uz(k,t)y for |k|>kq, @)

ua(k,t):[

RG analysis to turbulent thermal transpptb] and magne- For the subgrid rangk; <|j|<ko, Eq. (1) becomes
tohydrodynamic turbulendel6] are available. In the present
study, the flow turbulence considered is assumed to be iso- — | | I |

tropic, stationary, and homogeneous. The theory starts with 0 ]'g ,'c ;g ]'C llc '

the incompressible Navier-Stokes equation, which we have ¢ " 2 F1ofo 00

in the wave number space &d. McComb[14], p. 56 FIG. 1. The termink; for recursive renormalization with a fixed
cutoff ratio A=Kk,../k,. Recursive renormalization analysis

starts at the Kolmogorov's scalg, and ends at the cutoff wave
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P ) G e e where v,(k) is called the effective eddy viscosity after the
(Vo] )UB(J-t):MﬁB’y’(J)f d*"Tug (i, Hu, (—j".t) first subgrid modeling,

< /. > . .
+2u,, (" Hu, (=" v1(K)= v+ Svg(K).
+ug (U (=i DT; (4) _ o
After removing thenth shell, we have the relationship
while for thosek in the supergrid range dk|<k,, Eq. (1)
becomes Vs 1(K) = vp(K) + Ov(K), €]

d . . .
5+ka2)UE(k,t)=Maﬁy(k)f d®j[ug(j,Hus(k=j,t) with

+2uz(j,Huy (k=j,t) Eq(j)L(k,k—j)

- 3
tug(,ouy (k=j,0], g o 27Jan LD kD ki)
(1

where we follow the Markovian approximation that in every

rescaling, the subgrid velocity field. evolves faster than _ . .

the supergrid velocity fieldi so thatdu_/dt can be ne- where (k) ={jlkn+1<[i|, [k—j|<ks}, and see the work
glected in Eq(4). Let us observe that the second term on theOf McComb[14] (p. 234 f_or L{kk=J).

right-hand sideRHS) of Eq. (5) has simply ensemble mean _. Next, we shall determine the'engrgy spectrum for the en-
zero for the subgrid shell average under the hypothesis t]qe range of wave ”“mb?fs' which is supposed to b_e acom-
statistical independence of the supergrid and the subgrcihInatlon form of t_he scaling '?‘WS proposed, respectively, by
modes. It is therefore more natural to work directly with Eq. a0[12] and Leslie and Quarirji13)

(5) by taking the subgrid average to obtain, without neglect-

ing any contribution, the renormalized Navier-Stokes equa- . ] . 3 b
tion: En(1)=Ap| | Creni’exp| — 5 Cy “rn(i)eni?|, (11)
P

J

5t vokz)ui(k,t)=Maﬁ7(k)f d3j[ug(j,Hus(k—=j,t) whereA,(x) =x5"%%(1+x%"%3); k, is the wave number at
which the spectrum is the maximum, a good choice for the

+<u;(j ,t)ui(k—j,t)}]. (6)  exponensis 4 (see, e.g., Leslie and Quarii3]); Cy is the

Kolmogorov constante denotes the energy dissipation rate;

Equation(6) bears a close analogy with the original Navier- anda, b, y, z are the undetermined parameters. In order to

Stokes equatiofil) except the second quadratic term on theextract the correct dimension of,(k) from Eq. (10), let us

RHS. It is our proposal that we work directly with E§) by  introduce a dimensionless variabig=j/k, then Eg.(10),

looking into further details of the second term on the RHS ofwith the proposed energy spectryfi), becomes

Eq. (6) to produce a workable form of the effective eddy

viscosity. -3
Multiply both sides of Eq.(4) by u(k—j,t) and then -1 exp<7C,21/2Vn( j)ednik?
take the ensemble average over the subgrid shell modes. O, ()= _f* 3y

the other hand, we make use of E¢) by renaming the 27 Ja, T vy(ky) Pt va(KO(1+ 72— 2qu)
index B by y andj by k—j, followed by multiplying on both

sides byuj (j,t). Applying these results with proper rear- XApCKEﬁﬂyfz(l—zﬂMﬂL 7’p) (1= u?) 12
rangement of the indices and change of variables to obtain 1+ 9°—29u '
Maﬁ'y(k)f d3j(ug (j,Hus (k—=j,b)) where we used the shorthager 1+ 7°— 27w and u de-
notes the direction cosine betweknandj. Equation(12)
5. Mjﬂ,y,(k—j) _ should give a consistent dimension on both sides. The only
=4Maﬁy(k)J d ]Tk—'z y (] dimensional factors appearing in the numerator of the inte-
voli|*+ volk—] grand arek ande; this suggests that there is a dimensionless

X Daﬁ,(k)Q(j)ucf(k,t). (7)  effective eddy viscosity,(7) such that

Substitute Eq(7) in Eq. (6) and rewrite the result as A
ubstitute Eq(7) in Eq. (6) i ! (i) =vo(km)=CReK 3() forall n. (13

d L .
-+ Vl(k)k2> ua(klt): Maﬁy(k)f d3]Uﬁ(J,t)U7(k_J vt)a

at Substituting Eq(13) in Eqg. (12) yields the following ex-

(8) pression:
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CLPed agy-1-r which is an inhomogeneous ordinary differential equation,
ovp(k)= B P a— sought for the invariant effective eddy viscosityk). The

equation is particularly useful because it can be exactly

solved to yield
eXF{ A CK 1/2Vn ZkZ y

_d¥y=
fnn vo(m) 7P+ o £)(1+ 77— 2 v(K)=| (ko) 364M<kc>}k o
Ao’ 2(1=2qp+ 7w)(1— u?) 3/Kk\® 3/k
X 2 . (14) _M(k ) I N e k*4/3 (20)
1+ 7°=29u 1521k,  7\ke/|©
This implies that where
1 a y— ex] — 1.5C 12,.-13 vk, )k4’3]
p:_! q:_; r:_y 2/3
2 2 2 M(k.)=Cke A( ) :
( C) K kp 4V(kc)k::1/3
and thus . .
The purpose is to determine the valueoft k.. If k./kq
v (k)= Cl,2 a’zk(y 112, (). (15 <1, we can make the approximatiég~1 and obtain
n
On thg other hanoi, itis naturgll to require that the d-iss.ipation v(ke)~CY2eY3 F(ko)ki
equation holds, [ "**2v,(K)k“En(k)dk=€,, Substituting

Eq (11) and Eq (15) into the dissipation equation gives

_ 413
=2 andy=—2%. Moreover, the above results should make _ £5qu 1.5 (ko)ko] K43 (21)
the whole exponentlal factor dimensionless; this imples 364 4F(kg)kg?® ¢
= —1/3,z=4/3. Substitute all the values of the exponents in
Eq. (11); the renormalized energy spectrum reads Let us write v(k)=C}%3F(k), we have (k)
2 =C#?% % (k.), and therefore the above result is equivalent
En(j)=ApCKeﬁ/3J 5’3exr{ 5 Cx 1/2 3. ()i %3], to the approximation
(16) 135 exyf — 1.5F (ko)k&3
F (ko) kg = F (ko)ks*~ 37 i (‘33 °J (2
Equation(16) shows that the renormalized energy spectrum 4F (ko) ko

remains consistent with Kolmogorov’s 5/3 law. It is the _

purpose of this study to look for the invariant effective eddyLet us defineB(k)=Cy v(k) and rearrange it to
viscosity by pursuing a differential version of recursive RG (k) =B(k)CL2e U3 4R Replacek by ko in »(k) and then
analysis with the limiting operatiod — 1. First of all, we  gygjuater at k= ko to obtain the molecular viscosity, in
rescale the wave number by settikg k/k, . ; and substitute the form

this in Eq.(10), with use of Eq.(9), to obtain

1/2 — l/3k4/3

B(l)C]k/ZEl/Ska4/3: Vo= C]klzfl/?:':(ko)
K. 71 (K) =K on(kA) + k83 (kA (17) _ _ o
where the second equality comes simply from the definition
For consistency of the dimension on both sides of @g),  of F(k). Comparison between both sides givegko)kg
we must have=—4/3. It is followed by division on both =B(1). Thevalue of B(1) is now estimated according to
sides of Eq(17) by knf/f, the Edwards-Fokker-Planck theofgf. McComb [14], p.
268), which implies a constraint that our notation can be
T (K — A%, (RA)= A 4357 (KA). (18  Written asCyD/(B(1)C¥?»)?=1, whereD is a constant. Ac-
cording to this testing field model, Kraichnafl] has the
Now we writeA = 1— ¢ and leth— o, equivalently, we have €StimateD =0.44, whence we havB(1)=y0.44=0.6633,

¢—0 andv,— v, then Eq.(18) becomes, fon>1, and therefore

~ —\ 2 a_ 135 1BM)
~dv(k) 4. 1|k k F(ko)k 1)— =0.6116.
k H )+ v(k) Ce?A, {1— —) } (kelke™=B(1) 364 4B(1)
dk K,/ 4 2
Finally, we obtain by substituting this result in EQ.1),
exf —1.5C, YZ(1) e 13 Y y 9 &
x D) » (19 u(ke) =0.6116 Y2V 42 23
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FIG. 2. A plot of the Kolmogorov and the Smagorinsky con-
stants forks=450 at various cutoff sizeg¢a) The Kolmogorov con-
stantCy versus the cutoff wave numbéy ; (b) the Smagorinsky
constantCg versus the cutoff wave numbg&yg . Each curve is fur-
ther specified by the wave numbkyg of the energy peak, which
ranges from 500 to 1000; the upper curve corresponds to higher

Next by recalling Eq(16), we can now obtain the Kolmog-
orov constant through substitutingk) = C%%e*%F (k) in the
energy dissipation equation; this leads to

Ke —2/3
Ck= { 2f F(k)ApkMexd — 1.5 (k)k*3]dk
kS

(29)

Numerical evaluation of the integral for varioks, k,, and
ks enables us to have a close look at the dependen€k of
Figure 2a) shows the plotted result. The behavior@f is
observed to be dependent upon the valudgf the higher
the value ok, , the higher is th&€y curve. On the left end of
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2.06, which is comparable to the generally accepted experi-
mental value 1.2—2.&f. McComb[14], p. 379. It is also of
interest to integrate E@24) using Eq.(20) by neglecting the
second part on the RHS. This gives

0.4887 (ko/kp)**53+1]) ~*°

n
E { (kS/kp)S+5/3+1
3

K=

(25
s+

The approach of recursive renormalization is naturally linked
to the ideas of(effective eddy viscosity and subgrid-scale
modeling. The section is devoted to the derivation of the
Smagorinsky model and determination of the Smagorinsky
constant. Following Yakhot and Orszp4] we first substitute
Ck in v(k;) and expres# in the resolvable velocity,

au; dus

v(ka( . _) ?
&Xj (9Xi '

2
which yields with the use of Eq21), the Smagorinsky con-
stant

CS:

4\/5772

In parallel to Fig. 2a) for C¢ of Eq. (25), Fig. 2b) shows
the corresponding plot for the Smagorinsky cons@gtof
Eq. (26). SinceCs is simply proportional taC2*, the Sma-
gorinsky constanCg is expected to behave similarly as the
Kolmogorov constan€y . That is,Cg should in general be
the function of the cutoff sizA as well as the wave numbers
kp, and ks, which correspond, respectively, to the energy-
containing eddies and the largest-scale eddies existing in the
flow.

(0.663T%)%2?=0.009TCY*. (26
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