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Practical systems usually possess random components. Random components often affect the ro-
bustness of synchronism and must be taken into consideration in the design of synchronization. In
the present study, we assume that the system satisfies the Lipschitz condition, and the random
component is uniformly bounded. By the partial stability theory, we are able to prove that two
simple adaptive variable structure controllers achieve synchronization of chaotic systems. More-
over, we discuss how the controllers can be modified to eliminate the undesired phenomenon of
chattering. The Duffing two-well system and the Chua circuit system are simulated to illustrate the
theoretical analysis. © 2006 American Institute of Physics. �DOI: 10.1063/1.2211607�

Chaos is a useful property of nonlinear systems and syn-
chronization of chaos has many practical applications.
However, there are random components in real chaotic
systems. It is therefore important to synchronize a cha-
otic system with random components. In this work, we
propose an adaptive variable structure control method to
achieve synchronization of chaotic systems with random
components. Here the original system is extended to in-
clude new equations for two system parameters: Lips-
chitz constant and boundedness constant for random
components. As the error state vector becomes a part of
the extended dynamical variable, the partial stability
theory is particularly useful as a tool in verifying the
asymptotic stability of the zero error state. Based upon
this theory, we derive two criteria regarding synchroni-
zation of chaotic systems with random components. The
Duffing two-well and the Chua circuit system are simu-
lated to illustrate the validity of the theoretical analysis.

I. INTRODUCTION

Chaotic systems were thought difficult to be synchro-
nized or controlled in the past as chaotic systems exhibit
sensitive dependence on initial conditions. Since the 1980s,
researchers have realized that chaotic motions can be syn-
chronized through a feedback mechanism1,2 or linking
two systems by common signals.3 In the past decade, we
have seen a rapid growth of theoretical and experimental
studies for chaos synchronization. This is partly because
chaos synchronization has potential applications in
secure communication,5,6 information processing,7 pattern
formation,8 etc.

Synchronization means that the state of the response sys-
tem eventually approaches that of the driving system. Two
kinds of chaos synchronization are most often discussed.
�1� The master-slave scheme, introduced by Pecora and
Carroll,3 consists of two identical systems. The master sys-
tem evolves into a chaotic orbit and some state variables of
the slave system are replaced by the corresponding state vari-
ables of the master system. Synchronization occurs if and
only if all the �conditional� Lyapunov exponents of the un-
replaced state variables are negative.3,4 �2� The coupling
scheme is the second kind of synchronization, which deals
with two identical chaotic systems except that the coupling
term can be either unidirectional or bidirectional. Under cer-
tain conditions the response system may eventually evolve
into the same orbit of the driving system.

The synchronization discussed previously is called com-
plete synchronization or simply synchronization. There are
other types of synchronization such as generalized synchro-
nization, phase synchronization, lag, and anticipated syn-
chronization. Generalized synchronization means that there
is a functional relation between the state variables of the
driving and the response systems as time evolves.9–11 This
function is not necessarily defined on the whole phase space
but on the attractor only. Phase synchronization is that the
phases of two systems come closely12–14 as time evolves
though amplitudes remain almost uncorrelated. Lag and an-
ticipated synchronization means that the state of the response
system eventually approach that of the driving system with a
time delay14,15 or a time lead,15,16 respectively.

In actual situations, random components usually exist in
systems and they often induce complicated dynamics. Some-
times random components are added to increase security in
communication. In the past, some efforts were devoted to
synchronization of coupled systems without uncertainty.17,18
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Recently, there are some control methods to synchronize
chaotic systems with unstructured uncertainty such as adap-
tive control technique,19 observer-based control,20 and adap-
tive variable structure method.21

This article is aimed at the investigation of synchroniza-
tion for chaotic systems with random components. The sys-
tems studied are assumed to satisfy the Lipschitz condition.
Random components in the system often affect the robust-
ness of synchronization and it must be addressed in the de-
sign of synchronism. Here, random components are required
to satisfy a boundedness condition, but we do not assume
precise knowledge about the boundedness constant nor the
Lipschitz constant. In the present study, an adaptive variable
structure method is proposed to achieve synchronization
where the variable structure control is to deal with the ran-
dom component, whereas the adaptive technique makes the
control convenient to be implemented.

The adaptive control design introduces new equations
for the system parameters: the Lipschitz constant and the
boundedness constant. Therefore, we have to deal with an
extended state vector, which consists of the original state
vector, the error state, and the Lipschitz and the boundedness
constants. However, in performing the Lyapunov analysis,
the estimates of the Lipschitz and the boundedness constants
cancel out in evaluating the time derivative of the Lyapunov
function. This implies that only the stability but not the
asymptotic stability of the zero error state can be verified by
the traditional Lyapunov method. On the other hand, the par-
tial stability theory is a stability theory for a partial state that
can overcome this shortcoming and facilitates the asymptotic
analysis of the zero error state. This theory was first applied
to synchronization by Ge and Chen22 and then was applied to
adaptive synchronization of chaotic systems without
uncertainty.23 A brief review of this theory can be found in
Ref. 22 and in the appendix of Ref. 24. In the present study,
we use the partial stability theory to prove criteria for two
adaptive variable structure controllers that ensure synchroni-
zation of the chaotic systems. Under the criteria, synchroni-
zation is robust even when we do not know much about the
system uncertainty, nor the Lipschitz constant. The Duffing
two-well oscillator and the Chua circuit system are simulated
to illustrate the theoretical analysis.

II. THEORETICAL ANALYSIS

Consider a system with random component

ẋ = f�t,x� + g�t,x� , �1�

and a controlled system

ẋ̂ = f�t, x̂� + u , �2�

where x , x̂�RN denote the state vectors, and � is a domain
containing the origin. The function f :��R�RN→RN sat-
isfies the Lipschitz condition �f�t ,x1�− f�t ,x2� � �L �x1−x2�
for all �t ,x1� and �t ,x2� in � with a Lipschitz constant L,
g�t ,x� :R�RN→RN is the random component which may
come from outer disturbance or are added to the systems, and
u is a controller to be determined. The constant L is not
unique as any number greater than L is also a Lipschitz con-

stant. In fact, we actually do not need to know L, which is
estimated by an adaptation in this article.

Let the state error be e= x̂−x, then systems �1� and �2�
can be recast into

ẋ = f�t,x� + g�t,x� , �3�

ė = f�t,x + e� − f�t,x� − g�t,x� + u . �4�

The purpose is to choose an appropriate controller u such
that the partial state e=0 is asymptotically stable, i.e., system
�2� synchronizes to system �1�. In order to handle the random
component, one must have some knowledge about g, which
we assume to meet the following boundedness condition:

�g�t,x�t��� � K � � for all t , �5�

where K�0 is not necessarily known a priori. Random com-
ponents satisfying �5� need not vanish while synchronization
occurs. If this is the case it is not easy to design u to achieve
synchronization.

In the present work, we do not assume precise knowl-
edge about the Lipschitz and boundedness constants K and L,
they are estimated through the adaptive control process. Let

K̂ and L̂ be two estimates of K and L, respectively. Their

estimated errors are defined by K̃= K̂−K and L̃= L̂−L. There
are two unknown constants K and L to be estimated, and
therefore chaotic systems �3� and �4� are now extended by
appending two new equations for the system parameter er-

rors K̃ and L̃. The full dynamical variable is now

�xT eT K̃ L̃�T, in which e is considered a partial state. A cri-
terion of chaos synchronization for systems �1� and �2� with
random components satisfying �5� is provided by the follow-
ing theorem.

Theorem 1: The partial state e=0 is uniformly asymp-

totically stable if we choose u=−��+ L̂�e− K̂e / �e �
−� sgn�e� �e�, with sgn�e�= �sgn�e1� ¯ sgn�en��T, � ,��0,

and the estimates K̂ and L̂ obey differential equations:

K̂
˙

= K̃
˙

= �e� , �6a�

L̂
˙

= L̃
˙

= �e�2. �6b�

Proof: Choose a function as

V = 1
2eTe + 1

2 K̃2 + 1
2 L̃2,

which is positive definite with respect to e and possesses an
infinitesimal upper bound.22,24 Differentiating V with respect
to t, we have the estimate

V̇ = eTė + K̃K̂
˙

+ L̃L̂
˙

= eT�f�t,x + e� − f�t,x� − g�t,x, x̂� + u�

+ �K̂ − K��e� + �L̂ − L��e�2

� L�e�2 + K�e� + eTu + �K̂ − K��e� + �L̂ − L��e�2

= K̂�e� + L̂�e�2 + eTu ,

where we have used the Cauchy-Schwarz inequality, the Lip-
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schitz condition for f and boundedness condition �5� for the

random component g. Substituting u=−��+ L̂�e− K̂e / �e �
−� sgn�e� / �e� with � ,��0 yields

V̇ � − ��e�2 − � � − ��e�2. �7�

Here, it must be noted that �7� implies boundedness of V̇ by
−� �e�2, but not by −V multiplied by a positive constant. In
principle, we can only assure the stability of e=0 but not the
asymptotic stability using the traditional Lyapunov theory.
However, that V is positive definite with respect to e and
condition �7� suffice to guarantee the uniformly asymptotic
stability of e=0 by the partial stability theory. �

Remark 1: As the adaptive law is L̂
˙

= �e�2	0. Therefore,

L̂ and L̃ are increasing functions of t and so is L̂+�. If the

initial value L̂0 of L̂ or � is large, then the feedback gain L̂

+� is always large. Hence, the larger L̂0 or � the faster �e�
converges to 0. The situation of K̂ is similar. Even so, the
constant � in the control u cannot be chosen arbitrarily as it
is restricted by the power of control actuator in practice.

In fact, the inequality V̇�−� �e�2−� holds when �e �
�0, and V̇=0 while �e � =0. When �e� equals to zero, the
state slides into the sliding surface and u=0. But this is the
ideal situation as an infinite switching frequency cannot be
implemented actually. Further, although the designed u can
achieve synchronization mathematically, it may induce chat-
tering due to the delay of control switching in practice.

Remark 2: A sliding layer �or boundary layer�25 is com-
monly used to eliminate the chattering phenomenon. This
method replaces the term e / �e� by a saturation function

sat�e,
� = �e/�e� �e� � 


e/
 �e� � 
 .

If the trajectory enters into the sliding surface, the controller
is forced to be continuous. The state error stays in a layer of
thickness 2
.

Remark 3: A pseudosliding is another method to elimi-
nate the chattering problem. It employs a continuous control

u�=−��+ L̂�e− K̂e / ��e � +��−� sgn�e� / �e� to replace u,
where ��0 is a small constant. The two modifications in-
troduce little loss of precision. However, we have u�→u as
�→0.

Remark 4: Notice that the first term of u is dominant as
�e� is large; the first and second terms dominate as �e� is
close to unity. The third term dominates when �e� is small.
Once �e� is near zero, the effect of −� sgn�e� / �e� may induce
a busting in the state error and the control because of the
reciprocal of �e�. Thus −� sgn�e� / �e� should be dropped if
the state slides into the sliding layer.

There are many other possible designs of u. Below, we
provide an alternative u to achieve synchronization.

Theorem 2: The partial state e=0 is uniformly asymp-

totically stable if we choose u=−��+ L̂�e− K̂ sgn�e�
−� sgn�e� / �e� with � ,��0, and the estimates K̂ and L̂ obey
Eq. (6).

Proof: Choose a function V to be the same as that in the

proof in Theorem 1, then we also have an estimate of V̇ as

V̇ � K̂�e� + L̂�e�2 + eTu .

Substituting u=−��+ L̂�e− K̂ sgn�e�−� sgn�e� / �e� with �, �
�0 yields �7�. By the partial stability theory, the partial state
e=0 is uniformly asymptotically stable. �

Remark 5: To eliminate chattering, the controller u can
be modified to be

u� = − �� + L̂�e − � sgn�e�/�e�

− K̂�e1/��e1� + �� ¯ en/��en� + ���T

or

u� = − �� + L̂�e − � sgn�e�/�e�

− K̂�sat�e1,
� ¯ sat�en,
��T,

where �, 
, and � are constants.

Integrating the inequality V̇�−� �e�2−��−�, we obtain

�z�t� � ���z�t0��2−2��t− t0�, where z� �eT K̃ L̃�T. Hence z�t�
becomes 0 no later than the time T= ��z�t0��2+2�t0� /2�. The
state will enter into the sliding surface within a finite time T
and stays there forever. This reaching time is somewhat over
estimated as the effect of u excluding � is not considered in
the estimation of T. As mentioned in Remark 4, the control-
ling term −� sgn�e� / �e� in Theorems 1 and 2 may induce a
busting in the state error and it should be dropped when the
state enters into the sliding layer. On the other hand, syn-
chronization still occurs if the controller u does not include
−� sgn�e� / �e�. Hence we do not employ it in practical appli-
cations though it is easy to estimate the finite reaching time
by including −� sgn�e� / �e� in u.

III. NUMERICAL ILLUSTRATIONS

Although based on nonautonomous system, the criteria
developed in the previous section also apply to autonomous
system. The Duffing two-well and Chua circuit system,
which are nonautonomous and autonomous systems respec-
tively, will be simulated to demonstrate the theoretical analy-
sis.

�A� The Duffing two-well oscillator. The equations are
given by

ẋ = y + g1, ẏ = − x3 + x − by + A sin �t + g2,

ẋ̂ = ŷ + u1, ẏ̂ = − x̂3 + x̂ − bŷ + A sin �t + u2,

where the parameters b=0.25, A=0.4, and �=1 with the
initial conditions x0= �x0

T x̂0
T�T= �0.2 0 1 1.5�T ensure the ex-

istence of the chaotic attractor.
In this example, the random components of g are taken

to be g1=g2=0.001��r�t� ,10�, where r�t� is the normally
distributed random number with mean 0 and variance 1, and
� is an indicator function defined as

��
,�� = �
 , �
� � �

0 otherwise.

Choose the controller u=−�0.1+ L̂�e− K̂e / �e� with L̂0= K̂0

=1 according to Theorem 1. The simulated results are shown
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in Figs. 1 and 2. The chaotic attractors of the driving and
response systems are shown in Figs. 1�a� and 1�b�, respec-
tively. Figure 1�c� shows that the components of e approach
zero and the reaching time is about 0.75. Figure 1�d� shows

the time histories of the estimated L̂ and the estimated K̂, and
they converge to some K and L in the same reaching time of
the components of e. The left-hand column in Fig. 2 reveals
that the time histories of u oscillate in higher frequencies. To
overcome this shortcoming, we change u to be a continuous

u�=−�0.1+ L̂�e− K̂e / ��e � +0.01�. The simulated results of e,

L̂, and K̂ are similar to those in Fig. 2 and are not shown. The
time histories of u� in the right column of Fig. 2 are smooth
in contrast to those in the left-hand column. The controller

u�=−��+ L̂�e− K̂sat�e ,
� can also eliminate the chattering
phenomenon. The modified u� and u� just discussed are the
ones mentioned in the remarks following Theorem 1. The
modified controllers u� and u� in the remark following Theo-

FIG. 1. Simulated results for the
Duffing two-well oscillator with the
random components g1=g2

=0.001��r�t� ,10�. The asterisk sym-
bol denotes the initial point. The cha-
otic attractor of �a� the driving sys-
tem and �b� the response system.
Time histories of �c� the components

of e and �d� the estimated L̂ �solid

line� and the estimated K̂ �dashed
line�.

FIG. 2. Two different controllers are
applied to the Duffing two-well os-
cillator with the same random com-
ponents as in Fig. 1. �a� and �c� Two
components of u oscillate in higher
frequencies. �b� and �d� Two compo-
nents of the modified controller u�
are smooth.
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rem 2 apply equally well to eliminate the phenomenon of
chattering.

�B� The Chua circuit system. The differential equations
are

ẋ = c1�y − x − h�x�� + g1, ẏ = c2�x − y + z� + g2,

ż = − c3y + g3, ẋ̂ = c1�ŷ − x̂ − h�x̂�� + u1,

ẏ̂ = c2�x̂ − ŷ + ẑ� + u2, ż̂ = − c3ŷ + u3,

where the piecewise linear function

h�x� = m1x + 0.5�m0 − m1���x + 1� − �x − 1��

represents three different voltage-current regimes of the di-
ode. The parameters c1=15.6, c2=1, c3=25.58, m0=−8/7,
and m1=−5/7 with the initial conditions x0= �x0

T x̂0
T�T

= �0.2 0.2 0.2 1 1 1�T ensure the existence of the chaotic
attractor.

In this example, the random components g1=g2=g3

=0.001��r�t� ,10� are added to the system. We choose the

controller u�=−�0.1+ L̂�e− K̂e / ��e � +0.01� with L̂0= K̂0=1
according to Theorem 1. The chaotic attractors of the driving
and the response systems are shown in Figs. 3�a� and 3�b�,
respectively. Figure 3�c� shows that the components of e ap-
proach zero and the reaching time is about 0.71. Figure 3�d�
shows the time histories of the estimated L̂ and the estimated

K̂, and they converge to steady states in the same reaching
time of the components of e.

IV. CONCLUDING REMARKS

Synchronization of chaotic systems with random compo-
nents was studied. The systems are assumed to satisfy a Lip-

schitz condition and the random components are uniformly
bounded by a constant. However, the Lipschitz and the
boundedness constants are not necessarily known a priori;
they are estimated through an adaptive control process. The
controlled system is recast to an equation for the error state,
which is defined to be the difference between the state vec-
tors of the system and the controlled system. Synchroniza-
tion of the chaotic system is therefore equivalent to the
achieving asymptotic stability of the zero error state.

In the present study, we propose two adaptive variable
structure controllers to achieve synchronization by employ-
ing the partial stability theory to prove the asymptotic stabil-
ity of the zero error state. In particular, it is shown that syn-
chronization ensured by these controllers will occur within a
finite time. Moreover, we have discussed how to modify the
controller to eliminate the undesired phenomenon of chatter-
ing by introducing a sliding layer or a pseudosliding tech-
nique. Finally, one nonautonomous system—the Duffing’s
two-well oscillator and one autonomous system—the Chua
circuit system were simulated to illustrate the effectiveness
of the proposed controllers.
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