
Propagating modes of periodic solid layers in an ideal or viscous fluid
by homogenization analysis

Ying-Hong Liu,1 Chien C. Chang,1,2,* and Chih-Yu Kuo1

1Division of Mechanics, Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan 115, Republic of China
2Institute of Applied Mechanics and Taida Institute of Mathematical Sciences, National Taiwan University,

Taipei, Taiwan 106, Republic of China
�Received 14 March 2008; revised manuscript received 13 June 2008; published 20 August 2008�

This study is aimed at investigation of propagating modes of acoustic waves in periodic solid layers in ideal
or viscous fluids. In particular, at the long-wavelength limit, a three-scale homogenization analysis is devel-
oped to derive the effective group velocities in analytical forms for the shear-vertical �SV� waves as well as for
the longitudinal-shear-horizontal �P-SH� waves. It is found that propagating modes, i.e., modes with real group
velocities, may be supported even if the fluid phase is viscous. A criterion for the existence of a vanishing
effective viscosity is derived based on composite medium constants and the filling ratio of the fluid phase. The
critical filling ratios at which an evanescent mode changes to a propagating mode are given for various
solid-water systems.
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I. INTRODUCTION

Artificial solid periodic structures have attracted a great
deal of interest because of the unusual properties of these
materials. Recent advances in fabricating solid composites at
small scale, which are either elastic or optical, pose an im-
portant question of practical interest: What effective �or glo-
bal� behaviors are exhibited by the microstructures? In this
study, we are concerned with acoustic waves in elastic ma-
terials.

In literature, the effective properties of elastic solid-solid
composites have been studied by several authors.1–7 These
studies presented results on band structures as well as on
averaged properties such as effective mass, elastic constants,
and group velocities in the long-wavelength limit. In particu-
lar, Krokhin et al.8 used the pressure wave equation to derive
the effective speed of sound for a periodic array of the
liquid-gas mixture. They also used the elastic wave equation
to derive the effective speed of the sound of the shear-
vertical waves for a two-dimensional array of solid-solid
structures. Subsequently, Ni and Cheng9,10 extended their
work to include all the propagating modes for two-
dimensional as well as three-dimensional periodic solid-solid
structures.

Relatively fewer works have been devoted to the study of
solid-fluid composite systems. Berryman11,12 derived a new
expression of effective-mass density for all spatial dimen-
sions, based on average T-matrix approach. Mei et al.13 were
concerned with the use of the expression in applying the
multiple-scattering theory to solve the full elastic wave equa-
tions. On the other hand, Sprik and Wegdam14 computed the
band structure of periodic solid-viscous liquid composites.
Zhang et al.15 studied how the viscosity helps to open the
acoustic band gaps of a two-dimensional array of solid cyl-
inders in viscous liquid. The questions then are: Can there be
propagating modes when the fluid phase is subject to viscous
damping? What types of modes can be supported by com-
posite solid-fluid systems? It must be noted that although
fluids cannot support propagating transverse waves, they can

support evanescent transverse waves if they have viscosity.
In this study, we explore the effective properties of propagat-
ing modes in the fluid-solid system where the fluid phase is
either inviscid or viscous.

In an earlier work, the present authors16 presented a two-
scale homogenization analysis used to study the effects of
mass density ratio and elastic constant contrast on the major
band gaps of elastic periodic structures. The two scales in-
clude a fine scale and a coarse-grained scale, which differ in
magnitude on the order of the ratio of the size of the periodic
unit to the incident wavelength. However, the analysis can-
not be applied here because of the vanishing shear modulus
in the fluid phase. To overcome the difficulties, instead of
treating a material property at the interface between the fluid
and the solid phases as a sharp discontinuity, we approximate
each material property at the interface by a continuous func-
tion which changes in a scale much smaller than the scale of
the unit cell. This sharp layer is called an interfacial layer
and its length scale is called an interfacial scale. A three-
scale homogenization analysis based on these interfacial,
coarse-grained, and fine scales is here developed to derive
effective-medium properties. In Sec. III of the paper, we will
develop the homogenization analysis for the solid-fluid com-
posite layers by assuming an ideal fluid, i.e., a fluid without
viscous damping. In particular, effective elastic constants and
group velocities for the shear-vertical �SV� modes as well as
for longitudinal-shear horizontal �P-SH� modes will be ob-
tained in analytical forms. In Sec. IV, the fluid is considered
to be viscous, and it is more convenient to develop the ho-
mogenization analysis in the frequency domain, for which
we use complex Lame constants for the fluid. The main point
of interest is to explore if there is a possibility that any ef-
fective viscosity may vanish under some particular physi-
cally realizable conditions and lead to propagating modes on
the coarse-grained scales.

II. BASIC EQUATIONS

Let us start with the time-dependent form of the elastic
wave equation,
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where ui is the displacement, Cijmn is the elastic constant, and
� is the mass density. In order to investigate the group ve-
locity of the composite material at the low-frequency limit
for periodic structures, we apply the theory of homogeniza-
tion �see, e.g., Refs. 16 and 17�. Let us consider a wave
propagating with a large wavelength l, i.e., �=d / l�1, where
d is the unit length of periodic layers. It is convenient to do
dimensionless analysis by introducing xj→dxj, Cijmn
→CcCijmn, �→�c�, and t→2�t /�c, where Cc, �c, and �c
are the characteristic values of elastic constants, mass den-
sity, and frequency.16,17 Then we have the dimensionless
elastic equation
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where we identify the large wavelength l such that l2

=4�2Cc /�c�c
2. For simplicity, we consider the periodic layer

made of a fluid and a cubic material and separate the waves
into the SV and P-SH modes as shown in Fig. 1. Thus Eq. �2�
could be written in the SV mode as
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and in the P-SH mode as
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III. HOMOGENIZATION ANALYSIS OF SOLID LAYERS
IN IDEAL FLUID

In this section, we shall develop homogenization analyses
for the SV mode and the P-SH mode.

A. SV mode

First, we consider the SV mode,
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� +

�

�y
�C44

�uz

�y
� = �2�

�2uz

�t2 , �6�

where we note that the shear modulus C44=0 in the fluid
region. Let � be the proportion of the composite occupied by
the fluid phase. In order to analyze the fluid-solid system in a
unified approach, we make the following approximation:

C̄44 = H�x − ��C44 →
C44

1 + e−�x−��/� , �7�

where H�x−�� is the Heaviside step function. In other
words, we introduce a transition layer of order � in thickness
at the interface of the fluid and solid. This modification leads
us to perform three-scale analysis by introducing x=x �fine
scale�, x̄= �x−�� /� �interface scale�, and x�=�x �coarse-
grained scale�. The sound wave propagates in the coarse-
grained scale. Hence the displacement uz is considered as a
function of x̄, x, and x�, i.e., uz=uz�x̄ ,x ,x��ei	y�, where 	 is
the wave number along the y axis in the coarse-grained scale
y�=�y. Then, the derivative with respect to x becomes

�

�x
→

1

�

�

� x̄
+

�

�x
+ �

�

�x�
=

Dx

�
. �8�

The perturbation analysis follows the standard approach: ex-
panding uz in powers of �, uz=uz

0+�uz
1+�2uz

2+¯; substitut-
ing these expressions into Eq. �6�; and collecting terms of
like powers in � from the zeroth to the fourth order. After
replacing the x and uz of perturbation terms, Eq. �6� becomes

Dx�C̄44Dx�uz
0 + �uz

1 + �2uz
2 + ¯��

− �4	2C̄44�uz
0 + �uz

1 + �2uz
2 + ¯�

= �4�
�2uz

0

�t2 + ¯ . �9�

Next we collect terms of each power in � from zeroth to
fourth order . For the order O��0�, we get

�

� x̄
�C̄44

�uz
0

� x̄
� = 0, �10�

where uz
0 denotes the coarse-grained displacement; it cannot

depend on x̄ if periodic conditions are considered. For the
orders O��1� and O��2�, we have

�

� x̄
�C̄44� �uz

1

� x̄
+

�uz
0

�x�
�� = 0, �11�
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FIG. 1. �Color online� This figure depicts the distinctive modes
of the incident wave that make an angle 
 with the x axis on the xy
plane. The SV mode is plotted in blue, where the displacement is in
the z axis. The P-SH mode is plotted in green, where the displace-
ment is on the xy plane.
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A general solution of uz
2 can be expressed in the form

uz
2 = Q1�x̄,x,x��� �uz

0

�x�
+

�uz
1

�x
� + ūz

2�x,x�� , �13�

where Q1�x̄ ,x ,x�� is a periodic function in x of period 1 and
ūz

2�x�� is independent of x̄. Substituting uz
2 of Eq. �13� into

Eq. �12�, we obtain

�

� x̄
�C̄44�1 +

�Q1

� x̄
�� = 0. �14�

A simple integration gives

Q1 = − �x̄ + �̄� + D1	
−�̄

x̄ ds

C̄44

+ D2, �15�

where �̄ is measured on the scale of �=1 /�, i.e., �̄=��. �A
similar procedure of homogenization can be found in Ref.
16.� D1 and D2 are functions of x and x� only. Since Q1 must
be a periodic function of x with period 1, D1 can be depicted
by leading behavior,

D1 = C44
e =

�C44

� − e−�+�̄ − e�̄


 �C44�
−1e−�, � � 0, � → �

C44, � = 0, � → � ,
� �16�

and D2 can simply be taken as zero. Comparing to the con-
ventional two-scale analysis applied to solid-solid systems,
D1 is determined by an integral of 1 /C44. One faces the
problem of not being able to integrate over the liquid phase.
On the contrary, by introducing the interface layer, we can
carry out the wavelength of D1. In the next order of analysis,
O��3�, we can see that D1 is in fact the effective elastic
constant of C44 on the coarse-grained scale. An intriguing
property is that the effective elastic constant D1 decreases to
zero no matter how thin the fluid phase exists in the struc-
tural array.

For O��3�, we get
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The equation has no effect on the next-order analysis and
will not be pursued further. For O��4�, we get
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For waves in the coarse-grained scale, we take the average of
Eq. �18� over a unit scale. The first and second terms after

being averaged with respect to x become zero because of the
periodic boundary conditions. Finally, it is found by using
the current homogenization analysis that uz

0 is a function de-
pendent only on the coarse-grained variable x� and satisfies
the averaged equation

�

�x�
�C44

e �uz
0

�x�
� − 	2C44�uz

0 = ��
�2uz

0

�t2 , �19�

where ¯� denotes the volume average over one unit cell. In
this equation, C44�= �1−��C44 and ��=�� f + �1−���s,
where �s and � f are the mass densities of the solid and the
fluid, respectively. The effective group velocity in the coarse-
grained scale, vq,SV of the SV mode with an arbitrary direc-
tion of incident wave can be found straightforwardly,

vg,SV
2 = � ��

�k
�

�,k→0

2

=
CSV

e

��
=

cos2 
C44
e + sin2 
C44�

��
.

�20�

B. P-SH mode

Next we consider the P-SH mode. The elastic constants
with the interface layer approach are

C̄11 = C11
s /�1 + e−�x−��/�� + C11

f /�1 + e�x−��/�� , �21�

C̄12 = C12
s /�1 + e−�x−��/�� + C12

f /�1 + e�x−��/�� , �22�

where Cs and Cf denote the elastic constants for the portion
of the solid and fluid, respectively. Following the same three-
scale analysis, we get
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From the experience of the SV mode, the zeroth order of the
displacements presents in the macroscale that the layered
structure could be treated as homogeneous medium. This
idea enables us to assume that ux

0 and uy
0 depend only on x�.

In addition, ux
1 and uy

1 are the functions of x and x�. For
O��2�, we get
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From Eqs. �25� and �26�, we can guess the second order of
the displacements induced by those from the zeroth and the
first orders, in the form of
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By this approach, the P and SH modes can be decoupled if
	=0. Under such condition, the effective-mass density and
elastic constants follow the same formulation as the SV
mode. However, if 	 is not equal to zero, the P-SH mode is
still coupled and some interesting phenomena can be uncov-
ered using our three-scale analysis. Substituting Eqs. �27�
and �28� into Eqs. �25� and �26�, we rearrange the governing
equations for the coefficients P,
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Integrating these equations, we obtain
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Here C11
e denotes the harmonic mean for C11 of the materials.

For the O��3�, we have
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These equations have no effect on the next-order analysis
and will not be pursued further based on the same reasoning
as in the SV mode. Finally, for the O��4�, we have
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In order to see the behavior on the macroscale, we take the
average of Eqs. �42� and �43� over the unit cell. The terms of
the surface integrals with respect to x vanish because of the
periodic boundary conditions. The resulting equations are
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For a nontrivial solution to exist, we have the dispersion
relation
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In the above equations, we have defined P=C11
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where CSH
e denotes the corresponding effective shear modu-

lus of the SH mode and CP
e is the P one.

As an example, we consider the Pb-water system, the ma-
terials of which have the physical constants shown in Table
I.18 We choose three filling ratios �1−�� for Pb: 0.2, 0.5, and
0.8. Figure 2 shows the effective velocities of the three wave
modes versus the incident angle. The trend of the effective
group velocity of the SV mode is from the harmonic average
C44

e / �� to the volume average C44� / �� with increasing in-
cident angle from zero to � /2. It is obvious that the effective
group velocity of the SV mode increases monotonically from
0 at the normal incidence to its maximum at the parallel
incidence. However, the behavior of the effective group ve-
locity of the SH mode is very different from that of the SV

mode. At 
=0 and � /2, the effective group velocity vg,SH

would approach zero, which indicates that the prohibitive
effect of the fluid occurs not only at 
=0 but also at 

=� /2. One remarkable difference between the SV and SH
modes at 
=� /2 is that the polarization vector of the SH
mode is perpendicular to the layers, while that of the SV
mode is parallel to the layers. If either of the incident direc-
tion and the polarization vector is perpendicular to the layers,
the group velocity of the shear mode would be zero. In Sec.
IV, we will further verify the vanishing group velocity of the
SH mode at 
=� /2 by numerical simulations of the full
elastic wave equations. Next, we observe that the effective
group velocity vg,P for the P mode comes from the harmonic
average C11

e / �� at 
=0 but reaches the value Q / �� at 

=� /2, at which Q is a combination of different volume av-
erages of elastic constants. The effective group velocity of
the P mode at smaller incident angles is kept nearly constant
and then increases significantly to its maximum at the paral-
lel incidence. Although not directly related, an analogy of
this phenomenon can be found in Ref. 14. We see that the
shear modes of the band structure disappear as long as the
region of the inviscid fluid is connected. It shows the same
behavior with our case at 
=0, in which the fluid is con-
nected. Therefore, the SV and SH modes are not allowed to
propagate in the x direction.

TABLE I. The physical parameters of the Pb-water system. The
unit of the mass density is g /cm3, the velocity is in km/s, and the
elastic constants are in 109 N /m2.

Medium � cl ct C11 C44 C12

Pb 11.4 2.16 0.861 53.2 8.44 36.3

Water 1.0 1.49 0.0 2.22 0.0 2.22
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FIG. 2. �Color online� The relation between the effective group
velocities of the SV, SH, and P modes and the incident angle 
. The
black lines are for the filling ratios 1−�=0.2 for Pb. The red lines
are for 0.5 and the blue lines for 0.8. The solid lines represent the
velocities of the SV mode, the dashed lines with full triangles are
the velocities of the SH mode, and the solid lines with empty
squares are the velocities of the P mode.
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IV. HOMOGENIZATION ANALYSIS OF SOLID LAYERS
IN VISCOUS FLUID

A. SV mode

Next, we consider viscous damping in the fluid phase.
Since the analysis is performed in the frequency domain, we
use complex Lame constants whose imaginary parts are as-
sociated with the material damping and are usually linearly
proportional to the frequency. The solid-fluid system consid-
ered here has the physical parameters listed in Table II.14,19

At higher frequencies, say, on the order of 1 GHz, the cor-
responding wavelength is about a few micrometers. If the
thickness of the periodic unit is on the order of tens or hun-
dreds of nanometers, the above analysis is still valid. Be-
cause of damping, the pure fluid phase cannot support propa-
gating modes. However, here we will show that propagating
modes may exist for the layered fluid-solid composites if the
fluid is viscous.

Let us consider the SV mode first. Our homogenization is
performed for the coarse-grained scale, which equivalently
corresponds to the low-frequency limit. The scaling factor is
also � and, hence, we can nondimensionalize C44 by replac-
ing �→��:

C44 →
C44

s

1 + e−�x−��/� +
− i��

1 + e�x−��/� , �49�

where  is the viscosity of the fluid. The perturbation analy-
sis now needs to be carried out up to O��5� to identify the
damping effect. Substituting Eq. �49� into Eq. �6� and follow-
ing the formal procedure of the three-scale homogenization
analysis, we have

�

�x
� C44

s

1 + e−x̄

�uz
2

�x�
� +

�

�x�
� C44

s

1 + e−x̄� �uz
2

�x
+

�uz
1

�x�
��

+
�

� x̄
�− �i

1 + ex̄

�uz
2

�x�
� +

�

�x
�− �i

1 + ex̄� �uz
2

�x
+

�uz
1

�x�
��

+
�

�x�
�− �i

1 + ex̄� �uz
2

� x̄
+

�uz
1

�x
+

�uz
0

�x�
��

+ 	2 �i

1 + ex̄uz
0 − 	2 C44

s

1 + e−x̄ uz
1

= − ��2uz
1. �50�

Taking the volume integral of this equation over the unit cell
with the periodic boundary conditions yields

�

�x�
�− i��x��

�uz
0

�x�
+ 	2�i��y��uz

0 = Duz
1, �51�

where �y�=� and

�x� = lim
�→0

C44
e

C44
s 	

0

1 1 + e−x̄

1 + ex̄ dx =  . �52�

The averaging process yields two effective viscosities �x�
and �y�. In Eq. �51�, D is the operator used to modify the
effective elastic constants on the fifth order but not the effec-
tive viscosity. According to the present three-scale analysis,
the effective properties in the coarse-grained scale are ob-
tained by inspecting the governing equations of O��4� and
O��5�, where the former describes the spatial wave propaga-
tion and the latter depicts the damping rate. Take note that
the equation of O��4� is the same as Eq. �19�.

It is now convenient to unify the two equations to obtain
the effective elastic constants with their proper effective
damping rates. This is done by collecting the material coef-
ficients after adding up the equations of these two orders.
This yields the elastic constants. From Eqs. �19� and �51�, we
can define the effective elastic constants with damping in the
macroscale as

C44�x�x� = C44
e − i��x� = C44

e − i� , �53�

C44�y�y� = C44� − i��y� = C44� − i�� . �54�

The results have two interesting consequences. Equation �53�
states that once the filling ratio of the fluid is nonzero, the
effective complex C44 in the x direction is identical to that of
the fluid, as we recall from Eq. �16� that the real part C44

e will
go to zero when we take the limit of vanishing interfacial
scale. On the other hand, Eq. �54� states that the effective
complex C44 in the y direction has the real part C44�, which
modifies the C44 of the solid by �1−��, and an imaginary
part, which modifies the viscosity of the fluid by the filling
ratio �. In other words, any waves proceeding along the x
direction experience a damping rate identical to that of the
fluid, while the damping rate along the y direction is smaller
by a factor of �.

B. P-SH mode

According to the present three-scale analysis, a surprising
zero effective damping is found in the P-SH modes which
are presented now. As in the SV mode, we approximate the
Lame constants with the interface layer structure,

C11 →
C11

s

1 + e−�x−��/� +
� fC

2 − 4
3 i��

1 + e�x−��/� , �55�

C12 →
C12

s

1 + e−�x−��/� +
� fC

2 + 2
3 i��

1 + e�x−��/� . �56�

Carrying out the same analysis to O��5� and volume averag-
ing over a unit cell, we get the effective viscosity equations

TABLE II. The physical parameters of the fluid-solid system
with damping. The parameters C are the speeds of the longitudinal
mode of water �Refs. 14 and 19�.

Medium � C11 C44 C12

Solid �s C11
s C44

s C12
s

Fluid � f � fC
2− 4i� / 3 −i� � fC

2+ 2i� / 3
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�

�x�
��− i��11�

�ux
0

�x�
� + i	�− i��12�

�uy
0

�x�
− 	2�− i��13�ux

0

= D̄xux
1 + D̄yuy

1, �57�

�

�x�
��− i��21�

�uy
0

�x�
� + i	�− i��22�

�ux
0

�x�
− 	2�− i��23�uy

0

= D̂xux
1 + D̂yuy

1, �58�

where D̄ and D̂ denote the modification of effective elastic
constants, not the viscosities, produced by displacements of
first-order terms that we mentioned in the SV mode. The
averaging process introduces six extra effective damping
rates along the x and y directions. They are

�11 =
4�C11

s 

3��C11
s + �1 − ��� fC

2�
, �59�

�12 = �1 − 2�� +
4��C11

s + �1 − ��C12
s ��

3��C11
s + �1 − ��� fC

2�
, �60�

�13 = �21 =  , �61�

�22 =
�C11

s + 3�1 − ��� fC
2

3��C11
s + �1 − ��� fC

2�
 , �62�

�23 = 2� −
2��C11

s + �1 − ��C12
s �

3��C11
s + �1 − ��� fC

2�
� . �63�

Hence, these equations yield the following dispersion rela-
tions if we consider that the damping effect of effective vis-
cosities contributed to effective elastic constants only:

� − �2�� + R�k2 P�k2 cos 
 sin 


P�k2 cos 
 sin 
 − �2�� + S�k2 � = 0, �64�

where R�=R− i��11 cos2 
− i��13 sin2 
, P�= P
− i��12, P�= P− i��22, and S�=S− i��21 cos2 

− i��23 sin2 
. Dispersion relation �64� is identical to Eq.
�46� except that P, Q, R, and S are modified as P�, Q�, R�,
and S�.

As a first verification, we look at the behavior of the ef-
fective viscosities at two limiting filling ratios, say, pure liq-
uid �=1 and solid phase with thin liquid layer �=0+. As
�→1, these effective viscosities reduce to those of an iso-
tropic damping liquid smoothly. On the contrary, when �
→0+, �12,13,21,22 collapse into the nonzero value , instead
of degenerating into a pure solid case. This phenomenon is
also seen in the SV mode �Eq. �53�� and, physically, repre-
sents the dramatic effects of the liquid phase to the sound
wave propagation in the composite system. Another striking
finding is that the viscosities �12,23 can possibly become
zero at certain combinations of materials and filling ratios.

As an example, we consider again Pb-water system, for
which =0.001 Pa s and � fC

2=2.22�109 Pa.14 Figure 3
shows the effective viscosities as functions of �. In this case,
�23 goes down to zero as � is decreased to 0.2179. Actu-

ally, from Eq. �63�, �23 becomes negative when

� fC
2 �

1

3
�C12

s −
2�

1 − �
C11

s � . �65�

Now, the criterion in Eq. �65� raises the following ques-
tion: What is the effect when �23 is zero? When we intro-
duce the damping effect into the system, the frequency and
wave vector could become complex variables at the same
time. The experimentalists, however, typically choose one of
these variables to be purely real.20 Let the incident wave is
driven by a source with a real frequency. Under such circum-
stances, the complex wave number is k=k1+ ik2, such that
the spatial propagating wave becomes exp�iky�
=exp�ik1y�exp�−k2y�. The effect of �23 appears in the pres-
sure wave �P wave� along the y direction,

vg,P
2 �
=�/2 =

�2

�k1 + ik2�2 =
S�

��
=

Q − i��23

��
, �66�

In the long-wavelength limit, the frequency is low and the
damping is weak. Therefore, we obtain

k1
2 =

���2

Q
, k2 =

��23k1

2Q
, �67�

where the positive branch is chosen for +y to satisfy the
causality condition. Now, the significance of small �23 is
clear: The P-wave propagating mode in the y direction can
be supported by the complex fluid-solid composite system.
This is not seen in the case where the fluid layer is inviscid,
discussed in Sec. III. This critical phenomenon is also found
in a few other configurations with water liquid, which are
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FIG. 3. The figure shows the relations of the effective  and the
filling ratio for the Pb-water system with damping in the fluid
phase. It is noted that there are no plots for � smaller than 0.01
because a transition layer of the thickness � between the solid and
water is introduced. Thus � cannot simply be taken as zero. Note
also that �11 and �23 tend to 0, while others go to  as � is
decreased toward 0.

PROPAGATING MODES OF PERIODIC SOLID LAYERS IN… PHYSICAL REVIEW B 78, 054115 �2008�

054115-7



listed in Table III. From this table, we find that the critical
filling ratio �c is roughly located between 0.16 and 0.22
except for epoxy and rubber, whose composites with water
do not support propagating modes. It must be noted that the
existence of propagating modes in the solid-fluid system
with viscous damping in the fluid phase is the leading-order
behavior. Higher-order analysis may present damping ef-
fects, though they are at least one order smaller.

In order to support the theoretical findings by the homog-
enization analysis, we compute the band structures of the
P-SH modes at 
=� /2 in the low-frequency limit. The elas-
tic wave equation for cubic materials in the frequency do-
main are given by

�

�x
�C11

�ux

�x
� − 	2C44ux + i	

�

�x
�C12uy� + i	C44

�uy

�x

= − �2�ux, �68�

i	C12
�ux

�x
+ i	

�

�x
�C44ux� +

�

�x
�C44

�uy

�x
�−	2C11uy =−�2�uy ,

�69�

where 	=k1+ ik2 is the wave number along the y axis. The
elastic constants C44, C11, and C12 are modified as dictated in
Eqs. �49�, �55�, and �56� when the damping effect is in-
cluded. Equations �68� and �69� are considered as an eigen-
value problem of determining the complex wave number 	
with given frequency �. For a real group velocity vg in the
low-frequency limit �→0, we must have from Eq. �66�
�k2 /���=0= �dk2 /d���=0=0.

Now we consider the Pb/water system with and without
damping to investigate the behaviors of the P-SH modes near
the � point. In Fig. 4, we plot the real part k1 and the imagi-
nary part k2 versus � with decreasing filling ratio of water
from �a� to �c�. As the filling ratio is decreased, we see that
the trends of imaginary parts of the P and SH modes are very
different. For the SH mode without damping, the curve of k1
versus � is always tangent to the k1 axis. In other words,
d� /dk1=0 at �=0, which confirms the prediction from ho-
mogenization analysis: The group velocity of the SH mode is
zero when incident angle 
=� /2. If the damping effect is
included, the imaginary part k2 increases quickly as � devi-
ates from the � point. For the P mode, the curve of k2 versus
� becomes flatter and flatter as the filling ratio of water is
decreased. At a certain filling ratio, the curve is tangent to the
� axis, that is, dk2 /d�=0, in the low-frequency limit �
→0. In Fig. 5, we compute dk2 /d� at �=0 for four different
systems: ice/water, Ag/water, C/water, and W/water. The fill-
ing ratios of water at which an evanescent mode becomes a
propagating mode predicted by homogenization analysis and
numerical computation are rather consistent with each other.
In particular, the inset shows that dk2 /d�=0 may become
slightly negative between the critical filling ratio �of the solid
material� and 1.

V. CONCLUDING REMARKS

In this study, we have developed a three-scale homogeni-
zation analysis to obtain the effective properties of periodic

TABLE III. The unit of the mass density is g /cm3 and the elas-
tic constants are in 109 N /m2. �c is the critical value of the filling
ratio at which the evanescent mode changes to a propagating one.
The media are ordered from the smallest critical filling ratio to the
largest. The superscript * denotes that the medium-water system
does not support propagating modes.

Medium � C11 C44 �c

Ice 0.94 13.79 3.18 0.02716

W 19.3 500.03 151.31 0.1602

Ni 8.97 311.61 92.93 0.1604

GaAs 5.36 118.8 59.4 0.1656

C 1.75 310 88.5 0.1693

AlAs 3.76 120.2 58.9 0.1731

Ag 10.64 152.68 40.44 0.1758

Pb 11.4 53.2 8.44 0.2179

Epoxy 1.20 9.61 1.61 −0.014 25�

Rubber 1.3 6.8�10−4 4.0�10−5 1.0002�

ω / ω

0 0.04 0.08

SH

P

0 ω / ω

0 0.04 0.08

0

0.02

0.04

0.06

0.08

0.1

P

SH

0ω / ω

k
/k

0 0.04 0.08

1

P

SH

0 SH 0

P0

SH 0SH 0

P0

SH 0SH 0

P0

k
/k

( a )

2

SH

P

0

0

( b )

SH

P

0

5E-05

0.0001

0.00015

0.0002
( c )

SH

P

FIG. 4. �Color online� The be-
haviors of k1 �black points� and k2

�red points� at different filling ra-
tios for the Pb/water system. The
incident angle 
 is � /2. The fill-
ing ratios of Pb are 0.5, 0.7, and
0.9 in �a�, �b�, and �c�, respec-
tively. It is noted that the fre-
quency � is normalized by �0

=GHz /�2� and k1 and k2 are nor-
malized by k0=�m /�2�. In addi-
tion, P or SH with a subscript 0
�P0 or SH0� denotes the modes
without damping effect.
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fluid-solid composite layers. The homogenized results were
evaluated in the small ratio of the size of the periodic unit to
the incident wavelength. First, we considered the case of
ideal fluids then derived the explicit analytical formulas for
the effective group velocities for the P and SH modes as well
as the SV modes. It was shown that the effective-mass den-
sity is always the volume-averaged mass density of the solid
and fluid phases, while the effective elastic constants are
sophisticated combinations of individual elastic constants as
well as the sinusoidal functions of the incident angle. Then,
we investigated the case of viscous fluid, for which we have
to consider complex Lame constants for the fluid phase in
the frequency-domain analysis. It was shown that the analyti-
cal forms for the effective group velocities remain the same
but all the components must be modified by the effective
viscosities which are six in number. It must be noted that the
effective viscosities may also be influenced by the real elas-

tic constants of the solid and fluid, not just the viscosity of
the fluid itself. In particular, we established a criterion under
which �23 vanishes and thus propagating modes in the pe-
riodic solid-fluid layers are possible. These theoretical find-
ings are supported by numerical simulations of the full elas-
tic wave equations in the low-frequency limit. For future
work, we will continue to investigate higher-dimensional
problems and more complex material solid-fluid structures.
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