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EOF using the Ritz method: Application to
superelliptic microchannels

An efficient Ritz method is developed from the variational principle to solve the Poisson–
Boltzmann equation under the Debye–Hückel approximation for studying the EOF in
microchannels. The method is applied to the family of superelliptic cross sections which
includes the elliptic channel and the rectangular channel as limiting cases. Several accurate
tables presented are useful for design of electroosmotic channels, especially rectangular
channels with rounded corners. It is shown how the flow rate Q is a sophisticated con-
sequence of the nondimensional electrokinetic width K, the aspect ratio b as well as the
superelliptic exponent n.
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1 Introduction

Microfluidics has become extremely important in bio-
technology [1]. One method to generate flow in minute con-
duits is through electroosmosis, where a fluid adjacent to
electrostatically charged surfaces moves under an applied
electric field [2, 3]. For parallel steady flow caused solely by
electroosmosis in a tube, the fluid velocity is governed by the
reduced Navier–Stokes equation

r2w ¼ � reE
m

(1)

where w is the longitudinal fluid velocity, m the fluid viscos-
ity, E the longitudinal applied electric field, and re is the
charge density which can be expressed by a potential dis-
tribution c

re ¼ �er2c ¼ �2zen0 sinh
zec
kbT

� �
(2)

where e is the dielectric constant of the medium, z the
valence, e the electron charge, n0 the bulk electrolyte con-
centration, kb the Boltzmann constant, and T is the temper-
ature. Equation (2) is the nonlinear Poisson–Boltzmann
equation. The boundary conditions are that the velocity is 0
and a constant potential c0 is given on the wall of the chan-
nel.

If the electrical potential is small compared to the ther-
mal energy of ions, the ratio (zec0/kbT) is much less than 1.

Let f = c/c0 and normalize all the lengths by the half width
of the channel L. Equation (2), under the Debye–Hückel
approximation, is linearized to

r2
0f ¼ K2f (3)

where we have the normalized Laplace operator
L2r2 ¼ r2

0 ¼ q2�qx2 þ q2�qy2 with x and y the normalized
Cartesian coordinates, and have defined
K2 = (kL)2 = 2z2e2n0L

2/(ekbT). K is called the nondimensional
electrokinetic width and k the Debye–Hückel parameter.
Now f = 1 on the boundary, and then from Eqs. (1) and (3),
we have the induced velocity

w ¼ � ec0E
m
ð1� fÞ (4)

Analytical solution for the Poisson–Boltzmann equation only
exists for the parallel plate channel (see, e.g., [4]). Analytical
solutions for the simpler Eq. (3) under Debye–Hückel
approximation include circular cross section [5], and the rec-
tangular cross section (in infinite series; [6–8]). Simply
derived analytical solutions are given in the Appendix. For all
other cross sections, numerical methods such as finite ele-
ments [9] or boundary collocation [10] must be used.

The purpose of this paper was to study the EOF in
superelliptic channels. For this, we shall develop a powerful
Ritz method for EOFs. These cross-sectional shapes repre-
sents rectangular channels with rounded corners, and
include the rectangular channel and the elliptic channel as
limiting cases. In practice, an etched rectangular channel
seldom has sharp corners and thus the cross-sectional shape
may be well represented by a superellipse studied in this
paper.
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2 The Ritz method

The Ritz method is best known for solving eigenvalue prob-
lems, but it can be applied to boundary value problems as
well [11]. The variational principle shows that Eq. (3) is
equivalent to the minimization of the integral

J ¼
ZZ
ðf2

x þ f2
y þ K2f2Þ dxdy (5)

where the integration is over the cross-sectional area. Let f
be approximated by

f ¼ 1�
X

ci f i x; yð Þ (6)

where ci are coefficients to be determined, and fi is a complete
sequence of base functions (actually polynomials) each being
0 on the boundary. Substituting Eq. (6) into Eq. (5) and using
the necessary condition for extremum

qJ
qci
¼ 0 (7)

yields

XN

j¼1

Aij cj ¼ K2Bi; I¼ 1 to N (8)

Here we have truncated the series to N terms, and

Aij ¼
ZZ
ðf ixf jx þ f iyf jy þ K2f i f jÞ dxdy;

Bi ¼
ZZ

f i dxdy (9)

Since the base functions fi are prescribed, Aij and Bi can be
readily computed. Hence, Eqs. (8) and (9) constitute a system
of algebraic equations for cj, which can be solved by any
standard solver for linear systems. The flow velocity is
obtained as

w ¼ � ec0E
m

XN

1

ci f i (10)

Later, we will use �w to denote the flow velocity normalized by
–ec0E/m. Integrating w over the cross section gives the flow
rate

Q ¼ � ec0EL2

m

XN

1

ciBi (11)

In the following discussion, we often use �Q , the flow rate
normalized by –ec0EL2/m.

3 Results for superelliptic channel

A superelliptic shape of normalized width 2 and height 2b (b
is the aspect ratio , 1) is given by

1� x2n � y=bð Þ2n¼ 0 (12)

It is an ellipse when n = 1 and approaches a rectangle when
n ? ?. Figure 1 shows some of the shapes. The Ritz method
has been applied to the vibration and buckling of a super-
elliptic plates [12] but has not previously been applied to flow
problems.

Since the problem is symmetrical, we choose the
sequence

ff ig ¼ 1� x2n � y
b

� �2n
� �

�

� 1; x2; y2; x4; x2y2; y4; x6; x4y2; x2y4; y6; � � �
� 	

(13)

The number of terms taken may be N = 1, 3, 6, 10, 15, 21,
etc., to include the highest homogeneous powers. The series
is absolutely convergent within a square x; yj j � 1. Let us
compare the exact solution for a circular channel (Eq. A3) to
our Ritz solution (b = 1). Table 1 shows the results.

We see that the convergence is fairly fast. In general,
N = 15 is adequate for a four-digit accuracy. The elliptic
channel is described by n = 1. Table 2 shows our results.

The elliptic cross section was also studied by Hsu et al.
[13], but no numerical values are presented, and thus cannot
be compared with our results. The results for superelliptic
channels are given in Tables 3–5.

Figure 1. Superelliptic shapes (b = 0.5) with n = 1, 2, 3, 5, 10, 20,
50 from inside.

Table 1. Accuracy of the normalized flow rate Q for the circular
cross section

N/K 0.1 1 10

3 0.003920 0.33684 2.5071
6 0.003920 0.33684 2.5428
10 0.003920 0.33684 2.5455
15 0.003920 0.33684 2.5456
Exact 0.003920 0.33684 2.5456
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Table 2. The normalized flow rate Q for the elliptic cross section
(n = 1), where the solutions in the last column are
obtained from Eq. (A3)

K/b 0.25 0.5 0.75 1

0.1 0.000116 0.000785 0.00212 0.00392
0.2 0.000462 0.00313 0.00844 0.0156
0.5 0.00287 0.0193 0.0515 0.0943
1 0.0133 0.0736 0.189 0.337
2 0.0429 0.249 0.576 0.950
5 0.195 0.757 1.39 2.02
10 0.405 1.12 1.84 2.55
20 0.580 1.34 2.09 2.84
50 0.701 1.47 2.25 3.01
? 0.7854 1.571 2.356 3.142

Table 3. Effects of n and b on the normalized flow rate Q for
K = 0.1, where we used Eq. (A8) for the rectangular
channel (n = ?)

n/b 0.25 0.5 0.75 1

1 0.000116 0.000785 0.00212 0.00392
2 0.000159 0.00106 0.00283 0.00523
5 0.000174 0.00113 0.00302 0.00558
10 0.000175 0.00114 0.00304 0.00561
? 0.000176 0.00114 0.00304 0.00561

Table 4. Effects of n and b on the normalized flow rate Q for
K = 1, where we used Eq. (A8) for the rectangular chan-
nel (n = ?)

n/b 0.25 0.5 0.75 1

1 0.0133 0.0736 0.189 0.337
2 0.0155 0.0983 0.249 0.441
5 0.0170 0.1055 0.266 0.469
10 0.0171 0.1061 0.267 0.471
? 0.0172 0.1062 0.267 0.472

Table 5. Effects of n and b on the normalized flow rate Q for
K = 10, where we used Eq. (A8) for the rectangular
channel (n = ?)

n/b 0.25 0.5 0.75 1

1 0.405 1.120 1.836 2.546
2 0.512 1.355 2.199 3.039
5 0.550 1.438 2.330 3.221
10 0.554 1.449 2.347 3.245
? 0.555 1.451 2.351 3.251

We see that the flow rate is bounded between the ellipse
(n = 1, Table 2) and the rectangle (n =1, Table A1). Typical
distributions of the normalized velocity �w are shown in Fig. 2.
The boundary layer nature of high K is evident.

Figure 2. Velocity distributions for b = 0.5, n = 5. Top: K = 0.1,
value between curves D�w ¼ 0:00025. Bottom: K = 10, D�w ¼ 0:25.

Some channels are in the shape of a semisuperellipse,
i.e., half of the shape in Fig. 1. Instead of extensive tables, we
shall briefly describe how the Ritz method can be applied. Let
the midline y = 0 be a boundary and consider only the upper
half. Since there is no symmetry in the y direction, Eq. (13) is
supplanted by

ffig ¼ y 1� x2n � y
b

� �2n
� �

�

� 1; y; x2; y2; y3; x4; x2y2; y4; y5; x6; x4y2; x2y4; y6; � � �
� 	

(14)

Note that f i ¼ 0 on the boundary. Take first N of these ele-
ments, where N may be 4, 5, 8, 9, 13, 14, etc. As in Table 1, N
is determined by the acceptable accuracy. Then the area
integrals of Eq. (9) are computed. For example

A11 ¼ 2
Z1

0

Zy1

0

qf 1

qx

� �2

þ qf 1

qy

� �2

þK2f 2
1

" #
dydx (15)

where from Eq. (12)

y1 ¼ bð1� x2nÞ1/2n (16)

Due to the fact that f i are polynomials, the inner integral can
be integrated exactly and the outer integral can be evaluated
numerically by quadratures. Then Eq. (8) is solved for ci by a
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simple inversion program. The velocity and flow rate are
given by Eqs. (10) and (11).

4 Discussion

If there were an additional pressure gradient, Eq. (1) would
have a nonhomogeneous pressure term on the right-hand
side. However, Eq. (1) is linear, and the flow due to pressure
(which is not considered in this paper) can be superposed.
Note that the direction of EOF can be reversed, by reversing
either the surface charge c0 or the applied electric field E.

Our Ritz method is simple and efficient. Its derivation
presented here is facilitated by a similar Ritz method applied
on the better known Helmholtz equation, which differs by a
sign from Eq. (3) (Debye–Hückel approximation). The pres-
ent problem can also be solved by other methods of numer-
ical integration such as finite-difference and finite-element
methods. However, the small radii of the corners would
present severe challenges for these methods. Since the Ritz
method is boundary fitted, there are no difficulties in the
corner regions.

In general, the normalized flow rate �Q increases with
increase in K, but the increase is slow for very small or very
large values of K. With other factors being fixed, K is propor-
tional to the half channel width L, while the dimensional
flow rate Q is proportional to �QL2. For example, consider the
circular channel. Figure A1 shows the normalized flow rate
�Q as the function of K. If K is small, the dimensional flow
rate Q has a fourth-power dependence upon L as �Q � K2 (cf.
Eq. A4). If K is large, Q will have a second-power dependence
upon L since �Q approaches p for large K (cf. Eq. A5). The
similar behaviors hold for other geometries. For example,
consider the elliptic channel (n = 1). Looking into �Q of the
first two rows (small K) of Table 2, we see that
Q=L4 � �Q=L2 � �Q=K2 is very close to a constant for each
given aspect ratio b.

Now, we examine the effects of the aspect ratio b ,1.
Tables 2–5 and A1 show that if we increase b (with other fac-
tors being fixed), the flow rate (either dimensional or nor-
malized) is increased. The increase is most significant for
small K, but is still substantial for moderately large K. Con-
sider again the elliptic cross section. At K = 0.1, the flow rate
for b = 1 is 33.8 times that for b = 0.25, though the area is
only increased by the factor 4. As a comparison, at K = 1 the
increase in the flow rate is 25.3 times, while at K = 10, the
increase is only 6.29 times.

Next, we fix the cross-sectional area with other factors
being unchanged. The effect of the aspect ratio b is more
complicated, since an increase in b would decrease L and K,
and thus affect the flow rate. Let us consider elliptic channels
for which the cross-sectional area pbL2 is fixed. First, take
b = 0.25 and K = 0.2 with L = 20 mm. Table 2 gives
�Q = 0.000462, and the dimensional flow rate Q is propor-
tional to �QL2 = 0.1848 (mm)2. Next, picking up b = 1 and
K = 0.1 with L = 10 mm gives the same cross-sectional area.

Table 2 shows that the latter case has �Q = 0.00392, and Q is
represented by �QL2 = 0.392 (mm)2, which is 2.121 times the
previous 0.1848 (mm)2! For a further illustration, consider
another example between (b = 0.25, K = 1, L = 20 mm) and
(b = 1, K = 0.5, 10 mm). Table 2 gives �Q = 0.0133 for the for-
mer case (b = 0.25, K = 1, L = 20 mm), and the dimensional
flow rate Q is proportional to �QL2 = 5.32 (mm)2. Table 2
shows that the latter case (b = 1, K = 0.5, L = 10 mm) has
�QL2 = 9.43 (mm)2, which is 1.773 times 5.32 (mm)2 for the
former case. Similar results hold for other shapes of chan-
nels, such as rectangular channels. It is concluded that for
the same cross-sectional area, an increase in the aspect ratio
b (more rounded shape) increases the dimensional flow rate
�Q . But the actual increase in the flow rate depends on the
two states (b1,K1) and (b2,K2) one likes to compare, and in
general the increase in the flow rate is more significant if one
of K1 and K2 is small.

Tables 3–5 also allow us to examine the effect of round-
ing the corner by the superelliptic exponent n. First, the flow
rate �Q increases with increase in the superelliptic exponent
n; the increase is more substantial for small K. For example
at K = 0.1, the flow rate for the rectangular channel is 1.716
times that for the elliptic channel, while the area ratio is
4/p = 1.273. Next, for small and large K (say, 0.1 and 10), the
ratio of the flow rate for b = 1 to that for b = 0.25 decreases
monotonically as the exponent n is increased from 1 (elliptic
cross section) to infinity (rectangular channels). But in an
intermediate range of K (say, 1), there is an optimal round
shape that gives the highest ratio (it is n = 2 in Table 4).
Moreover, the increase in the flow rate �Q by increasing b is
minimal when n is larger than 10, or, the radius of curvature
is smaller than 0.07.

5 Concluding remarks

Because of the existence of the Debye layer, the dimensional
flow rate Q in microchannels does not increase simply in
proportion to the cross-sectional area unless the number K is
infinite. The efficient Ritz method was for the first time
applied to solve Eq. (3) of the Debye–Hückel approximation;
the accurate solutions enable us to draw conclusive remarks
on the effects of the various parameters, and the main results
are summarized as follows:

(i) The dimensional flow rate Q increases with increase in
the superelliptic exponent n. The increase is more substantial
for small K. For example at K = 0.1, the flow rate for the rec-
tangular channel is 1.716 times that for the elliptic channel,
compared to the ratio of their cross-sectional areas 4/p = 1.273.

(ii) The dimensional flow rate Q increases with increase
in the aspect ratio b. The increase is significant for small K,
and is still substantial for moderately large K. Take the ellip-
tic channel for example. At K = 0.1, the flow rate for b = 1 is
about 33.8 times that for b = 0.25, though the area is only
increased by the factor 4. The increase at K = 10 for the same
situation is only about 6.29 times.
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(iii) If we fix the cross-sectional area with other factors
unchanged, the dimensional flow rate Q is increased with
increase in the aspect ratio b ,1 (though the half channel
width L is reduced accordingly). In general, this is true. But
the actual increase in the flow rate depends on the two states
(b1,K1) and (b2,K2) one likes to compare, and the increase is
more significant if one of K1 and K2 is very small.

As a final remark, in the limiting cases for rectangular
channels, all the computed results are consistent with the
asymptotic behaviors, obtained in the Appendix, which are
derived from a much simpler series solution (A8).
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7 Appendix: Analytic solutions

For the circular tube, Eq. (3) in polar coordinate is

frr þ fr=r ¼ K2f (A1)

The bounded exact solution with value 1 on the boundary is
in terms of the modified Bessel function

f ¼ I0ðKrÞ
I0ðKÞ

(A2)

It is seen that for large K, the potential concentrates near the
boundary, or from Eq. (4) the velocity is approximately uni-
form in the interior of the tube. Integration gives the nor-
malized flow rate

�Q ¼ 2p
Z1

0

ð1� fÞr dr ¼ p 1� 2I1ðKÞ
kI0ðKÞ

� �
(A3)

Figure A1 shows the flow rate as a function of K. Using the
asymptotic behaviors of the modified Bessel’s functions for
small and large K in Eq. (A3), one finds that Q initially
increases as

�Q � pK2=8 for small K (A4)

and then approaches p as

�Q � p 1� 2
K
þ 1

K2 þ � � �
� �

for large K (A5)

For a rectangular conduit, let the normalized width be 2 and
the height be 2b and set Cartesian axes at the center. The so-
lution to Eq. (3), 0 at y = 6b and unity at x = 61 is

f1 ¼
X1
n¼1

an cosðanyÞ
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n þ K2
q

x
� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n þ K2
q� � (A6)

where an = (n 2 1/2)p/b and an is the Fourier coefficient of
unity an = 2(21)n 1 1/(ban). A similar solution satisfies zero
boundary conditions at x = 61. The total solution is thus

f ¼
X1

1

ancosðanyÞ
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ K2

q
x

� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n þ K2
q� � þ

2
64

þ bncosðbnxÞ
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

n þ K2
q

y

� �

cosh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

n þ K2
q

b

� �
3
775 (A7)

where bn = (n 2 1/2)p and bn = 2(21)n 1 1/bn. The solution
(A6) has also been derived by Yang and Li [8], but their form
of velocity (and consequently flow rate) is in terms of a dou-
ble infinite series in Green’s functions. The series solution
(A7) is now substituted in the solution form for the velocity
(4) to obtain the much simpler form for the normalized flow
rate, after straightforward integration

�Q ¼ 4b�
X1

1

8

½ðn� 1=2Þp�2
b

tanh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n þ K2
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n þ K2
q þ

2
64

þ
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

n þ K2
q

b

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

n þ K2
q

3
775 (A8)
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For large K, we find

�Q � 4b� bþ 1
K
þOðK�2Þ (A9)

The normalized flow rate for a rectangle is given in Table
A1 for comparison with future research. Five-digit accu-
racy is achieved when the series contains about 1000
terms.

Table A1. Normalized flow rate �Q vs. K and b for rectangular
channels

K/b 0.25 0.5 0.75 1

0.1 0.0001755 0.001143 0.003041 0.005612
0.2 0.0007014 0.004560 0.01211 0.02232
0.5 0.004363 0.02805 0.07357 0.1341
1 0.01716 0.1062 0.2674 0.4716
2 0.06440 0.3505 0.7875 1.2811
5 0.2819 1.0097 1.8042 2.6038
10 0.5552 1.4510 2.3510 3.2510
20 0.7628 1.7128 2.6628 3.6128
50 0.9021 1.8820 2.8621 3.8421
? 1.0000 2.0000 3.0000 4.0000

Figure A1. Normalized flow rate �Q vs. the nondimensional elec-
trokinetic width K.
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