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I. Preface

Following the length scale hierarchy, the microstructure modeling can be grouped

into the nanoscopic (Raabe, 1998), microscopic, meoscopic, and macroscopic regimes.

The term nanoscopic refers to the atomic level, microscopic to lattice defects ensem-

bles, mesoscopic to lattice defect ensembles at the grain scale, and macroscopic to the

sample geometry. Hence, in the different range of scale, we have to choose different

numerical simulations. For example, in the meso-macro level of material simulation,

we often use finite element, finite difference, and boundary element methods to cal-

culate the averaged solution of differential equations, such as electromagnetic fields,

and hydrodynamics, etc. In the micro-meso level, we apply the spring models and

dislocation dynamics to fracture mechanics and crystal plasticity. In this study, we

pay more attention to simulations at nano-micro level. Ab− initio theory is the most

fundamental method to simulate the behavior of atom scale, e.g. Hatree-Fork method

and DFT (Parr et al, 1989). Additionally, the solution methods can be separated into

probabilistic and deterministic approaches. The first class is often referred to Monte

Carlo (MC) method (Thijssen, 1999) which is another useful tool to compute prob-

lems of thermodynamics or diffusion, the second is Molecular dynamics simulations

(MDS).

II. Academic purpose

First, we illustrate some characteristics about MC and MDS. The Monte Carlo

technique mimics a canonical ensemble by executing a large number of successive

stochastic computer experiments using uncorrelated random numbers which form a

Markov chain. This method allows one to explore within reasonable computational

time a large number of state in phase space. A major assumption of MDS is ergodicity.

Instead of ensemble averages, time averages are usually taken over hundred thousands

or millions of time steps, or block means are averaged to reduce correlation errors

in time and thermodynamic quantities can be calculated. However, MDS has its
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limitations in statistics. It is known that the Monte Carlo integrations allow one to

visit a large number of states along their stochastic trajectory, but MDS is along

one deterministic trajectory. This means that MDS pass less phase states than the

Monte Carlo method that executes 6N degrees of freedom. This is the motivation

for us to introduce a methodology into MDS in order to make ensemble average of

MDS more reasonable. This methodology is iterative nonlinear Gaussian algorithm.

In statistical mechanics, the ensemble average is computed by many representative

points in the phase space and is a little different from time average computed by

MDS though ergodicity. Instead of taking average from one MDS, we want to create

representive points as many as possible when the system approaches to equilibrium

and calculate the average which is closer to the concept of the ensemble average than

that from one simulation.

III. Review paper

From the history of MDS, Alder and Wainwright (Alder et al, 1959, 1960) pro-

posed a general method to calculate the behavior of several hundred classical parti-

cles and then used the model of hard spheres to simulate the first-order transition.

Rahman (Rahmann, 1964) simulated the system with the Lennard-Jones potential

and discussed some pair-correlation function and the constant of self-diffusion. Nosé

(Nosé, 1984) proposed an approach that introduced a single degree of freedom, i.e.,

the heat bath, into the system to control the temperature and pressure instead of

simple control on temperature or energy. Ciccoti and Ryckaert (Ciccoti et al, 1980) in-

cluded the Brownian motion to simulate the Langevin equation. They use the random

force model to eliminate the high degree freedom of rigid molecules to simplify MDS.

Recently, Car and Parrinello (Car et al, 1985) combined MDS with ab − initio cal-

culation, i.e., density functional theory. This approach doesn’t use the pair-potential

approximation to the system. On the contrary, they applied density functional theory

to predict the interaction between each particle of the system and then simulated the
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motion to account for the quantum effect. These methods share one common fea-

ture, i.e., they just take one simulated result to calculate the macroscale properties.

It is fundamentally different from the concept of the ensemble averages in statistical

mechanics. Our study focuses on this problem, aimed to propose a methodology to

make the average of simulation more reasonable in MDS.

The concept of Interative nonlinear Gaussianization algorithm is to transform

a set of correlated random variables to the standard multivariate Gaussian N(0, Id)

(Lin, 2000; Lin et al, 2002), so that the statistical dependence to be minimized among

the transformed coordinates. The nonlinear algorithm INGA consists of the forward

and backward parts: the forward process brings correlated random variables to in-

dependent ones with decoupled Gaussian (multi-normal) distributions. By sampling

an independent Gaussian sample, and proceed with the backward algorithm gives

an independent replica of original sample. The application of INGA lies in image

analysis and simulation from a given picture of which the probability is unknown.

Especially, we cannot obtain a reliable estimate of probability density functions from

a finite number of samples because of the less information. The algorithm INGA can

overcome these difficulties.

IV. Methodology

In molecular dynamics simulations, we solve the equations of motion:

~̈ri = ~Fi = −∇Φ , (1)

where ~̈ri, ~Fi and Φ denote the position of the ith particle, force and potential, re-

spectively. In many studies, the Lennard-Jones model is often used for the potential

model (Haile, 1992),

Φ(r) = 4

(
1

r12
− 1

r6

)
. (2)

The above equations are written in a dimensionless form with the reference length

l = σ, the reference time τ = σ
√

m/ε, and the mass m of the molecule as the
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Table 1: The parameters in the Lennard-Jones potential of the inert

gas.
ε(10−16erg) σ(Å)

He 14 2.56

Ne 50 2.74

Ar 167 3.40

Kr 225 3.65

Xe 320 3.98

reference mass, where σ and ε are, respectively, the length and energy scales in the

standard model. The Lennard-Jones potential contains two parts: one is attractive

term 1/r6, and the other is 1/r12. The former describes the interaction between two

molecules for a large range, especially for a closed shell molecules. As two uncharged

molecules approach one another, the electron clouds of competing atoms undergo a

deformation. This is called an induced dipole moment. It lasts for only the short

time, but during this time the atoms with dipoles are interacted with each other, we

call it London or Van der Waals force of which the behavior is the 1/r6 (Brehm, 1989).

Hence, the attractive form comes from the real quantum effect for non-polar, neutral

atoms. Nevertheless, it is always used as approximation for other atoms. Unlike

attraction, the repulsive interaction is not well known. It can be approximated by

exponential, or by the inverse power term. Inverse power term is easily computed, as

it is the square of 6. Finally, we discuss the parameters of σ and ε that are extracted

from some experimental data, such as crystal structure, thermodynamic properties,

kinetic coefficients, etc. They are hard to obtain from the first principle. We make

the table 1 of the inert gas fitted in Lennard-Jones potential (Kittel, 1996).

Periodic boundary condition is assumed for a box consisting of many particles. In
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order to avoid the great repulsive force between particles, we use the fcc structure as

the initial distribution of the particle locations. The initial velocity is assigned from

a Maxwell distribution

f(v) =
1√
2πT

exp

(−v2

2T

)
. (3)

In this study, we consider (i) the canonical NTV ensemble and (ii) the micro-canonical

ENV ensemble of systems for computing different physical properties. In order to

make sure that the system transfers from the initial state to equilibrium, we use a

simple temperature control for the NTV system, and a simple energy control for the

ENV system.

(i) NTV system. The physical properties to be computed from this ensemble

include (Haile, 1992):

P̄

ρT
= ρ− ρ2

6kT

∫ ∞

0

r
dΦ(r)

dr
g(r)4πr2dr

=
< P >

ρT
− 16πρ

3Tr3
c

, (4)

Ū

N
=

ρ

2

∫ ∞

0

Φ(r)g(r)4πr2dr =
< U >

N
− 8πρ

3r3
c

, (5)

Ē

N
=

Ū

N
+

3T

2
. (6)

In these formulas, rc, ρ, T , P̄ , Ū and Ē are, respectively, the cutoff length, density,

temperature, pressure, potential energy and total energy computed by NTV ensemble,

and g(r) is the radial distribution function. Because the Lennard-Jones model is a

short-range pair potential model, we usually neglect pair interactions beyond some

cutoff length to save computational time in MDS simulations. The equations of (4)

and (5) contain terms of long-range interactions (McQuarrie, 1976):

ULR = 2πρ

∫ ∞

rc

Φ(r)g(r)r2dr ≈ −8πρ

3r3
c

, (7)

PLR

ρT
=
−2πρ

3T

∫ ∞

rc

r
dΦ(r)

dr
g(r)r2dr ≈ −16πρ

3Tr3
c

, (8)
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where ULR and PLR are the long range correction of the potential per atom and

pressure, respectively. A physical quantity like < X > denotes the statistical average

of microscopic X from MDS, i.e.,

< U > =
1

M
ΣM

k=1ΣαΣi<jΦ [rij(k∆t− αL)] , (9)

< P >

ρT
= 1

− 1

3MNT
ΣM

k=1ΣαΣi<j

(
|rij(k∆t− αL)| du [|rij(k∆t− αL)|]

drij

)
, (10)

where N is the atom number, M is total discrete times using the time-step ∆t, α is

the cell translation vector and L is the length of one edge of the primary cell.

(ii) ENV system. The physical properties to be computed include temperature

and pressure

T̄ =
2 < Ek >

3N
=

2(E − Ū)

3N
, (11)

P̄ = ρT̄

(
< P >

T̄
− 16πρ

3T̄ r3
c

)
, (12)

Ū

N
=

< U >

N
− 8πρ

3r3
c

, (13)

as well as (Pearson, 1985)

C̄v =

[
N −NT̄

(
3N

2
− 1

)
< E−1

k >

]−1

, (14)

κ̄s =

[
7P̄ − 16ρT̄

3
− 8ρŪ − N

ρT̄
< (δP )2 >

]−1

, (15)

γ̄v =
2

3
C̄v

[
ρ− 1

T̄ 2
< δEkδP >

]
, (16)

where Ēk is the kinetic energy of microstate, δP = P − P̄ , and δEk = Ek − 1.5NT̄ .

C̄v, κ̄s and γ̄v are, respectively, constant-volume heat capacity, adiabatic compress-

ibility and thermal pressure coefficient, computed by ENV ensemble. Notice that the

formula for the potential energy per atom is identical to that in (5).
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Boltzmann H theorem. An initial time step for molecular dynamics simulations

is often taken to be 0.003 for easy relaxation of the system to equilibrium. As the

condition of Boltzmann H theorem (Liboff, 1998) is checked,

dH

dt
≤ 0 , (17)

where H =
∫

d3vf(~v)lnf(~v), the system is considered to have reached an equilibrium

microstate for the first time. This usually takes about 2,000 time steps. Then, we

increase the time step to 0.009 for the system to pass through the phase space as

much as possible, and run the MDS until the final step, which is 12,000 for the

NTV system or 22,000 for the ENV system in the later numerical test. By this

criterion, we can assert that the system is approah to equilibrium in the velocity

distribution. In addition the to velocity, we also see if the position distribution

approaches to equilibrium. Here, we compute the radial distribution function g(r) to

measure the static structure of the system which is the probability of measuring two

atoms separated by distance r ±4r, i.e., (Haile, 1992)

ρg(r) =
1

N

〈
ΣN

i ΣN
j 6=iδ[~r − ~rij]

〉
, (18)

where ~rij is the vector between centers of atoms i and j.

In the above, we emphasized that for an arbitrary sample, it could be found

what the original distribution it comes from by INGA forward process. And then, by

sampling independent Gaussian variables and going back with the forward process, we

can generate independent samples from this original distribution as many as possible.

But, how independent are they? We patched the new samples into a time series and

then use the correlation time functions to illustrate the new series constructed by

INGA is more uncorrelated than direct MDS. We compute the correlation of the

variable A per atom, i.e., (Thijssen, 1999)

cAA(k) = 〈(An− < An >) (An+k− < An+k >)〉
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=< AnAn+k > − < An >2 , (19)

and then normalized it to unit.

Numerical Algorithms for Molecular Dynamics Simulations

(i) Gear’s predictor-corrector algorithm (Gear, 1971). This method con-

tains three steps, i.e., predict, evaluate, and correct. We illustrate this concept by

considering the Taylor expansion for the molecular positions ~ri and their derivative

at time tn. This is a one-step method-using the information of the present time tn to

calculate that of next time tn+1. We write

ỹn+1 = B · yn , (20)

where

yn = (~ri , h~r′i , h
2~r′′i /2 , h3~r′′′i /6 , ...)t , (21)

h = tn+1 − tn and ỹn+1 is the predicted value of y at next time tn+1 written as

ỹn+1 = (~rp
i , h~r′pi , h2~r′′pi /2 , h3~r′′′pi /6 , ...)t . (22)

We now write the actual approximation to yn+1 with adding a correction to ỹn+1, i.e.,

yn+1 = ỹn+1 + ∆~α , (23)

where

(a) ∆ is a constant. In MDS, we often choose it as the difference between the pre-

dicted acceleration ~r′′pi calculated in (20) and new acceleration calculated by predicted

positions ~rp
i

~r′′i = ~Fi = −
∑

j 6=i

∂u(rp
ij)

∂rp
ij

r̂p
ij , (24)

and

∆ = ∆R2 = (~r′′i − ~r′′pi )2/2 , (25)
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(b) ~α is the vector numbers determined by various methods. Gear determined their

values by applying each algorithm to linear differential equations and analyzing the

resulting stability matrices. For example, the fifth-order predictor, the value of ~α was

chosen by

~α = (α0 , α1 , α2 , α3 , α4 , α5) =

(
3

16
,
251

360
, 1 ,

11

18
,
1

6
,

1

60

)
. (26)

(ii) Symplectic integrators (Yoshida, 1990). Symplectic integrators are numerical

integration algorithm for Hamiltonian system, which can conserve the symplectic

geometry in the phase space. For the common integration algorithm, like Gear’s

5th algorithm, we can take higher order approximation to make sure the accuracy

between each step during the simulation. However, for a long time running, we

cannot insure that the error is bounded. For example, the energy of the system

that is conserved along the exact trajectory originally, but the computed energy

may deviate from the initial value with a steady increase or decrease, along the

numerical trajectory. Hence, if the integration algorithm is not symplectic, the error

of energy grows and this is most undesirable. Ruth (Ruth, 1983) and Feng (Feng,

1985) developed the methodology for solving the Hamiltonian equations of motion

and preserved the geometrical structure in the phase space. Yoshida (Yoshida, 1990)

proposed the procedure of how to produce higher order symplectic integrators. Here,

we use the 4th symplectic integrator to calculate the time evolution of the system in

the phase transition.

First of all, we shall explain the symplectic geometry of the Hamiltonian system

is conserved, so that (p(0), q(0)) to (p(t), q(t)) is canonical transformation. For sim-

plicity, we consider two-dimensional phase space, and the algorithm can be easily

extended the higher-dimension space. Let z = (p, q), and we can write down the
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equation of motion (Thijssen, 1999)

ż = J∇H(z) , (27)

where

J =


 0 −1

1 0


 , (28)

and

∇H(z) =




∂H(z)
∂p

∂H(z)
∂q


 . (29)

The exact solution of (27) can be formally written as

z(t) = exp(tJ∇H)[z(0)] , (30)

and a first order approximation solution is

z(t + h) = z(t) + hJ∇H[z(t)] , (31)

where we see tJ∇H(z) is an operator. Now we consider the small area δA spanned

by infinitesimal vectors δza and δzb located at z. Hence, the δA can be described as

δA = δza × δzb = −δza · (Jδzb) . (32)

Now, we consider the derivative of area at t = 0 and show it to be zero. For the later

times, the analysis can be translated to this case. We write

dδA

dt

∣∣∣∣
t=0

= − d

dt

(
etJ∇H(δza) · JetJ∇H(δzb)

)

= −[J∇H(δza)] · (Jδzb)− (δza) · [JJ∇H(δzb)] . (33)

Using the first order Taylor expansion, H(δz) becomes

H(δz) = H(z + δz)−H(z) = δz · ∇H(z) . (34)

Defining

Lij = Jik
∂2H(z)

∂zk∂zj

, (35)
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we can find (33) becomes

dδA

dt

∣∣∣∣
t=0

= [LT (δza)] · (Jδzb) + (δza) · [JLT (δzb)] . (36)

It is easy to see that the matrix L satifies

LT J + JL = 0 . (37)

so that (36) is zero and the area δA is indeed conserved.

Consider a Hamiltonian of the simple form

H = T (p) + U(q) . (38)

Then the (27) becomes

ż = J∇H(z) = T̃ (z) + Ũ(z) , (39)

where

T̃ (z) =


 0

∂T (p)
∂p


 , (40)

and

Ũ(z) =


 −∂U(q)

∂q

0


 . (41)

And the solution (30) becomes

z(t) = exp(tJ∇H)[z(0)] = exp[t(T̃ + Ũ)][z(0)] . (42)

Now we want to find the set of real numbers (c1, c2, ..., ck) and (d1, d2, ..., dk) such

that the following equality holds

exp[t(T̃ + Ũ)] =
k∏

i=1

exp(citT̃ ) exp(ditŨ) + o(tn+1) , (43)

and then (42) can be written as

z(t) =

(
k∏

i=1

exp(citT̃ ) exp(ditŨ) + o(tn+1)

)
[z(0)] (44)
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up to order n. Now,

(a) when n = 1, a trivial solution is c1 = d1 = 1, and so

exp[t(T̃ + Ũ)] = exp(tT̃ ) exp(tŨ) + o(t2) . (45)

(b) When n = 2, c1 = c2 = 1/2, d1 = 1, d2 = 0, thus

exp[t(T̃ + Ũ)] = exp(tT̃ /2) exp(tŨ) exp(tT̃ /2) + o(t3) . (46)

If we define

S(t) =
k∏

i=1

exp(citT̃ ) exp(ditŨ) = exp[t(T̃ + Ũ) + o(tn+1)] , (47)

the mapping of (47) is symplectic because it is a product of symplectic operators.

However, it is beneficial to make system to evolute with time successfully, i.e.,

qi = qi−1 + tci
∂T

∂p
(pi−1) , (48)

pi = pi−1 − tdi
∂U

∂q
(qi) , (49)

for i = 1 to i = k, with (q0, p0) = z(0) and (qk, pk) = z(t). So an nth order symplectic

integrator is established. However, by comparing the coefficients in (43), it is hard to

obtain the higher integrator. Yoshida proposed a method to find systematically the

coefficients in higher order integrators. First, we recall the Baker-Campbell-Hausdorff

(BCH) formula (Merzbacher, 1998). If non-commutative operators X and Y made up

the product of exp(X) exp(Y ), it can be expressed by a single exponential function

as

exp(X) exp(Y ) = exp(Z) , (50)

where Z = X + Y + [X, Y ]/2 + ([X, [X, Y ]] + [Y, [Y, X]])/12 + .... By repeated

application of BCH formula, we obtain

exp(X) exp(Y ) exp(X) = exp(W ) , (51)
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where W = 2X + Y + [Y, [Y,X]]/6 − [X, [X,Y ]]/6 + .... Thus 2nd order symplectic

integrator (46) can be rewritten as

S2nd = exp(tT̃ /2) exp(tŨ) exp(tT̃ /2) = exp(ta1 + t3a3 + t5a5 + ...) . (52)

where S2nd is the 2nd order symplectic integrator, and a1 = T̃ +Ũ , a3 = [Ũ , Ũ , T̃ ]/12−
[T̃ , T̃ , Ũ ]/24.... From (52), we find that there are no even powers of t, i.e., a2 = a4 =

a6 = ... = 0. Hence, Yoshida proved a lemma, i.e., if S(t) is the operator of the form

(47) which has time reversibility

S(t)S(−t) = S(−t)S(t) = identity , (53)

we can expand S(t) as

S(t) = exp(ta1 + t3a3 + t5a5 + ...) , (54)

where a2 = a4 = a6 = ... = 0. To see this, we can calculate from the lower orders of t

S(t)S(−t) = exp(2t2a2 + o(t3)) . (55)

Because S(t)S(−t) = 1, 2t2a2 +o(t3) must be equal to zero and then a2 must be zero.

By the same way, we can get a4 = a6 = ... = 0 to the higher order.

For the 4th order symplectic integrator, Yoshida takes the same form of (52)

S4th = S2nd(x1t)S2nd(x0t)S2nd(x1t) , (56)

where x0 and x1 are undetermined coefficients. Because

S2nd(x1t) = exp(tx1a1 + t3x3
1a3 + t5x5

1a5 + ...) , (57)

and

S2nd(x0t) = exp(tx0a1 + t3x3
0a3 + t5x5

0a5 + ...) , (58)

we have

S4th(t) = exp(t(x0 + 2x1)a1 + t3(x3
0 + 2x3

1)a3 + t5(x5
0 + 2x5

1)a5 + ...) . (59)
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In order to make sure S4th(t) = exp(t(A + B) + o(t5)) shown in (47), we need two

conditions, i.e.,

x0 + 2x1 = 1 , (60)

x3
0 + 2x3

1 = 0 , (61)

and their solution is

x0 = − 21/3

2− 21/3
, (62)

x1 =
1

2− 21/3
. (63)

Finally, we compare the coefficient between (56) and (47), and calculate the c′s and

d′s in terms of x0 and x1. We get

d1 = d3 = x1 , (64)

d2 = x0 , (65)

d4 = 0 , (66)

c1 = c4 = x1/2 , (67)

c2 = c3 = (x0 + x1)/2 , (68)

and 4th order symplectic integrator is completed.

Iterative Nonlinear Gaussianization Algorithm

The concept of Interative nonlinear Gaussianization algorithm is to transform

a set of correlated random variables to the standard multivariate Gaussian N(0, Id)

(Lin, 2000; Lin et al, 2002), so that the statistical dependence to be minimized among

the transformed coordinates. The nonlinear algorithm INGA consists of the forward

and backward parts: the forward process brings correlated random variables to in-

dependent ones with decoupled Gaussian (multi-normal) distributions. By sampling

an independent Gaussian sample, and proceed with the backward algorithm gives

an independent replica of original sample. The application of INGA lies in image
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analysis and simulation from a given picture of which the probability is unknown.

Especially, we cannot obtain a reliable estimate of probability density functions from

a finite number of samples because of the less information. The algorithm INGA can

overcome these difficulties.

Hence, given an arbitrary sample, we believe that it must come from the Gaussian

distribution without knowing how to go back to it. The INGA forward process can

determine these progress and record them. These process implies some mechanism of

physics or math about creation law from natural, i.e. the Gaussian distribution. Once

making sure how to generate from the natural, we can create some new independent

Gaussian distribution. Following the creation law, we can produce a new sample

which represents another standpoint of the original one. This prolepsis is important

for us to improve MDS with INGA in respect of computing ensemble average in the

statistical mechanics. In the work of computing ensemble average, we need represen-

tive points in the phase space as many as possible. However, it is impossible for us to

catch all information of the microstates. Fortunately, these representive points have

a property, i.e., mental copy. The so-called mental copy is that under a macrostate,

there are many microstates that have their weight probability. If one MDS performs

some representive points in the equilibrium, we can search for more mental copies by

INGA method owing to its capacity of finding replicas of the original one. It is the

motivation for us to apply INGA to MDS in this research.

The above observations bring a possible resolution to the mentioned difficulty of

MDS, before. First of all, each of the physical quantities can be regarded as a random

variable over the microstates. Second, molecular dynamics simulations are proposed

to run only for a relatively short time period after the check of the Boltzmann H

criterion for equilibrium. Based on physical values sampled over the short period,
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independent replicas could be generated by an iterative nonlinear Gaussianization

algorithm. Such a replica can be generated at relatively cheap cost, and several or

many replicas consist of an ensemble of molecular systems, and they can be patched to

form a ’pseudo time series’ for the correlated random variables (physical quantities).

Statistical averages of microstates are then taken over these pseudo time series to

obtain macroscopic properties.

Algorithm INGA

The algorithm tries to nonlinearly transform a set of correlated random variables

to the standard multivariate Gaussian N(0, Id) in an attempt to minimize the statisti-

cal dependence among the transformed variables. The forward process is an iterative

algorithm, consisting of transforming a given set of dependent random variables Xp

by:

1) normalize the random variable, X̃p = Xp−µp

σp
, where µp and σp are mean and

standard deviation of Xp, and p = 1, 2, ..., N , respectively;

2) use PCA (Johnson et al, 1982) to de-correlate the random components, i.e., Y =

BX̃ by a decorrelation matrix B, where Y = {Y1, Y2, ..., YN} and X̃ = {X̃1, X̃2, ..., X̃N};

3) make the transformation Up = Fp(Yp) in each random component, where Fp is

the cumulative distribution function of Yp;

4) make the transformation Zp = Φ−1(Up) (Press et al, 2002) in each random

component, where Φ denotes the standard Gaussian distribution N(0,1);

5) check convergence of Z = {Zp} to disjoint multi-normality, i.e., independent

normality of the components Zp. If not, go back to 2).

Notice that so-called PCA (Principle component analysis) in the step 2) is the
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method to find the uncorrelated linear combinations {Y1, Y2, ..., YN} whose variance

are as large as possible and covariance Cov(Yi, Yj) as small as possible , and so we

need to compute the eigen-system of B. Step 3) ensures that each Up has the uniform

distribution U(0, 1), and 4) makes each Zp a marginal Gaussian variable. With the

records of the INGA forward process, the backward process generates new samples

by

1) starting from creating the new independent Gaussian components, usually,

using the Box-Muller method;

2) inverting all the iterations of the INGA forward process to obtain an indepen-

dent new sample. Now, we make a flow chart to illustrate these processes shown in

Fig. 1 and 2.

In brief, the forward INGA is designed to bring arbitrary random components

to independent Gaussian ones by interlacing the procedures of de-correlation and

marginal Gaussianization. For an arbitrary sample, we could not know how it creates

from or satisfies with the kind of distribution. However, following the INGA, we could

generate new independent samples from the original one. We take a simple example

to illustrate the procedure and concept. Fig. 3 is the cigar-like picture made up of

200 data points which comes from some distribution that we don’t know. After 6

forward iterations that included normalization, PCA process, uniform transformation,

and Gaussian transformation. Finally, we obtain the Gaussian distribution N(0, 1)

shown in Fig. 4. Now, we start to go through backward process. First, we create

the independent Gaussian distribution and then reverse the forward process recorded

before. Finally, we obtain the resample shown in Fig. 5 from which we see that it is

slightly different to the original picture. However, it catches the characteristic chiefly;

for example, the four edges. There is somewhat similarity and difference, but each

sample comes from the same original distribution. This is the main idea for us to
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Figure 1: The flow chart of 2D-INGA process.
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Figure 2: The flow chart of INGA process.
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Figure 3: Original sample of cigar.
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Figure 4: Gaussianalized sample of cigar.
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Figure 5: Resample of cigar.

apply to MDS because we want to use this property to simulate the mental copy in

statistical mechanics.

The algorithm INGA is then described and explained, and show how to supple-

ment INGA to molecular dynamics simulations for NTV and ENV systems, respec-

tively. Numerical examples are carried out and the results are compared to earlier

empirical results, and some also obtained from MDS. The most significant features

of the present methodology of doing MDS supplemented by INGA is:

1) its accuracy, i.e., reduction of statistical error,

2) substantially less computational cost,

3) physical correlations correctly produced.

V. Results and discussion

The numerical experiment is performed under the nondimensional parameters,
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Figure 6: Tests for the system approaches to equilibrium with Lennard

Jones potential.

i.e.,

x∗ =
x

σ
, r∗ =

r

σ
, v∗ =

√
m

ε
v , F ∗ =

σ

ε
F , t∗ =

ε

mσ2
t , T ∗ =

kB

ε
T , ...etc. , (69)

where kB, ε, σ and m are Boltzmann constant, inter-atomic potential depth, refer-

ence length of the Lennard-Jones potential and particle mass. x, r, v, F , t and T

are basic quantities of the position, distance, velocity, force, time and temperature,

respectively. For simplictity, we omit the star on the nondimensional quantities in

following use. We choose ρ = 0.7, rc = 2.5, and particle number N = 256 to simu-

late the all conditions under the T = 0.964 to 2.23. Before discussing the numerical

results, let us observe see some phenomenon during the simulation.

The system is considered to have reached an equilibrium microstate by checking

the Boltzmann H theorem. This usually takes about 2,000 time steps. From Fig.

6, we plot the value of H from steps 2001 to 4000 per 10 steps at T = 1.191. We

observe that H is parallel and closer to Maxwell’s value, but is slightly distance

between each other. It is because the internal potential of system is Lennard-Jones

potential, not really ideal gas, and we only use 256 atoms to simulate the all system.

Hence, for the each step, the distribution of velocity is nearly Maxwellian, but not
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Maxwellian. To make sure that the system have really approached to equilibrium, we

compute the average velocity distribution from 2001st to 12000th step. Compared

to the Maxwell distribution at T = 1.191, the velocity distribution of simulation is

almost equal to Maxwellian shown in Fig. 7. So, we can assert that the system

has approahed to equilibrium in the velocity. In addition to velocity, we also see if

the position partition approaches to equilibrium. We take the average of the radial

distribution function from step 2001st to 12000th at T = 1.191. Fig. 8 shows that

the first peak occurs at 1.075, the second peak at 2.125 which are very close to those

obtained in a previous study (McQuarrie, 1976). Hence, we can say that the system

is very close to equilibrium in the velocity and position distribution and we can use

the data simulated by MDS to be the basic sample because it already acquires some

information about equilibrium state.
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Figure 7: Test for the distribution of velocity with Maxwell distribu-

tion.
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Figure 8: The radial distribution of the system obeying a Lennard

Jones potential from direct MDS.
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Figure 9: Test the probability of Gaussianization by the INGA forward

procedure in NTV ensemble.
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Figure 10: Pressure P̄ versus Temperature T.

Apply INGA to MDS

The main idea of this study is that each of the physical variables T , P , U and E

be regarded as a random variable; they are of course correlated to each other. For

NTV, the microscopic P and U will be sampled every 20 time steps from the 2, 001st

to 12, 000th step. These consist of a two-dimensional sample (Ui, Pi) of size 500,

drawn from the (unknown) distribution of X = (U, P ). For ENV, the microscopic

P and T will be sampled every time step from the 2, 001st to 22, 000th step. These

consist of a two-dimensional sample Xi = (Ti, Pi) of size 20,000, drawn also from the

(unknown) distribution of X = (T, P ). The reason why we sampled fewer in NTV is

that the sampled time sequence (Ui, Pi) is less correlated. But for ENV, the computed

transport coefficients depend much on fluctuations of microscopic physical quantities.

For example, the RHS of (14) actually involves the fluctuation of < Ek >< E−1
k >

about unity, while the RHS of (16) depends on the correlation of < δEkδP >.

Next, we consider how to apply INGA to MDS. For NTV system, we have already

obtained an original sample of size 500. Now the INGA algorithm is employed to

generate 350 new independent samples. These samples are patched together to form

a ’pseudo time series’ of length 175,000. For ENV system, we also take (X1, X2) =
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Figure 11: Potential per molecule Ū/N versus Temperature T.

(T, P ) and have already obtained an original sample of size 20,000. This time the

INGA algorithm is employed to generate 10 new independent samples. These samples

are patched to together form a ’pseudo time series’ of length 200,000. The macroscopic

quantities are obtained by taking averages of these microscopic states.

Numerical results for NVT system

Consider the NTV system. First of all, we check the convergence of the Gaus-

sianalized by INGA forward procedure. We construct 225 mesh points which consist

of 15 mesh points in the range from -6 to 6 in each coordinate and then count the

number from 500 data points (computed by INGA forward process) falling in each

mesh area. After determining the probability in each mesh area, we redistribute the

probability to four edge mesh point by the ratio of the opposite area per total area.

Fig. 9 shows that the probability of the final step in INGA forward procedure after 10

iterations at T = 1.191. We check the convergence by estimating the error between

N(0, I2) and the computed distribution. Defining

error =
√

Σif(xi, yi)∆Ai − h(xi, yi) , (70)
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where f = f(x, y) is the 2-D normal distribution, i.e., (Johnson et al, 1982)

f(x, y) =
1

2π
√

σ11σ22(1− ρ2
12)

× exp

{
− 1

2(1− ρ2
12)

[(
x− µ1√

σ11

)2

+

(
y − µ2√

σ22

)2

− 2ρ12

(
x− µ1√

σ11

)(
y − µ2√

σ22

)]}
, (71)

where µ1, µ2 are the average and σ11, σ22 are the variance of x and y, ρ12 is the

correlation coefficient. The function h = h(x, y) is the probability computed, xi,

yi are coordinates of the mesh points and ∆Ai is the mesh area occupied by point

(xi, yi). We decrease the error to 0.025 from 0.526 between two probabilities and

it is reasonable and similar. Figs. 10, 11 show, respectively, the computed P̄ and

Ū versus temperature with comparisons to the results of Ree (Ree, 1980), Nicolas

(Nicolas et al, 1979) and Haile (Haile, 1992). The temperature considered ranges

from 0.964 to 2.23. Both Ree’s and Nicolas’ results are an analytic expression fitted

with experimental data in a wide range of density and temperature. Haile ran one

MDS as long as to 500,000 time steps. The present results lie basically between

Ree’s and Nicolas. For P̄ , the maximum difference with Ree is 0.072, the maximum

difference with Nicolas is 0.073 and the maximum difference with Haile is 0.016. For

Ū , the maximum difference with Ree is 0.059, the maximum difference with Nicolas

is 0.028 and the maximum difference with Haile is 0.003. Next, we fix T = 1.191,

and compare the statistical errors of the present result and an MDS carried out up

to 175,000 time steps.

Fig. 12 shows substantial error reduction of Ū versus time steps with use of

the present algorithm. This can be reasonably expected because the pseudo time

series by its construction in the present study is much less correlated in time. We

have emphasized that for an arbitrary sample, we can transform it to independent

Gaussian variables by INGA forward process and then we can generate independent

samples from this original distribution as many as possible. From the Fig. 13, we

find that the correlation of direct MDS decays to zero about at 50 time steps but
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Figure 12: Statistical error of potential per atom Ū/N versus time step.

that of INGA MDS decays more quickly. The series constructed by INGA MDS is

almost uncorrelated. About the cost of computation, the one MDS needs 18,658

CPU-seconds to run for 175,000 time steps on a P.C. Celeron. The present MDS

with 4 iterations is the forward INGA and 1 direct inversion needs only 1,305 CPU-

seconds. The relative computational cost is 1, 305/18, 658 = 0.0699, i.e., about 7

percent of the cost of the full MDS. In case of MDS up to 500,000 timesteps as in

Haile (Haile, 1992), the relative cost can only be 2.45 percent.
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Figure 13: Correlation of potential per atom Ū/N versus time step.

Numerical results for ENV system
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Figure 14: Test the probability of Gaussianization by the INGA forward

procedure in ENV ensemble.
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Figure 15: Residual of constant volume heat capacity C̄v-1.5 versus

Temperature T.
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Table 2: Comparison of thermal pressure coefficient γ̄v between two

different resample method.
Temperature (X1, X2) = (T, P ) X1 = T, X2 = P Haile

0.951 3.426 1.027 3.517

1.187 3.184 0.998 3.268

1.288 3.084 0.969 3.176

1.636 2.915 0.959 2.920

2.025 2.794 0.947 2.752

2.231 2.718 0.955 2.712

Next, consider the ENV system. We also check the convergence of the Gaussian-

ization by INGA forward procedure, first. We construct 10201 mesh points which

arrange 101 mesh points in the range from -5 to 5 in each coordinate and then count

the number from 20000 data points (computed by INGA forward process) falling

in each mesh area. Fig. 14 shows that the probability of the final step in INGA

forward procedure after 10 iterations at T = 1.191. We decrease the error to 0.012

from 0.431 between two probabilities and it is reasonable and similar. Figs. 15 - 17

show, respectively, the computed residual C̄v − 1.5, κ̄s, and γ̄v versus temperature

with comparisons to the results of Ree, Nicolas, and Hailes. The monotone behav-

iors of the computed coefficients are in agreement with those obtained by previous

authors. The mutual discrepancies at the lower temperature are large, but decreases

with increasing the temperature. The present results basically lie between Ree’s and

Nicolas’. A very challenging and critical comparison for the present methodology

is on γ̄v, which, from (16), contains a correlation term on the RHS. That means, if

MDS supplemented by INGA are to generate meaningful replicas of ENV microstate,

it must correctly produce the physical correlation < δEkδP >. Fig. 17 indicates that

this is well achieved.
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Table 3: Comparison of residual of constant volume heat capacity C̄v−
1.5 between NVT and ENV ensemble.

Temperature NVT ensemble ENV ensemble Haile

0.951 0.669 0.696 0.673

1.187 0.637 0.631 0.633

1.288 0.624 0.605 0.617

1.636 0.577 0.558 0.570

2.025 0.525 0.541 0.530

2.231 0.497 0.526 0.516

We mentioned that the correlated fluctuation mean < δEkδP > of γ̄v is the

important characteristic which can show the mechanism of INGA MDS. We use two

different INGA methods to construct the original sample, and the results shown in

Table 2 and illustrate the power of INGA MDS. First method is introduced before

and we write down the answer in the column 2 in comparison with the results of a

previous study. Second method, we separate the random varibles and resample by

itself and result shown in the column 3. We find that the answer of second method

could not represent real correlated between the temperature, i.e., kinetic energy, and

pressure, but first method could. Second method must miss something and so we

could not omit or re-arrange any relation arbitrarily. It would change some physics

from the original sample and that may be recorded in the INGA procedure. Hence,

MDS with INGA really acquires the fundamental physical relation caught in the

original sample.

Finally, we show an example that demonstrates convergence of the coefficient γ̄v to

their statistical averages. Fig. 18 shows faster convergence of the presently computed

result, compared to the one direct MDS result. The relative cost compared to direct
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Table 4: Comparison of thermal pressure coefficient γ̄v between NVT

and ENV ensemble.
Temperature NVT ensemble ENV ensemble Haile

0.951 3.271 3.426 3.517

1.187 3.188 3.184 3.268

1.288 3.145 3.084 3.176

1.636 2.968 2.915 2.920

2.025 2.715 2.794 2.752

2.231 2.556 2.718 2.712

MDS of 200,000 steps in the ENV case is 6, 229/21, 044 = 0.296, i.e., about thirty

percent because of INGA handling now a sample size 20,000 rather than 500. It must

be noted, however, that properties like Cv = (∂Ē/∂T )N,V , γv = (∂P̄/∂T )N,V can

be computed less expensively by MDS plus INGA with NTV ensemble for different

temperatures. Table 3, 4 illustrate these conditions. In NVT ensemble, we construct

the approximation function to relate Ē to T and P̄ to T obtained by MDS with INGA.

Then, taking the derivative of temperature to obtain C̄v and γ̄v which are shown in the

column 2. The data of column 3 shows the results computed by INGA MDS directly in

ENV ensemble introduced before. Haile also used the empirical functions to approach

the relation and then took the derivative of temperature shown in the column 4. We

find that they are in reasonably agreement with each other. The illustration with

ENV is mainly to show the power of the present sampling methodology in producing

correct physical correlations.
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Figure 16: Adiabatic compressibility κ̄s versus Temperature T.
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Figure 17: Thermal pressure coefficient γ̄v versus Temp. T.

VI. Concluding remarks

The fluctuations are very important in statistical mechanics. Sometimes, it means

the statistical error, but, on the other hand, it means real physics, i.e., it is related to

some physical properties in the macro-scale world (fluctuation-dissipation theorem).

The MDS with INGA simulates successfully these two behaviors of the fluctuation.

The MDS with INGA is presented as a powerful methodology in computing physical

phenomena at the nano-micro scales. In the future work, using this method, we

can find the correlation between arbitrary random variables, i.e., physical properties.

It is hard to achieve in traditional MDS with finite samples. Hence, MDS with
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Figure 18: Convergence of thermal pressure coefficient γ̄v.

INGA proposes a new standpoint for computational physics. In addition, we can

apply MDS with INGA to the quantum molecular dynamics simulations in order to

understand the mechanism if we consider the overlap of electrons. Similarly, we have

the same problem in the quantum molecular dynamics simulations, namely, with one

simulation it is hard to describe the real phenomena at micro-scale world. Using

MDS with INGA, we may obtain more complete statistical picture in the process of

simulations.
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[36] S. Nosé, AUnified Formulation of Constant Temperature Molecular-Dynamics

Methods, J. Chem. Phys., 81, 511, 1984.
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