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It has been difficult to compute the band structures for photonic crystals with metallic components included
in the periodic units. The existence of modes of surface plasmon polariton presents the major difficulty not
only because of the localized nature of the modes but also of the apparent necessity of handling a nonlinear
eigenvalue problem. Here we show that by introducing an interfacial operator within the finite-difference
framework, we are able to formulate the problem for computing modes of surface plasmon polariton in the
format of standard eigenvalue problems. Results are uncovered by applying the method to periodic structures
with corrugated interfaces between metals and dielectric materials, as well as other classes of interfaces.
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I. INTRODUCTION

The optical properties of a photonic crystal are dependent
upon the comprising materials. Most previous studies in this
area of research are concerned with the optical properties of
a periodic structure comprising two or more dielectric mate-
rials. Recently, we have seen a steadily growing interest in
considering the effects of including metallic components in
photonic crystals. In particular, the interaction of light with
metals in a periodic structure excites the modes of surface
plasmon polariton1,2 and causes possible band gaps in the
dispersion relations.3,4 This enables us to explore plasmonic
crystals or plasmonic band gap materials made of metallic
materials in a similar way to photonic crystals or photonic
band gap materials made of dielectric materials.

In considering the real metal effects for a photonic crystal,
such as the free-electron model �m���=1−�p

2 /�2, where �p

denotes the bulk plasma frequency, the dielectric function is
frequency dependent, and therefore for a given wave vector
the solution of the dispersion relation or band structure ap-
parently poses a nonlinear eigenvalue problem as the eigen-
frequency itself appears in the solution operator.5 It is known
that surface plasmon polaritons are evanescent TE modes,
living in the neighborhood of the interface of the metallic
inclusion and the surrounding dielectric material. This is
only possible if ���p, that is, when the dielectric function
of the metallic components is in the opposite sign to that of
the surrounding dielectric material. The latter means that in
mathematical terms, the equation would change type as one
crosses the interface from the dielectric to the metal, and vice
versa. The localized nature of surface plasmon polaritons
requires fine resolution near the interface, and the change of
type of the equation makes the problem nondefinite that
causes numerical difficulties for many solvers such as the
method of conjugate gradient.6 Nevertheless, a few methods
have been applied for this frequency-dependent nonlinear
eigenvalue problem. The method of multiple multipole

expansion7 is another choice in which a careful definition of
cost function is required for detecting resonant frequencies.
The method of solution for eigenfrequencies by detecting
resonance peaks is also applicable to the finite-difference
time-domain method.8 A theory of complex resonances was
introduced for the general absorptive periodic dielectric
structures; the resonances define the eigenfrequencies.9–11

Along this line, a specific perturbation theory was also de-
veloped with mathematical rigor to study the spectral prop-
erties of absorptive photonic crystals.12 Also, we have seen
the method of vectorial eigenmode expansion applied to
study phonon-polariton excitation in photonic crystals.13

In this study, we present a direct method for obtaining the
modes of surface plasmon polariton as well as other
branches of modes. This is achieved by considering Max-
well’s equations for the metallic and dielectric regions sepa-
rately and treating the interface by an interfacial operator that
passes information between both sides of the interface. In
particular, within the finite-difference framework, we are
able to formulate the problem for computing modes of sur-
face plasmon polaritons in the format of standard eigenvalue
problems. The method will first be illustrated for a one-
dimensional periodic array of alternating layers of metals
and dielectrics, as shown in Fig. 1, and then we show how
the method can be extended to problems in two space dimen-
sions. Perturbation analysis is also included to consider the
effect of Drude damping.

II. INTERFACIAL OPERATOR

For linear isotropic and nonmagnetic dielectric materials,
the equation for time-harmonic TM modes in two dimen-
sions can be written as

−
1

�
�2E = ��

c
�2

E , �1�

where �=��r� is the dielectric function. Let �=�d in the
dielectric, and �=�m in the metal. Consider the free-electron
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model �m=1−�p
2 /�2. In the metal, Eq. �1� becomes

− �2E = ���

c
�2

− ��p

c
�2�E , �2�

or, equivalently,

�− �2 + ��p

c
�2�E = ��

c
�2

E . �3�

The present authors developed a fast inverse method with
multigrid acceleration14 to solve Eq. �3�. However, this can-
not be done for TE modes

− � · �1

�
� H� = ��

c
�2

H . �4�

But in the strict insides of the dielectric and the metal, we
can move 1/� outside the operator −�, and still obtain

−
1

�d
�2H = ��

c
�2

H , �5�

and

�− �2 + ��p

c
�2�H = ��

c
�2

H . �6�

First of all, let us discretize Eqs. �5� and �6� in the strict
insides of the dielectrics and metal by a central finite differ-
ence with the interface point Hi as the boundary value. The
lattice with lattice constant a is partitioned into n equal seg-
ments with n independent variables, as shown in Fig. 1, be-
cause the �n+1�th variable is related to the first variable by
Bloch’s condition

Hn+1 = eikaH1. �7�

We obtain a system of linear equations with �= �� /c�2,

Ãn−1�nH̃n = �H̃n−1, �8�

where H̃n= �H1 ¯ Hi−1 Hi Hi+1 ¯ Hn�T, and H̃n−1 is ob-

tained by deleting Hi from H̃n. This does not constitute an

eigensystem because Ã is not a square matrix and one miss-
ing equation is needed. This is provided by applying Eq. �4�
at the interface to relate the normal derivatives on both sides
as

1

�+
	 �H

�n
	

+
=

1

�−
	 �H

�n
	

−
. �9�

Then, we have, with �+=�d and �−=1−�p
2 /�2

	 �H

�n
	

+
=

�2

�p
2�		 �H

�n
	

+
− �d

�H

�n
	

−
� . �10�

Nevertheless, Eqs. �6� and �10� do not constitute an easy
eigenvalue problem because the variable in Eq. �6� is H,
while the one in Eq. �10� would be �H /�n
+−�d�H /�n
−.

The crucial step taken here is to introduce an interfacial
variable into the discretized form of Eq. (10), and reformu-
late the eigensystem in terms of the H field in the strict in-
sides along with this new variable. Applying one-sided finite
difference to Eq. �10� at the interface point i, we have, with
�p= ��p /c�2

�p�Hi − Hi−1

h
� = ��− Hi−1 + �1 + �d�Hi − �dHi+1

h
� .

�11�

This suggests that we introduce an interfacial variable

Ri � − Hi−1 + �1 + �d�Hi − �dHi+1 �12�

or, reversely,

Hi =
− Hi−1 + Ri − Hi+1

1 + �d
�13�

so that Eq. �11� can be recast into the form

FIG. 1. �Color online� Discretization points of one unit cell for a
one-dimensional periodic array of alternating layers of metals and
dielectrics, where � is the off-line wave number.

FIG. 2. �Color online� Interfacial and neighboring points for the
square lattice of square metal cylinders with lattice constant a and
half width w /a=0.25.
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�p

1 + �d
�− �dHi−1 + Ri + �dHi+1� = �Ri. �14�

Meanwhile, we rewrite the matrix Eq. �8� by using Eq. �13�
to replace each Hi at the interface. The resultant matrix sys-
tem supplemented by Eq. �14� constitutes an eigensystem of
standard format

An�nHn = �Hn, �15�

where Hn= �H1 ¯ Hi−1 Ri Hi+1 ¯ Hn�T. Then, more ex-
plicitly, we have the entries of the rows corresponding to
Hi−1, Ri, and Hi+1

A =
1

h2�
¯ ¯

− 1
1 + 2�d

1 + �d
−

1

1 + �d
−

�d

1 + �d

−
�d�ph2

1 + �d

�ph2

1 + �d

�d�ph2

1 + �d

−
1

1 + �d
−

1

1 + �d

2 + �d

1 + �d
+ �ph2 − 1

¯ ¯

 .

�16�

III. EXTENSION TO TWO DIMENSIONS

Next, we illustrate how the above method can be applied
to two-dimensional problems. Consider a square region of

FIG. 3. �Color online� Disper-
sion relations at k=0 for the one-
dimensional photonic crystal with
d2 /a=0.2. Solid lines denote com-
puted results by the interfacial op-
erator approach and dots denote
analytical solutions of Eq. �35� by
Newton-Ralphson’s method.

FIG. 4. �Color online� Disper-
sion relations at ka /2�=0.1 for
the one-dimensional photonic
crystal with d2 /a=0.2.
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metal surrounded by dielectrics as shown in Fig. 2. The in-
terface condition �10� is applied in horizontal, vertical, and
oblique directions. Therefore, in two dimensions there are
two types of interface points: side and corner. At the interfa-
cial point S1 �side�, now denoted as �i , j�, discretization of
the interfacial operator is along N1L−S1−N1R,

�p�Hi,j − Hi−1,j

h
� = ��− Hi−1,j + �1 + �d�Hi,j − �dHi+1,j

h
� ,

�17�

and we define the interfacial variable as

Ri,j � − Hi−1,j + �1 + �d�Hi,j − �dHi+1,j , �18�

or, reversely,

Hi,j =
Hi−1,j + Ri,j + �dHi+1,j

1 + �d
. �19�

Then, the interface condition �10� for the interfacial point S1
is

�p

1 + �d
�− �dHi−1,j + Ri,j + �dHi+1,j� = �Ri,j . �20�

Ri,j is defined similarly at the other interfacial points S2, S3,
and S4. At the interfacial point C1 �corner�, now denoted
as �i , j�, discretization of the interfacial operator is along
A1−C1−N13

FIG. 5. �Color online� Eigen-
frequencies at point � for TE
modes computed with different
grid resolutions for the square lat-
tice of square metallic cylinders
with w /a=0.3.

FIG. 6. �Color online� Band
structures for the square lattice of
square cylinders with half width
w /a=0.3.
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�p�Hi,j − Hi−1,j−1

�2h
�

= ��− Hi−1,j−1 + �1 + �d�Hi,j − �dHi+1,j+1

�2h
� , �21�

and the interfacial variable is defined as

Ri,j � − Hi−1,j−1 + �1 + �d�Hi,j − �dHi+1,j+1, �22�

or, reversely,

Hi,j =
Hi−1,j−1 + Ri,j + �dHi+1,j+1

1 + �d
. �23�

Then, the interface condition �10� for the interfacial point C1
is

�p

1 + �d
�− �dHi−1,j−1 + Ri,j + �dHi+1,j+1� = �Ri,j . �24�

Ri,j is defined similarly at the other interfacial points C2, C3,
and C4. The finite-difference equations for the points next to
the interface are obtained by replacing each Hij at the inter-

face points with Rij through Eqs. �19� and �23�, and the like
equations. For example, for point N1L, central finite differ-
ence applied to Eq. �5� gives

1

�dh2 �− Hi−1,j − Hi,j−1 + 4Hi,j − Hi+1,j − Hi,j+1� = �Hi.

�25�

Using Eq. �19� for �i+1, j� to replace Hi+1,j with Ri+1,j, we
obtain

1

�dh2��4 −
1

1 + �d
�Hi,j − Hi−1,j −

1

1 + �d
Ri+1,j

−
�d

1 + �d
Hi+2,j − Hi,j−1 − Hi,j+1� = �Hi,j . �26�

Also, for point N5L, using Eq. �23� for �i+1, j� to replace
Hi+1,j with Ri+1,j, we obtain

FIG. 7. �Color online� First to third TE modes in magnitude at point � for the square lattice of square cylinders with half width
w /a=0.3.
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1

�dh2�4Hi,j − Hi−1,j −
1

1 + �d
Ri+1,j −

�d

1 + �d
Hi+2,j+1

− �1 +
1

1 + �d
�Hi,j−1 − Hi,j+1� = �Hi,j , �27�

and, for point N13, central finite difference applied to Eq. �6�
gives

1

h2 �− Hi−1,j − Hi,j−1 + �4 + �ph2�Hi,j − Hi+1,j − Hi,j+1� = �Hi.

�28�

Using similar equations for �i−1, j� and �i , j−1� to replace
Hi−1,j and Hi,j−1 with Ri−1,j and Ri,j−1, we obtain

1

h2��4 −
2�d

1 + �d
+ �p�Hi,j −

1

1 + �d
Hi−2,j −

1

1 + �d
Ri−1,j

− Hi+1,j −
1

1 + �d
Hi,j−2 −

1

1 + �d
Ri,j−1 − Hi,j+1� = �Hi,j .

�29�

The other neighboring points can be obtained in a similar
manner. Along with the modifications for the neighboring
points described above, the resultant matrix is then obtained
by replacing Hi,j at all interface points with Ri,j through Eqs.
�20� and �24�, and the like equations.

IV. RESULTS AND DISCUSSION

In order to justify the present approach, we report the
results in one-dimensional photonic crystals, which analyti-
cal solutions of band structures are available. Consider a
photonic crystal with lattice constant a. The widths of the
dielectric and the metal are d1 and d2, respectively. Then,
according to Eqs. �5� and �6�, we have the equations for the
H fields in the dielectric �denoted as H+� and the metal �de-
noted as H−�, respectively, as

�H+� + k1
2H+ = 0, 0 	 x 	 d1,

H−� + k2
2H− = 0, d1 	 x 	 a ,

� �30�

where k1
2= �� /c�2�d−�2 and k2

2= �� /c�2�m−�2 are the in-
plane wave numbers in the dielectric and the metal, respec-

FIG. 8. �Color online� Fourth to sixth TE modes in magnitude at point � for the square lattice of square cylinders with half width
w /a=0.3.
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tively, and � is the off-plane wave number. Assume the so-
lutions have the form

�H+�x� = Aeik1x + Be−ik1x, 0 	 x 	 d1,

H−�x� = Ceik2x + De−ik2x, d1 	 x 	 a ,
� �31�

where A, B, C, and D are the weighting coefficients to be
determined by using the continuity conditions at the interface

�H+�d1� = H−�d1� ,

�mH+��d1� = �dH−��d1� ,
� �32�

and the Bloch conditions at the domain boundary

�H+�0� = e−ikdH−�a� ,

�mH+��0� = �de−ikdH−��a� .
� �33�

In order to obtain a nontrivial solution, the determinant of the
4�4 matrix has to be zero

�
1 1 − ei�k2−k�a − e−i�k2+k�a

k1

�d
−

k1

�d
−

k2

�m
ei�k2−k�a k2

�m
e−i�k2+k�a

eik1d1 e−ik1d1 − eik2d1 − e−ik2d1

k1

�d
eik1d1 −

k1

�d
e−ik1d1 −

k2

�m
eik2d1

k2

�m
e−ik2d1

� = 0,

�34�

which can be rearranged to obtain the analytical formula15

cos�ka� = cos�k1d1�cos�k2d2�

−
1

2
��mk1

�dk2
+

�dk2

�mk1
�sin�k1d1�sin�k2d2� . �35�

Next, we present the results in two dimensions. In the
following discussion, we take �d=1 �air�. Let �sp denote the
surface plasma frequency for a single flat interface between
the metal and the air ��sp=�p /�2�, and here the normalized
�pa /2�c is taken to be unity. In particular, we are interested
in the dependence of the modes of surface plasmon polariton
on the off-line wave number � at the zone center k=0. Fig-
ure 3 shows the computed results by the interfacial operator

FIG. 9. �Color online� Seventh to ninth TE modes in magnitude at point � for the square lattice of square cylinders with half width
w /a=0.3.
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formulation, which are in very close agreement with the ones
obtained by applying the Newton-Ralphson method6 to the
analytical formula �35�. In addition to the lower branch of
surface plasmon polariton, there is an upper branch that also
converges to the surface plasma frequency �sp in the large �
limit. In the case of thin metallic components, interaction of
surface plasmon polaritons on both sides leads to mode split-
ting: one lower frequency with odd symmetry and one higher
frequency with even symmetry. In the case of thick metallic
components, the upper branch corresponds to collective os-
cillations of electrons in the metal; this can be observed by
increasing the thickness of the metal layer �small air gap�
that the upper branch at k=0 shifts to a higher frequency, and
eventually to the plasma frequency �p. Figure 4 is a similar
plot at k�0. The difference between Figs. 3 and 4 is that at
small off-line wave-number �, the first mode is symmetric
for k=0 and is antisymmetric for k�0. Both of the first two
TE bands tend to have the surface plasma frequency
�spa /2�c=1/�2. However, it is known that at large off-line
wave-number �, the lower frequency mode has odd symme-
try, while the higher frequency has even symmetry.16 There-
fore, there is a crossing for k=0 �Fig. 3�, while we would
expect the anticrosssing scheme for k�0. Moreover, the pe-
riodic array of metals can be considered as metal gratings

that cause crossing of the light line by the second TE band.17

Next, we turn to the square lattice with square metallic
components as in Fig. 2 with half width w /a=0.3. It has
been suggested that the number of modes of surface plasmon
polariton is infinite.8 To test this hypothesis, we solve the
eigenvalue problem �15� with a different number of grid
points, which can also help check the dependence of modes
on the grid resolution. Figure 5 presents the results that �i�
for the mode with a frequency lower or greater than the
surface plasma frequency �sp, the mode is little dependent on
the grid resolution as long as the number of grid points is not
less then 30�30 and �ii� there is an increasing number of
stationary �dispersionless� modes near the resonant fre-
quency �sp with increasing the grid resolution. Figure 5
seems to indicate that the number of stationary modes in-
creases with a rate proportional to the linear resolution of the
grid, i.e., with N, if the number of grid points is N�N.

Figure 6 shows the band structures computed by the in-
terfacial operator approach. Unlike TE modes, the lowest
branch of TM modes has a cut-off frequency even at small
filling ratios of the metal, and the cut-off frequency shifts
further upward with increasing the filling ratio, leaving a
large full photonic band gap that is solely determined by the
TE modes. From the fourth branch of modes, the dispersion

FIG. 10. �Color online� Tenth to twelfth TE modes in magnitude at point � for the square lattice of square cylinders with half width
w /a=0.3.
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relation for the TE modes is each a quite flat one, denoting
standing modes for frequencies up to the surface plasma fre-
quency �sp. A small band gap is observed to exist between
these flat bands, and is qualified for the name of plasmonic
band gap. The gap is larger at even larger filling ratios. Fig-
ures 7–10 show the first 12 TE modes for the square lattice in
Fig. 2 at the point �. All these modes have a frequency lower
than the surface plasma frequency �sp, but as we can see,
each mode concentrates more or less on the neighborhood of
the interface between the metal and the dielectric. It is noted
that some of these modes are degenerate, e.g., the third and
the fourth modes, the seventh and eightth modes, and the
eleventh and twelfth modes. Figure 11 shows an example of
highly localized nature of surface plasmon polariton �at �sp�,
living in a close neighborhood of the interface. As the fre-
quency exceeds the plasma frequency �p, the typical TE
mode is highly oscillatory �Fig. 12�.

As a final example, we examine the effect of �regular�
roughness on the modes of surface plasmon polariton. Figure
13 shows the band structures for the square lattice with thin-
ner wavy metallic components with amplitude r /a=0.1 and
thickness t /a=0.1. The most significant feature is widely
spread flat bands of stationary modes with frequencies well
exceeding the surface plasma frequency. This flat-band
broadening was not observed for the square lattice with
square or circular metallic components. The physical origin
of this broadening could be explained as effective mode in-
teraction due to the geometry of the interface. The modes of
surface plasmon polariton interact with each other from both
the normal and the lateral directions, further lifting the de-

generacy. The broadening of the flat bands may be particu-
larly useful for those applications which exploit modes of
surface plasmon polarition such as surface enhanced Raman
scattering,18 and conceivably solar cells.4 As we increase the
thickness of the metallic components, the broadening be-
comes less significant with most flat-band frequencies below
the surface plasma frequency �sp �Fig. 14�. Nevertheless,
densely distributed bands exist with frequencies substantially
above the surface plasma frequency �sp, leaving a significant
plasmonic band gap.

The present method can be extended in order to take into
account the Drude damping in the dielectric function, which
comes from the collisions of the electrons. For this purpose,
we introduce the Drude model

���� = 1 −
�p

2

�2 + i
�
, �36�

where 
 is the collision frequency of free electrons. If the
damping is small such that 
��, then the damped solutions
can be regarded as perturbations to the undamped solutions
for 
=0 �the free-electron model�. First, the operator L of the
eigensystem Lu=�u is split into two terms

L = L0 + L1, �37�

where L0 is the operator of the undamped eigensystem. Let
��0� denote the eigenvalue of L0, and assume the solution for
the operator L is expanded as

FIG. 11. �Color online� One of the highly localized TE modes near the frequency �sp for the square lattice of square cylinders with half
width w /a=0.3.
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FIG. 12. �Color online� One of the highly oscillatory TE modes above the frequency �sp for the square lattice of square cylinders with
half width w /a=0.3.

FIG. 13. �Color online� Band
structures for the square lattice of
wavy structure with thickness t /a
=0.1 and amplitude r /a=0.1.
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� = ��0� + ��1� + ¯ . �38�

Based on the interfacial operator within the finite-difference
framework, we have

LHi =
1

�dh2 �− Hi−1 + 2Hi − Hi+1� ,

L0Hi =
1

�dh2 �− Hi−1 + 2Hi − Hi+1� ,

L1 = 0, �39�

for points in the dielectric

LHi =
1

h2�− Hi−1 + �2 +
�ph2

1 + i
/�
�Hi − Hi+1� ,

L0Hi =
1

h2 �− Hi−1 + �2 + �ph2�Hi − Hi+1� ,

L1Hi = − �p� i


� + i

�Hi, �40�

for points in the metal, and

LRi = �−
�d�p

1 + �d
Hi−1 + � �p

1 + �d
− i
��Ri +

�d�p

1 + �d
Hi+1� ,

L0Ri = �−
�d�p

1 + �d
Hi−1 +

�p

1 + �d
Ri +

�d�p

1 + �d
Hi+1� ,

L1Ri = − i
�Ri, �41�

for points at the interface. With this operator splitting, we can
refer to standard perturbation theory11–14 to obtain the first-

FIG. 14. �Color online� Band
structures for the square lattice
of wavy structure with thickness
t /a=0.4 and amplitude r /a=0.1.

FIG. 15. �Color online� Imagi-
nary part of ��1� for first few
bands of the one-dimensional pho-
tonic crystal with d2 /a=0.2 and

 /�p=0.01.
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order correction of the eigenvalue ��1�. The correction of the
eigenfrequency ��1� is given as

��1� = c����0� + ��1� − ���0�� . �42�

Figure 15 shows the imaginary part of ��1� of the first few
bands for a one-dimensional photonic crystal with d2 /a
=0.2 and 
 /�p=0.01. It is noted that even bands have larger
dissipations at the zone center, while odd bands have larger
dissipations at the band edges. Besides, the dissipation be-
comes smaller for higher bands.

V. CONCLUDING REMARKS

In conclusion, the present approach presents a direct ei-
genvalue problem for computing the modes of surface plas-
mon polariton as well as the higher frequency modes. In
particular, we have considered the free-electron model and
the model of Drude damping for the metal. Several interest-

ing phenomena have been uncovered and discussed; these
include the anticrossing scheme for one-dimensional array,
the number of TE modes at the resonant frequency, the quali-
fication of plasmonic band gap, and band broadening for
two-dimensional periodic structures. Nevertheless, in the
wide range of energy spectrum: 0�2��p, the contribution of
interband transitions is not negligible.19,20 This proposes a
further challenge for the present methodology because the
contribution of the interband transitions lacks a simple func-
tional form in frequency. The issue is currently under inves-
tigation.
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