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Abstract − In this report1, the methodology of generating an optimal trajectory on a complex surface for a 

specific vehicle is proposed. The possible paths are constrained by the limitations on the terrain and the 

capability of the vehicle. To deal with these constraints, the notions of forbidden point, forbidden direction, 

and forbidden path are introduced. After certain constants are specified, the method of dynamic 

programming is then invoked to find the optimal solution. If the target is beyond the maximal range of the 

vehicle, appropriate service stations are selected by using the auction algorithm. To speed up the 

computation process, the ideas of bi-spiral scheme and instant update are employed. With all the techniques 

at hand, numerical results show that the proposed method can generate the desired trajectory efficiently. 

The method may be used to solve the path planning problems for various vehicles on the surface of an 

airport.     

 

1. Introduction 

 

For a vehicle moving on a complex terrain, its capability restricts the possible paths that it can 

follow. A jeep can climb a steeper slope than a passenger car, while a mobile robot may be able to 

climb even steeper slope. Different wear on the tire leads to different limit on the angle of turn. How to 

accommodate these constraints on the generation of optimal trajectory on a complex terrain is the main 

theme of this paper. 

The constraints on the path may come from either the topology of the terrain or the vehicle itself. On 

the terrain, there may be some hazardous region or congested area that the vehicle cannot enter. There 

may be some service stations that the vehicle may need to pass. On the part of the vehicle, sharp turns 

may not be able to trace and it is preferred to move on a flat path rather than a slope. As a result, the 

classical algorithm of finding the shortest path needs to be modified. For the shortest-path problem, 

various techniques have been used to find the optimal solution. These include the Label correcting 

method [1], D'ijkstra's method [3], method of dynamic programming [6][7][8][9], and the auction 

algorithm [2].  If the dynamics of the vehicle is taken into consideration, various scheme such as the 

                                                 
1 Part of this report has been presented in IEEE Conference on Robotics and Automation, September 
2003. 



Hamilton-Jacobi’s method can be adopted, as reviewed in [10]. However, if the complicated dynamical 

behavior is considered through certain constraints, for the corresponding path planning problems in 

which other characteristics, in addition to the length of the path, must be considered, the method of 

dynamic programming provides the most flexible platform based on the principle of optimality. The 

idea of dynamic programming has been used in [5] to find the optimal path of a vehicle on a terrain by 

including the consideration of forbidden region and the slope. In this paper, similar idea is adopted to 

find the optimal solution by considering more realistic limitations and the capability of the vehicle. 

In particular, the notions of forbidden directions and forbidden paths are introduced in this paper. 

The limitations of rate of climb, minimal angle of turn, and maximal distance of travel are incorporated 

into the algorithm. Depending on the slope of the path, the scaled distance is used to perform the 

optimization process, so that flatter paths are preferred. If the length of the optimal path exceeds a 

certain bound, the vehicle needs to pass through some service stations. For this problem, we first 

transform it to a classical salesman problem and then use the auction algorithm to select the suitable 

service stations. Moreover, to enhance the computational speed, the notion of bi-spiral scheme is 

introduced and the technique of instant update is applied. From the numerical results shown is this 

paper, the methodology proposed here can indeed generate an optimal trajectory that meets all the 

above-mentioned requirements. 

The rest of this paper is organized as follows. In Section 2, the underlying problem of path planning 

on a complex terrain is described in more detail. Section 3 presents the setup for realizing those 

constraints and the process of incorporating them into the method of dynamic programming. The 

algorithm for the selection of service stations and the bi-spiral scheme are also discussed. Numerical 

results are shown in Section 4, which shows the effectiveness of the proposed method. Hardware 

experiments for the motion planning and control of a model car are described in Section 5. Finally, 

some concluding remarks are given in Section 6. 

 
2. Problem Description 

 

Consider a complex terrain, such as in Figure 1, consisting of geometric points with 
each position being specified by three components ),,( zyx , with the corresponding 
axes being pointing toward the east, the north, and upward, respectively. The 
horizontal plane on which the terrain resides may be divided into small rectangles 

with a matrix of grid points ),,( ji yx  ,,...,1 ;,...,1 njli ==  which are equally spaced 

with distance a , cf. Fig. 1. The point on the terrain corresponding to node ),( ji  is 
represented by ),( jiP  and the height at that point is given by ),( jiz . There may be 
some regions on the terrain that the vehicle is prohibited to pass, such as a hazardous 
area, a lake or a building, which is identified as the set Ω . Moreover, it may be 
necessary for the vehicle to stop somewhere during the travel for service stations, 



such as gas stations. The locations of the service stations on the terrain are denoted by 
nodes Ngg ,...,1 . 

 

 

 

Fig. 1 complex terrain 
 

 
The problem is to seek efficiently the optimal trajectory from a starting node 

),( ss jis =  to a target node ),( tt jit =  without entering Ω  such that the designated 
vehicle is able to follow. Different types of vehicles, such as a passenger car, a jeep, or 
a truck, have different capabilities, such that their motions are subject to various 
constrains. First, the initial direction of the path must be compatible with the heading 
of the vehicle at the node s . There may be some other nodes for which the direction 
of passing is limited. Secondly, the vehicle may not be able to move on a steep slope. 
This renders the limitation on the rate of climb of the trajectory. Thirdly, the vehicle 
may not be able to make sharp turns, and hence the radius of curvature of the path is 
constrained. Moreover, the maximum distance of travel may require the vehicle to 
stop at some service station if the destination is too far to reach with one gas tank. In 
addition, flat paths are preferred than the paths with steeper slope to save the energy. 
Other constraints may be imposed on the trajectory of motion. Those listed above 
shall be accommodated in the generation of the optimal path as discussed in the next 
section. 
 
 
 
 

3. The algorithm 
 

To solve the problem described above, we adopt the idea of dynamic programming 



as discussed in [5]. First, we define the forbidden function F  as 
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in which Ω  is defined in the previous section. In order to describe the move from 
one node to its neighbours, the virtual move m  is defined to be in the set of  
 

}9,8,7,6,4,3,2,1{=+M  
 

such that 1=m  represents the move from ),( ji  to )1,1( −− ji , cf. Fig. 2, in which the 
meanings of the other values of m  are also given. Moreover, we use 5=m  to denote 
the degenerate virtual move which refers to the move from one node to itself. 
 

 
 

Fig. 2 Virtual Moves 
 

For the virtual move m , the maps φϕ ,  are defined such that )),(),,(( mjmi φϕ  is the 
destined node from ),( ji  via m . The distance and the slope of the virtual move m  
from ),( ji  are then computed from, respectively 
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Let the limitation on the rate of climb of the trajectory be represented by the maximal 
upward slope α  and maximal downward slope α , which are determined by the 
vehicle. To realize the forbidden region, the limitation on the rate of climb, and the 
preference of the flat paths, the scaled distance function for the virtual move m  from 



),( ji  is defined as 
 

( )




















⋅+
















<
>

=
=

>−=
>−=

=

otherwise ,                
   ),,()1|),,(|(

 

),,(or  
),,(or  

0),(),,(or  
0),(or  

or    1),(or  
 or    1),(    

   if,   1

),,(

0 mjidistmjiw
mji
mji

mjmiF
jiF

nmj
lmi

-

mjiD

α
αα
αα

φϕ

φ
ϕ

       (2) 

 

in which the scale factor 0w  is specified according to the preference on the slope of 
the path. It is seen that if the slope of the virtual move m  is too large, the distance of 
the move is set to –1, which indicates that the corresponding virtual move is 
prohibited. Moreover, by adjusting the scale factor, the preference of the flatter paths 
can be realized.  

  As discussed in the previous section, the directions of passing through some nodes are limited. 

The set of such nodes, denoted by Bb ∈ , contains at least the starting node s . Since the direction of 

entering b  and that of leaving b  may have different constraints, we expand the set of virtual moves 

to include their reversals, denoted by 

 

}9,8,7,6,4,3,2,1{ −−−−−−−−=−M , 

 

cf. Fig. 2. The maps ϕ  and φ  are defined accordingly for 0<m . The forbidden directions of 

passing through the node b  are then given by a set ,),( −+ ∪⊂ MMjiA bb
 in which the positive value 

refers to leaving and negative value refers to entering. If the direction is not allowed, the corresponding 

virtual move must be prohibited, and the scaled distance function is updated according to the following 

rule 
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Note that for entering forbidden directions, the corresponding virtual moves from )),(),,(( mjmi bb φϕ  

is set to be prohibited. 

Next, we characterize the constraint of minimal angle of turn for a designated vehicle. The turn is 



assumed to be composed of two consecutive line segments between nodes. Consider two consecutive 

virtual moves ,, mm  such that  
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The angle of turn is then given by  
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i.e. the angle intersected by the segments )ˆ,ˆ(),( jiPjiP  and )~,~()ˆ,ˆ( jiPjiP . The constraint of turning 

may be then realized by requiring 

 

0
, ),,,( ββ >mmji  

 

where 0β  is some constant determined by the type of the vehicle. The path is forbidden if the 

previous condition is violated. 

With the above setup, we now ready to invoke the method of dynamic programming by a recursive 

process. Since the direction of move is essential in our consideration, we define the total cost starting 

from ),( ji  in the direction of m  within k  moves by ),,,( mjikC . At the step 0=k , the cost 

function is initialized to be 0 at the node t , and –1 at all other nodes for all virtual moves. As the 

algorithm proceeds, the value of the cost function is updated according to the following procedure. At 

step k , at the node ),( ji  in the direction m  such that 1),,( −≠mjiD , we first construct the set of 

admissible second moves as 
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The cost function at step 1+k  is then found as follows 
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It is noted that in the second part of the previous procedure, if the above minimization process yields a 

cost for step 1+k  is greater than or equal to that for step k , further virtual move is not appropriate, 

and hence degenerate move occurs. 

The above iteration proceeds until all the virtual moves become degenerate, which is equivalent to 

the condition, 

 

mjimjikCmjikC ,,   ),,,,(),,,1( ∀=+ . 

 

At the final stage, say step k , the minimal cost of the optimal path starting from any node ),( ji  to 

the target t  in any direction m  is obtained. We may then start with s  and utilize the map γ  to 

trace back the optimal path as follow: 
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The established path shall then be the optimal one satisfying the constraints discussed in Section 2 

except the maximal distance of travel. 
To meet the requirement of maximal range maxR  for a specific vehicle, we first compute the length 

of the optimal path found in the above process, say optR . If maxRRopt > , then we need to find suitable 

intermediate service stations. The strategy is to seek the optimal path for each pair of nodes in the set 

},,...,,{ 1 tggs N . Deleting those paths with length greater than maxR , the problem becomes the classical 

salesman problem as the one shown in Fig. 3. Many shortest-distance methods can be then used to 



obtain the optimal solution. Here we adopt the auction algorithm as discussed in [2] for its flexibility in 

dealing with the changes of distance functions. 

 

 

 
Fig. 3 Salesman Problem and Auction Algorithm 

 

The above process may be very time-consuming if the terrain is large. In order to 
speed up the computation process, we adopt the bi-spiral scheme in the update process 
of the cost function. The sequence of nodes visited in each step k to apply the process 
（5） starts with a neighbouring node of the target t, then proceeds spirally outward. 
Once all the nodes are visited, the update process reverses its direction to spirally 
inward return to the target. This sequence can significantly reduce the total number of 
steps, especially when the desired path is curved back and forth. Moreover, in the 
minimization process of （5）, we could use the updated )),,(),,(,1( ,mmjmikC φϕ+ , 
instead of )),,(),,(,( ,mmjmikC φϕ  if the node )),(),,(( mjmi φϕ  has been visited at step 

1+k . This idea of instant update is similar to that of Gauss-Siedel method [4] in 
solving a set of algebraic equations, and can enhance the efficiency of the algorithm 
prominently. 
 

4. Numerical Result 
 

For the example of complex terrain shown in Fig. 1, we are now ready to apply the 
algorithm developed in Section 3 to find the optimal trajectory satisfying the 
constraints. First, we divide the horizontal plane into 31*31 grid nodes with grid 
length 5=a  (meter), and consider the case that ∞=maxR , i.e. the vehicle can move to 
any point on the terrain without service. Let the capability of the vehicle and the 
preference of slope impose the constraint on the possible path through the following 
constants： 
 

7.0=α , 8.0−=α , 0
0 120=β , 0.40 =w . 

 

Incorporating these constants in the algorithm, the optimal trajectory from the node 
)21  ,5(=s  to the target )18  ,26(=t  is then obtained as shown in Fig. 4. The 

trajectory winds around the hills to reach the target. 
If the constraint of maximal range is set as 250max =R (meter), the vehicle cannot 

reach the target without service. The strategy outlined in Section 4 using the auction 



algorithm is then followed to find suitable intermediate service stations. The result is 
shown in Fig. 5, in which the service stations are marked by big circles. For the same 
set of the starting node and the target node, another trajectory is chosen to pass by a 
service station. From these examples, it is seen that the methodology proposed in this 
paper can indeed give rise to an optimal trajectory satisfying all the constraints 
described before.  

 

 

Fig. 4. Optimal Trajectory with Infinite Maximum Range 
 

 

 
Fig. 5. Optimal Trajectory with Limited Maximum Range 

 
 

5.  Hardware experiments 
 

To check the effectiveness of the proposed method, the methodology of finding an 
optimal path and designing a controller for a model car is developed.  The model car 
is re-configured, cf. Figure 6, so that various sensors, such as GPS receiver, electronic 
compass, and data links can be put on the vehicle, which is controlled by the base 
station.  With differential GPS carrier phase algorithm, the position of the vehicle 
can be determined with the accuracy about 10 centi-meters. The positioning 



information and the heading information from the compass are then fed into the 
path-planning algorithm.   With the destined position and the desired orientation 
being specified, the method discussed before is used to generate an optimal path.  A 
fuzzy controller is then used to control the vehicle move on the designed path. An 
experimental result is shown in Fig. 7.  

The vehicle was set to move on a flat surface, which was grided into square 
elements. The path generated by the above-mentioned dynamic programming 
algorithm is further smoothed by using the B-spline method, as shown by the solid 
line in Figure 7. The result of the controlled motion of the vehicle is shown as the 
dotted line in Figure 7. The error is about 1 meter. Through hardware experiments, it 
is demonstrated that the proposed methodology can indeed generate a path suitable for 
a specific vehicle. 

 

 
Fig. 6. Re-configured Model Car 

 
 

 

Fig. 7. Experimental Result 
 
 



6. Conclusion 
 

This paper presents a methodology to generate an optimal path on a complex 3-D 
terrain that a specific vehicle is safe and capable to follow. Numerical results show 
that the method is effective and efficient. The algorithm can be used for a variety of 
vehicles, such as a passenger car, a truck, or a mobile robot, by choosing the 
appropriate constants in the algorithm. In addition to those constraints considered here, 
there may be many other limitations or preference to be included. The effect of the 
roughness of the terrain on the selection of path is an example. Hardware experiments 
of a model car moving on a surface were performed, which showed the effectiveness 
of the proposed method. 
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