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中文摘要 
 

 
 

關鍵詞: 連體力學、熱動力學、虛功率原理、特權座標、追蹤控制 
 
 
 

在處理各類物體，如質點、剛體、或變形體受有約束的力學問題時，
變分原理常能提供一適當的解決途徑。本計畫之主要課題，乃在已建
立的基礎上，繼續探討虛功率原理(Principle of Virtual Power)的可
能應用與推廣，以及是否可將該原理與熱力學定律整合成統一熱與力之
變分原理。經過近一年的研究，我們在確定速度及速梯度(velocity and 
velocity gradient)為力學基本變數，溫度或商(temperature or 
entropy)及熱通率(heat flux)為熱力學基本變數後，確可統合熱力學
與連體力學，完成統一虛功率原理，並據以導得變分方程，從而推出
連體動量平衡及角動量平衡原理(Cauchy’s laws of linear and 
angular momentum)及新導出之連 體 變分組成率(variational 
constitutive law)。在選取適當的內能函數(internal energy)與耗散
函數(dissipating function)後，即可推出彈性固體、黏性流體之組成
律及熱力學組成律Fourier Law及 Maxwell-Catteneo Equation。詳細
討論請參考本報告第一部份。此外，在追蹤控制方面，我們將系統座標
分成特權座標與非特權座標兩類，雖然各有其設計軌跡，但我們採取雙
迴圈控制策略，即先控制特權座標到其軌跡，再依特權座標與非特權座
標關係，調整特權座標設計軌跡，使得非特權座標亦能趨近於設計軌
跡。我們將此策略運用於三輪自走車的軌跡追蹤控制上，效果良好，請
參考本報告第二部份。 
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英文摘要 
 

 
Keywords: Continuum Mechanics, Thermodynamics, Principle of Virtual 

Power, Privileged Coordinates, Tracking Control 
 
 
 

In dealing with the mechanics of material bodies modeled by 
particles, rigid body, or deformable body subject to various types of 
constraint, variational principles can usually provide a suitable path to 
obtain the solutions. The main objective of this project is to seek 
additional applications and possible extensions on the basis of the 
Principle of Virtual Power, and to explore whether the proposed principle 
can be unified with the law of thermodynamics to form a unified 
variational principle. After nearly one-year term of endeavor, we are able 
to obtain the desired Principle by choosing the velocity and the velocity 
gradient as fundamental variables in mechanics, and the entropy and the 
hear flux as the fundamental quantities in theomodynamics. The Principle 
indeed unify the theory of thermodynamics and continuum mechanics, 
from which a variational equation can be established. The Cauchy’s laws 
of linear and angular momentum and the newly developed variational 
constitutive law are then deduced. By selecting appropriate internal 
energy function and dissipating function, we could derive the constitutive 
equations for elastic body or viscous fluid in mechanics, and Fourier law 
and Maxwell-Catteneo Equation, which are treated as the constitutive 
equation in thermodynamics. See Part I of this report for more detailed. 
On the other hand, to perform tracking control, we divide the system 
coordinates into two sets: privileged coordinates and non-privileged 
coordinates. While all the coordinates have their desired trajectory, two 
control loops are designed. The inner loop drives the privileged 
coordinates to their desired value. The relations between privileged 
coordinates and non-privileged coordinates are then used to change the 
desired values of privileged coordinates so that the non-privileged ones 
can be tracked. We apply the strategy to the trajectory tracking control of 
a three-wheeled vehicle and the performance is quite well. The results are 
shown in Part II of this report. 
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PART I
Abstract

In this report is presented a uni�ed variational principle for the motion of a heat-conducting continuum,
which is based on a recent publication [1] and a paper in preparation of the same title [2]. The principles and
equations of classical mechanics and thermodynamics as summarized in the �rst half of this report can all be
recovered from the single uni�ed variational principle, which is discussed in the second half of this report to the
Workshop.

1 Introduction
In the preface to the presentation of his principle of least constraints in 1829, Gauss makes the following remark
as recorded in the classical treatise on mechanics by Mach (1893, p. 441, [5]), �No essentially new principle
can now be established in mechanics; but this does not exclude the discovery of new points of view, from which
mechanical phenomena may be fruitfully contemplated.� The variational principle proposed in this report, the
principle of virtual power, is of no exception.

The proposed principle is a uni�ed approach to study the motion of material bodies modeled by particles
(mass with no extent), rigid bodies (mass with constant extent), and deformable continua (mass with variable
extent). For continua, there are additional considerations of heat conduction and energy dissipation in material
bodies. Since the proposition of three laws of motion by Newton in 1687 [3], many fundamental principles of
mechanics have been proposed [6][7], including D�Alembert�s principle and Gauss�s principle for discrete systems
of particles; Euler�s principles of linear and angular momentum for rigid bodies [8], as well as for deformable
continua [13]; and the energy principle based on the �rst and second laws of thermodynamics [14][15]. The
proposed principle is independent of all aforementioned principles.

The term of virtual velocity was used interchangeably with that of virtual displacement in the original
work of Bernoulli. The Principle of Virtual Displacement was later called the Principle of Virtual Work, and
hence the title of Principle of Virtual Power appeared frequently in the literature in connection with virtual
velocity. In this report, the virtual velocity means an imposed arbitrary, in�nitesimal, and instantaneous
change of the velocity of a particle or a mass element at a given position. For a discrete or isentropic continuous
system constrained by whichever means, the Principle asserts that the total virtual power generated by the net
applied forces in a dynamic system is balanced by the virtual change of internal power for all virtual velocities
compatible with constraints. For a continuum with heat conduction, we must consider the virtual changes of
several thermovariables and the virtual change of internal power is balanced by the additional virtual change of
the net applied heating. Associated with the principle, a fundamental variational equation of thermomechanical
process in virtual velocity and other thermokinetic variables is postulated.

By applying di¤erent conditions of constraints to the variational equation, we can derive the basic equations
of motion for discrete systems of particles, including the Lagrange equation, the Appell equation, and the
Gibbs-Appell equation for holonomic and nonholonomic system [7][9]; the Euler equation for the translation
and rotation of rigid bodies; the Cauchy�s �rst and second equations of motion (linear and angular momentum)
for continua in local form [11]. In addition, we derive from the same variational equation the variational form
of constitutive equations of the material bodies which are characterized by the internal energy function and the
newly introduced dissipation function appropriate for elastic solid, ideal �uid, viscous �uid, and thermoelastic
solids. In addition, the Fourier equation of heat conduction as well as the modi�ed form of Maxwell-Catteneo
equation can all be recovered from the variations of the appropriate internal energy and dissipation functions.
We summary in the next two sections several familiar basic laws and the principles of mechanics, and those
of thermodynamics. The former are essential to the science of motion, and the latter to the science of heat.
Together they form the basis of our postulating the uni�ed variational principle and the variational equation.

2 Laws and Principles of Mechanics
All principles of mechanics are based on Newton�s law for the motion of a material body. The body is modelled
by a single particle, and the law may be stated as follows.
(1) Newton�s Law � The second law of motion states that the change of momentum m_r is proportional to
the impressed force F, i.e.

d

dt
(m_r) = F: (1)
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(2) Newtonian Principle � For a system of N particles of mj (j = 1; � � � ; N) , connected by whatever
fashion, the Newton�s Law is modi�ed to the following form for each particle [4]

mj�rj = Fj +

NX
k=1;
k 6=j

fjk = F
I
j + F

C
j ; (2)

where Fj denotes the external force applied to each particle, fjk the interactive forces among pair of particles,
and the total force is decomposed into the impressed force FIj and the constraint force F

C
j : This system of

di¤erential equations must be supplemented with conditions of constraints in order to determine the constraint
forces FCj and the motion.
(3) Variational Equations of Motion for Discrete Systems � The constraint forces are removed from
the equations of motion based upon di¤erent postulates of principles of mechanics:

X
j

(FIj �mj�rj) � �rj = 0; (D�Alembert-Lagr. Eq.)

X
j

�
FIj �mj�rj

�
� �1 _rj = 0; (Jourdain Eq.) (3)

X
j

�
FIj �mj�rj

�
� �2�rj = 0: (Gauss-Gibbs Eq.)

The virtual displacement �rj ; the virtual velocity �1 _rj ; and the virtual acceleration �2�rj in respective equation
are constrained by geometric or kinematic conditions of constraints for holonomic or nonholonomic systems.
(4) Conservation Law of Mass � In classical mechanics, the mass of a particle or that of a mass element in
a material body is assumed to remain constant during the motion. A continuum is regarded as an aggregate of
in�nite number of interconnected particles, and the summation over mass mj is replaced by the integration over
the mass element dm over the body B in a volumn V enclosed by the surface A: The mass element is further
transformed to the volume element dV by the distribution of the density function �. The conservation law of
mass is thus expressed as

m =

Z
B
dm =

Z
V
�dV=constant: (4)

>From this law, the equation of continuity _�+ �r � v =0 can be derived.
(5) Eulerian Principles of Momenta for a continuum � The principle of linear momentum is

d

dt

Z
B
_rdm =

Z
B
dF =

Z
B
fBdm+

Z
A
t(n)dA: (5)

where fB denotes the body force per unit mass, and t(n) the surface force per unit area acting on dA with unit
outer normal vector n. Euler postulates the additional principle of angular momentum expressed as

d

dt

Z
B
r� _rdm =

Z
B
r� dF: (6)

(6) Euler�s Equation for a Rigid Body � A body is said to be rigid if the distance between each and every
pair of particles or mass elements remain constant. For a rigid body, the two Eulerian equations of motion are

m�rc = F; Ic� _! � ! � Ic�!= LC ; (7)

where m =
R
B dm; mr

c =
R
B rdm; F =

R
B dF; L

C =
R
B(r� r

c)� dF: In the equation of angular momentum, Ic
is the moment of inertia of the body rotating with the angular velocity !:
(7) The Cauchy Equations for Deformable Continuum � Cauchy introduced the stress tensor � in the
Principle of Stress,

t(n) = n��: (8)

He then applied the divergence theorem to the surface integral in eqs. (5), (6) to derive the local linear and
angular momentum equations for a mass element �dV;

� _v=�fB +r��; (Cauchy 1st eq.) (9)

� = �T ; (Cauchy 2nd eq., �ij = �ji) (10)
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where v � _r and it is given approximately by @u=@t in linear theory of deformation with displacement u:
(8) Constitutive Equations � The constitutive equations for material bodies are originally established from
observations. The equation for elastic solids was based on Hooke�s law and extended by Cauchy to the following
anisotropic form

� = C : " = C : ru; (elastic solid) (11)

where " is the strain of the body approximated by (ru+ ur)=2 in linear theory of elasticity, and C is a fourth
ranked tensor of material constants. For viscous �uids, the equation was based on Newton�s law of viscous �ow,
and extended to the following anisotropic form by Stokes:

�d = C0 : D = C : rv; (viscous �uid) (12)

where �d is the dissipative part of �; D = (rv + vr)=2 is the stretching tensor of a continuum, and C0 is
another tensor of material constants. Substituting the previous constitutive equations to eq. (5) gives rise to
the Navier-Cauchy equation for an elastic solid [10] and the Navier-Stokes equation for a viscous �uid [12],
respectively.

3 Laws of Thermodynamics
The heat is a form of energy that has the dimension of mechanical work but cannot be expressed in terms of
mechanical variables. When the physical state of a material body is changed from a state of thermo equilibrium,
the �rst law states that the increment of internal energy is balanced by the incremental work done on the body
and the heat supply to the body. The second law of thermodynamics was originally developed to investigate the
upper limit of heat supply that can be converted to mechanical work. If the change of states is dynamic, these
laws are modi�ed and extended to a continuum in the following forms, or having the dimension of mechanical
power (work done per unit time).
(9) First Law of Thermodynamics �Let U denote the internal energy of the body, Q the heating or the
rate of heat supply to the material body, and W the net working, which is the di¤erence between the rate of
work done by the mechanical forces and the rate of kinetic energy of the body. The �rst law is then expressed
as [15]

_U =W +Q: (13)

For a continuum, one de�nes the respective quantities as follows:

_U =
Z
V
� _U dV; (14)

W =

Z
B
_r � dF� 1

2

Z
V
� _r � _rdV (15)

=

Z
V
�(fB ��r) � vdV+

Z
A
t(n) � �1vdA; (16)

Q =
Z
V
�qbdV �

Z
A
q � n dA; (17)

where qb is the body heating per unit mass and q is the heat �ux �owing across the surface dA with unit outer
normal n.
(10) Second Law of Thermodynamics � The second law of thermodynamics relates the heating to the
rate of change of the entropy S at a given temperature � in absolute scale by the following inequality

� _S � Q: (18)

For a continuum, both entropy and heating must be de�ned in local variables and the inequality is expressed as

Z
V
� _S dV �

Z
V

�qb

�
dV �

Z
A

q

�
�n dA (19)

=

Z
V
(
�qb

�
�r � q

�
)dV: (20)

where S denotes the entropy density per unit volume. These two laws are retained with a modi�cation in our
formulation of the variational principle.
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4 Principle of Virtual Power and Variational Equation
In our formulation of variational principle of thermomechanics, we retain the conservation law of mass (4), the
�rst law of thermodynamics (13), and the modi�ed second law by adding the internal dissipation of energy R
to equation (18). The inequality of entropy is then modi�ed to an equality in the following form:Z

V
� _SdV =

Z
V
(
�qb

�
�r � q

�
)dV +

Z
V

R

�
dV; (21)

where

R �
Z
V
RdV � 0: (22)

The combination of the equality and the inequality in the previous two equations replaces the second law of
thermodynamics.

Substituting the expression of (�qb � r � q) from eq. (21) in local form into the integrand of Eq.(13), we
obtain

W +Q0 = _U +R; R � 0 (23)

where Q0 is called the net applied heating given by

Q0 =

Z
V
�� _SdV �

Z
V

r�
�
� qdV: (24)

This is called the modi�ed second law of thermodynamics in this paper.
On the basis of the modi�ed second law which de�nes the upper bound for heating conversion and energy

dissipation in a thermomechanical process, we introduce a basic principle of thermomechanics, the Principle of
Virtual Power, as follows:

In all thermo-mechanical processes, the sum-total of virtual power by the net forces and that by the
net heating is balanced by the virtual change of internal power of the material body for all virtual
changes of time-rate state variables compatible with constraints on the body.

This Principle can be expressed mathematically by the variational equation

Z
B
�1v�(dF��rdm) +

Z
V
(���1 _S �

1

�
r� � �1q)dV

= �1 _U + �1R0; (25)

where R0, which is called the dissipation function of the body, is di¤erent from R in general. The virtual change
of the velocity and other rate variables in thermo kinetics are denoted by the symbol �1v with the understanding
�1r =�1t = 0 as �rst introduced by Jourdain [7]. The �1 variation operates only on rate variables of mechanics
and thermokinetics such as the v; rv; _S; q:

The constraints mentioned in the Principle include the traditional condition of geometric constraints and
that of kinematic constraints. The constraint on the velocity and displacement of a rigid body are regarded as
one of the constitutive equations in modern theory of continuum mechanics [11]. Conversely, we shall consider
all constitutive equations of material bodies as constraints in the variational principle. For example, the Fourier
law of heat conduction considered as energetic constitutive equations of a heat conducting continuum may also
be considered as a condition of constraints in the principle.

The familiar Hookes� law for an elastic solid is considered as a kinetic (mechanical) constitutive equation
of a continuum, which relates the stress � to the strain ": It imposes obviously a constraint on the variation
of stretching �1D because D ' _" in linear theory. On the other hand, the � which is conjugate of �1D in the
product � : �1D is an unknown in the variational equation. The constraint on �1D is thus removed to render
it an independent variation. This is why the constitutive equation can be derived directly from the variational
principle.

5 Dynamics of Particles
For a discrete system of particles, we omit all the considerations of heat �ow (�1Q0 = 0) and set �1 _U and �1R0

to be zero. The variational equation (25) is reduced to the Jourdain variational equation of particles in Eq. (3).
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Based on this reduced form, we can recover all dynamical equations of particles, such as Lagrange�s equation,
Appell�s equation, Gibbs-Appell equation, and so on [1]. In addition, we can derive the equations of motion for
systems with nonlinear kinematical constraints. Details will be reported by Li-Sheng Wang in this workshop
along with a comparison of di¤erential variational principles and integral variational principles. The former was
based upon the point variations and the latter on the path variation of physical variables describing the motion
of the system.

6 Dynamics of Rigid Bodies with Heat Conduction
For a heat-conducting material body, we convert the internal energy density U to the free energy density F in
the variational equation by the de�nition U � F + �S: The variational equation (25) is then converted to

Z
B
�1v�(dF��rdm) +

Z
V
(��S�1 _� �

1

�
r� � �1q)dV

=

Z
V
(��1 _F + �1R

0)dV: (26)

Applying the condition of kinematic constraints on a rigid body, _r = _rc + ! � (r � rc) and assuming that F
is a function of � only and R0 is a function of � and q only, we reduce the previous variational equation into
a simple form of variational equation in �1vc; �1!; �1 _�; and �1q: From the �rst two variations, we recover the
Euler�s equations of motion for a rigid body, Eq. (7), and from the last two we recover the Fourier equation of
heat conduction

q = ��r�; (27)

where � denotes the coe¢ cient of heat conduction as a constitutive equation. In addition, if we assume that F
is a function of �; q; we can recover the Maxwell-Catteneo equation which gives rise to the wave equation for
the temperature � in heat conduction [20]. Details will be given by Kuo-Ching Chen in another report of this
workshop.

7 Dynamics of Thermoelastic Solids
For a deformable material body, we �rst applied the variational equation (25) with dF =�fBdV + t(n)dA to
a cubic element bounded by six rectangular planes �AJ , with unit outer normal nJ ; J = 1; :::; 6: and found
that the relation between the stress vector t(n) and the stress tensor as in the Cauchy stress principle. We then
obtain another variational equation involving �ve virtual variables, �1v; �1D; �1
 = �1(rv � vr)=2; �1 _�; and
�1q. By assuming that F is a function of �, ";and R0 a function of � ,q , we can recover the Cauchy�s �rst
equation (9) and second equation (10) from the variations �1v; �1
 and establish the constitutive equations for
a thermoelastic solid as follows.

�=
@F̂

@�
; S = �@F̂

@�
;

1

�
r� = �@R̂

0

@q
:

The last constitutive equation reduces to the Fourier equation of heat conduction (27) if we assume that
R̂0 = (1=2��)qTq; and it can be modi�ed to derive the Maxwell-Catteneo equation as in the previous sections.

Substituting the previous results of �ve equations derived from the variational principle into the �rst and
modi�ed second laws (13), (23), respectively, we �nd the reduced energy equation and the expression for the
internal energy loss

�� _S = �qb �r � q; R = q � @R
0

@q
: (28)

These seven equations and the conservation of mass complete the formulation of the linear theory of thermoelas-
ticity for heat waves [20].

Finally we note the complete theory of thermomechanics as discussed in this report can not be deduced from
a single variational principle proposed by Piola[16], Germain[17], Maugin[19], or in a recent report by Green &
Naghdi[18].
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Part II 
 
1. Introduction 
 
Tracking control for autonomous vehicles or mobile robots plays an essential role in the 
exploration of hazardous areas or planets, such as Mars. If the motion is realized through 
no-sliding wheels, the problem associated with nonholonomic constraints naturally arise. Based 
on Jourdain’s variational equation, it is possible to formulate the dynamics of such system in 
terms of the privileged coordinates.  Given the desired trajectory, the corresponding reduced 
Appell’s equation can be used to design the control law for the privileged coordinates. On the 
other hand, to track the non-privileged coordinates, the conditions of constraints are re-structured 
from which the compensations for the desired values of privileged coordinates are computed. 
From the simulation results, it is shown that such hierarchical tracking control strategy which 
simultaneously takes kinematics and dynamics into consideration indeed gives rise to an effective 
algorithm for tracking problem. 
 
2. Problem Description 

The non-integrability of the nonholonomic constraints makes the problem of tracking control 
of mobile robot with rolling-without-sliding wheels very difficult to be managed. In the literature, 
cf. [1], some approaches are based on the kinematic equations and the dynamical equations of the 
system are not taken into consideration. Such methods ignore the mass and the moment of inertia 
of the system and thus the designs are deemed impractical. Some of the other methods combine 
both sets of kinematic and dynamic equations together and consider either enlarged or reduced set 
of equations to find the control law. However, the former case raises the complexity of the design, 
while the latter may be subject to under-actuated problem. It is then desired to develop a feasible 
and practical methodology of controller design which appropriately accommodates the dynamics 
and the kinematic constraints. The hierarchical tracking control algorithm proposed in this paper 
suits such need. 

The practical problem to be solved in this paper is the tracking of a desired trajectory for a 
three-wheeled mobile robot, cf. [3], whose configuration is depicted in Figure 1, moving on a 
horizontal plane. The system may be modeled by a rigid body interconnected with two 
rolling-without-sliding wheels, cf. Figure 2. The castor wheel is ignored due to its negligible 
effects on the dynamics of the system. The motion of the wheels may be described by (xj, 
yj, ,j jψ θ ), , where (x1,2j = j, yj) denote the coordinates of the center of mass and ,j jψ θ  are the 
rotation angle and the orientation angle of the wheels, respectively. The body may be 
characterized by (x3, y3, 3θ ), where 3θ  denotes the heading angle of the vehicle. There are total of 
11 variables which are subject to five holonomic constraints: (1) 1 2θ θ θ= ≡ , (2) 2 3θ θ ≡θ= , (3) 

3 1y y cosb sindθ θ+= − , (4) x x3 1 cosdsinb θ θ= + + , (5) 2 1 2r r bϕ ϕ= + && & θ ; and four nonholonomic 
constraints: (6) 1 1x r cosϕ θ&=& , (7) 1 1 siny rϕ θ&=& , (8) 2 2 cosx rϕ θ= && , (9) 2 2 siy r nϕ θ= &&

1,

. It is assumed 
further that the two wheels are rotated by motors which generate torques 2τ τ , respectively. The 
objective of the design is to obtain a controller which enables the system to track a reference 
trajectory (xjr(t), yjr(t), 3 3( ), ( ), 1, 2, ( ),jr r rt t x t 3 ( )rt( ),yjr j tψ θ θ= ) which satisfies the above-mentioned 
geometric and kinematic constraints.  

 
3. The Methodology 

Based on Jourdain’s variational equation and Appell’s approach, cf. [2], one may choose 
1,ψ θ as privileged coordinates, and derive the reduced Appell’s equations of motion as follows: 
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2 2
1 1 2

2 2 2 2 2 2 2
1 1 2

( 2 2 ) ( 2 2 ) ,
1 2( 2 2 ) [ ( ) ( ) ( 4 ) 4 ]
3

c w c w c

c w c c w c

m m m r m m m br m dr
bm m m br m d b m w m r b m b m dr
r

ϕ θ θ τ τ

,ϕ θ ϕθ

 ′ ′+ + + + + − = +



′ ′ ′+ + + + + + + + + + =

&& &&&

&& &&& &l τ
 

where '  denotes the masses of the components of the system. It is noted that these two 
equations are decoupled from the non-privileged coordinates, and the controller can be designed 
independently to track (

, ,c wm m m

1( ), ( )t tψ θ ). Various methods can be applied to obtain such a controller. 
Here, the adaptive sliding mode controller is adopted due to its capability of dealing with 
parameter uncertainties.  

While the privileged coordinates can be drived to the desired values without too much effort, 
the non-privileged coordinates may deviate from the reference values significantly if the initial 
conditions are not set appropriately or there are some disturbances during the motion. To solve 
this problem, it is noted from the practical experience of driving that we may change the 
reference values of the privileged coordinates to steer the non-privileged coordinates. The 
compensated values for the privileged coordinates may be computed from the kinematic 
equations: (6), (7), (8’) 2 1 cos 2 cosx r bϕ θ θ= + &&& θ , (9’) 2 1 sin 2 siny r bϕ θ θ= + &&& θ , and those for the 
reference trajectory. Let 2 1 2( , )x y= 2 1( ,e

rz , 1 2 2r ),x x y= −z y−  1( , ),r r rϕ θ=v && 1( , ),ϕ θ=y  1( , )r r r ,ϕ θ=y  and  

2

cos 0
( )

sin 2 sin
r
r b

θ
θ θ

 
=  
 

B y , 
2

cos 0
( )

sin 2 sin
rr

r
r r

r
r b

θ
θ θ

 
=  
 

B y , 10 0
0 10

 
=  
 

λ . 

It is found that the corresponding compensation is 1
1 2 2 2( , ) ( ( )( ( ) ) )T r e

r r r tδϕ δθ −= + −B y B y v λz v ∆ , where 
 is used to specify the rate of convergence. From these data, a new set of reference values for 

the privileged coordinates is computed.  The adaptive sliding mode controller mentioned above 
is then invoked to track the new reference, which in turn drives the non-privileged coordinates to 
the desired values. It can be shown that with such hierarchical design, all the variables can be 
steered to the desired value asymptotically. 

λ

 
4. Simulation Result 

Consider the wheeled mobile robot with the following parameters: mw = 1, mc = 20, b = 0.5, 
d = 0.25, r = 0.1. Simulations are conducted to evaluate the performance of the proposed 
methodology. As shown in Figure 3 and 4, the motion of the wheeled mobile robot can track the 
desired trajectory (including the heading) successfully, even if the initial configuration is away 
from the desired configuration. The results demonstrate the effectiveness of the proposed 
hierarchical control scheme which may be extended to general reducible mechanical systems. 
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