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In dealing with the mechanics of material bodies modeled by
particles, rigid body, or deformable body subject to various types of
constraint, variational principles can usualy provide a suitable path to
obtain the solutions. The main objective of this project is to seek
additional applications and possible extensions on the basis of the
Principle of Virtual Power, and to explore whether the proposed principle
can be unified with the law of thermodynamics to form a unified
variational principle. After nearly one-year term of endeavor, we are able
to obtain the desired Principle by choosing the velocity and the velocity
gradient as fundamental variables in mechanics, and the entropy and the
hear flux as the fundamental quantities in theomodynamics. The Principle
indeed unify the theory of thermodynamics and continuum mechanics,
from which a variational equation can be established. The Cauchy’s laws
of linear and angular momentum and the newly developed variational
congtitutive law are then deduced. By selecting appropriate internal
energy function and dissipating function, we could derive the constitutive
eguations for elastic body or viscous fluid in mechanics, and Fourier law
and Maxwell-Catteneo Equation, which are treated as the constitutive
eguation in thermodynamics. See Part | of this report for more detailed.
On the other hand, to perform tracking control, we divide the system
coordinates into two sets: privileged coordinates and non-privileged
coordinates. While all the coordinates have their desired trgjectory, two
control loops are designed. The inner loop drives the privileged
coordinates to their desired value. The relations between privileged
coordinates and non-privileged coordinates are then used to change the
desired values of privileged coordinates so that the non-privileged ones
can be tracked. We apply the strategy to the trgjectory tracking control of
athree-wheeled vehicle and the performance is quite well. The results are
shown in Part |1 of this report.



PART' I

Abstract

In this report is presented a unified variational principle for the motion of a heat-conducting continuum,
which is based on a recent publication [1] and a paper in preparation of the same title [2]. The principles and
equations of classical mechanics and thermodynamics as summarized in the first half of this report can all be
recovered from the single unified variational principle, which is discussed in the second half of this report to the
Workshop.

1 Introduction

In the preface to the presentation of his principle of least constraints in 1829, Gauss makes the following remark
as recorded in the classical treatise on mechanics by Mach (1893, p. 441, [5]), “No essentially new principle
can now be established in mechanics; but this does not exclude the discovery of new points of view, from which
mechanical phenomena may be fruitfully contemplated.” The variational principle proposed in this report, the
principle of virtual power, is of no exception.

The proposed principle is a unified approach to study the motion of material bodies modeled by particles
(mass with no extent), rigid bodies (mass with constant extent), and deformable continua (mass with variable
extent). For continua, there are additional considerations of heat conduction and energy dissipation in material
bodies. Since the proposition of three laws of motion by Newton in 1687 [3], many fundamental principles of
mechanics have been proposed [6][7], including D’Alembert’s principle and Gauss’s principle for discrete systems
of particles; Euler’s principles of linear and angular momentum for rigid bodies [8], as well as for deformable
continua [13]; and the energy principle based on the first and second laws of thermodynamics [14][15]. The
proposed principle is independent of all aforementioned principles.

The term of virtual velocity was used interchangeably with that of virtual displacement in the original
work of Bernoulli. The Principle of Virtual Displacement was later called the Principle of Virtual Work, and
hence the title of Principle of Virtual Power appeared frequently in the literature in connection with virtual
velocity. In this report, the virtual velocity means an imposed arbitrary, infinitesimal, and instantaneous
change of the velocity of a particle or a mass element at a given position. For a discrete or isentropic continuous
system constrained by whichever means, the Principle asserts that the total virtual power generated by the net
applied forces in a dynamic system is balanced by the virtual change of internal power for all virtual velocities
compatible with constraints. For a continuum with heat conduction, we must consider the virtual changes of
several thermovariables and the virtual change of internal power is balanced by the additional virtual change of
the net applied heating. Associated with the principle, a fundamental variational equation of thermomechanical
process in virtual velocity and other thermokinetic variables is postulated.

By applying different conditions of constraints to the variational equation, we can derive the basic equations
of motion for discrete systems of particles, including the Lagrange equation, the Appell equation, and the
Gibbs-Appell equation for holonomic and nonholonomic system [7][9]; the Euler equation for the translation
and rotation of rigid bodies; the Cauchy’s first and second equations of motion (linear and angular momentum)
for continua in local form [11]. In addition, we derive from the same variational equation the variational form
of constitutive equations of the material bodies which are characterized by the internal energy function and the
newly introduced dissipation function appropriate for elastic solid, ideal fluid, viscous fluid, and thermoelastic
solids. In addition, the Fourier equation of heat conduction as well as the modified form of Maxwell-Catteneo
equation can all be recovered from the variations of the appropriate internal energy and dissipation functions.
We summary in the next two sections several familiar basic laws and the principles of mechanics, and those
of thermodynamics. The former are essential to the science of motion, and the latter to the science of heat.
Together they form the basis of our postulating the unified variational principle and the variational equation.

2 Laws and Principles of Mechanics

All principles of mechanics are based on Newton’s law for the motion of a material body. The body is modelled
by a single particle, and the law may be stated as follows.

(1) Newton’s Law — The second law of motion states that the change of momentum mf is proportional to
the impressed force F, i.e.

= (mt) =F. (1)



(2) Newtonian Principle — For a system of N particles of m; (j = 1,---,N) , connected by whatever
fashion, the Newton’s Law is modified to the following form for each particle [4]

N
k=1,
k#j

where F; denotes the external force applied to each particle, fj; the interactive forces among pair of particles,
and the total force is decomposed into the impressed force F; and the constraint force F]C This system of
differential equations must be supplemented with conditions of constraints in order to determine the constraint
forces FJC and the motion.

(3) Variational Equations of Motion for Discrete Systems — The constraint forces are removed from
the equations of motion based upon different postulates of principles of mechanics:

Z(F; —m;¥;) - dr; = 0, (D’Alembert-Lagr. Eq.)
J
Z (F; — mji‘j) 611 = 0, (Jourdain Eq.) (3)
J
Z (FJI - mji:j) - 62F; = 0. (Gauss-Gibbs Eq.)
J
The virtual displacement dr;, the virtual velocity d11;, and the virtual acceleration d2¥; in respective equation
are constrained by geometric or kinematic conditions of constraints for holonomic or nonholonomic systems.
(4) Conservation Law of Mass — In classical mechanics, the mass of a particle or that of a mass element in
a material body is assumed to remain constant during the motion. A continuum is regarded as an aggregate of
infinite number of interconnected particles, and the summation over mass m; is replaced by the integration over
the mass element dm over the body B in a volumn V enclosed by the surface A. The mass element is further
transformed to the volume element dV by the distribution of the density function p. The conservation law of
mass is thus expressed as

m:/dm:/pdV:constant. (4)
B %

>From this law, the equation of continuity p + pV - v =0 can be derived.
(5) Eulerian Principles of Momenta for a continuum — The principle of linear momentum is

—i/Mm:/ﬁF:/f%m+/ﬂmMﬂ (5)
dt Js B B A

where £2 denotes the body force per unit mass, and ™ the surface force per unit arca acting on dA with unit
outer normal vector n. Euler postulates the additional principle of angular momentum expressed as

i/rxf‘dm:/rxdF. (6)

(6) Euler’s Equation for a Rigid Body — A body is said to be rigid if the distance between each and every
pair of particles or mass elements remain constant. For a rigid body, the two Eulerian equations of motion are

mi® = F, I°0 — w x I°w= L, (7)
where m = fB dm, mr¢ = fB rdm, F = fB dF, L = fB(r —1°) X dF. In the equation of angular momentum, I¢
is the moment of inertia of the body rotating with the angular velocity w.

(7) The Cauchy Equations for Deformable Continuum — Cauchy introduced the stress tensor o in the
Principle of Stress,

t® = n.o. (8)
He then applied the divergence theorem to the surface integral in egs. (5), (6) to derive the local linear and
angular momentum equations for a mass element pdV,

pv=pf? + V.o, (Cauchy Ist eq.) (9)
o=0", (Cauchy 2nd eq., 0y; = 0;) (10)



where v = I and it is given approximately by du/d¢ in linear theory of deformation with displacement u.

(8) Constitutive Equations — The constitutive equations for material bodies are originally established from
observations. The equation for elastic solids was based on Hooke’s law and extended by Cauchy to the following
anisotropic form

o =C:e=C:Vu, (elastic solid) (11)
where ¢ is the strain of the body approximated by (Vu 4 uV)/2 in linear theory of elasticity, and C is a fourth
ranked tensor of material constants. For viscous fluids, the equation was based on Newton’s law of viscous flow,
and extended to the following anisotropic form by Stokes:

0’ =C':D = C: Vv; (viscous fluid) (12)

where o is the dissipative part of o, D = (Vv +vV)/2 is the stretching tensor of a continuum, and C' is
another tensor of material constants. Substituting the previous constitutive equations to eq. (5) gives rise to
the Navier-Cauchy equation for an elastic solid [10] and the Navier-Stokes equation for a viscous fluid [12],
respectively.

3 Laws of Thermodynamics

The heat is a form of energy that has the dimension of mechanical work but cannot be expressed in terms of
mechanical variables. When the physical state of a material body is changed from a state of thermo equilibrium,
the first law states that the increment of internal energy is balanced by the incremental work done on the body
and the heat supply to the body. The second law of thermodynamics was originally developed to investigate the
upper limit of heat supply that can be converted to mechanical work. If the change of states is dynamic, these
laws are modified and extended to a continuum in the following forms, or having the dimension of mechanical
power (work done per unit time).
(9) First Law of Thermodynamics — Let U denote the internal energy of the body, Q the heating or the
rate of heat supply to the material body, and W the net working, which is the difference between the rate of
work done by the mechanical forces and the rate of kinetic energy of the body. The first law is then expressed
as [15]

U=w+Q. (13)

For a continuum, one defines the respective quantities as follows:

L'{:/pUdV, (14)

v

W:/f~dF—1/pr-rdv (15)
B 2 %

:/p(fB—f).vdv+/ t™ . 51vdA, (16)

v A

Q:/qude/ q-ndA, (17)
v A

where ¢” is the body heating per unit mass and q is the heat flux flowing across the surface dA with unit outer
normal n.

(10) Second Law of Thermodynamics — The second law of thermodynamics relates the heating to the
rate of change of the entropy S at a given temperature 6 in absolute scale by the following inequality
68> 0Q. (18)

For a continuum, both entropy and heating must be defined in local variables and the inequality is expressed as

b
/vadVZ/v%de/A%-ndA (19)
b
:/v(%_ .%)dv. (20)

where S denotes the entropy density per unit volume. These two laws are retained with a modification in our
formulation of the variational principle.



4  Principle of Virtual Power and Variational Equation

In our formulation of variational principle of thermomechanics, we retain the conservation law of mass (4), the
first law of thermodynamics (13), and the modified second law by adding the internal dissipation of energy R
to equation (18). The inequality of entropy is then modified to an equality in the following form:

b
/psdv:/(%— -%)dv+/ %dV, (21)
v \% %

R z/ RdV > 0. (22)
v

where

The combination of the equality and the inequality in the previous two equations replaces the second law of
thermodynamics.

Substituting the expression of (pg® — V - q) from eq. (21) in local form into the integrand of Eq.(13), we
obtain

W+Q =U+R, R>0 (23)
where Q' is called the net applied heating given by

Q = / p0SdV — / @-qdv. (24)
v v 0

This is called the modified second law of thermodynamics in this paper.

On the basis of the modified second law which defines the upper bound for heating conversion and energy
dissipation in a thermomechanical process, we introduce a basic principle of thermomechanics, the Principle of
Virtual Power, as follows:

In all thermo-mechanical processes, the sum-total of virtual power by the net forces and that by the
net heating is balanced by the virtual change of internal power of the material body for all virtual
changes of time-rate state variables compatible with constraints on the body.

This Principle can be expressed mathematically by the variational equation

/ §1v-(dF — ¥dm) + / (ph5:1S — %V@ -01q)dV
B v

= (511/[ + (SlRI, (25)

where R', which is called the dissipation function of the body, is different from R in general. The virtual change
of the velocity and other rate variables in thermo kinetics are denoted by the symbol d; v with the understanding
01r =01t = 0 as first introduced by Jourdain [7]. The 01 variation operates only on rate variables of mechanics
and thermokinetics such as the v, Vv, S, q.

The constraints mentioned in the Principle include the traditional condition of geometric constraints and
that of kinematic constraints. The constraint on the velocity and displacement of a rigid body are regarded as
one of the constitutive equations in modern theory of continuum mechanics [11]. Conversely, we shall consider
all constitutive equations of material bodies as constraints in the variational principle. For example, the Fourier
law of heat conduction considered as energetic constitutive equations of a heat conducting continuum may also
be considered as a condition of constraints in the principle.

The familiar Hookes’ law for an elastic solid is considered as a kinetic (mechanical) constitutive equation
of a continuum, which relates the stress o to the strain . It imposes obviously a constraint on the variation
of stretching 1D because D ~ ¢ in linear theory. On the other hand, the o which is conjugate of §;D in the
product o : 61D is an unknown in the variational equation. The constraint on 61D is thus removed to render
it an independent variation. This is why the constitutive equation can be derived directly from the variational
principle.

5 Dynamics of Particles

For a discrete system of particles, we omit all the considerations of heat flow (d: Q' = 0) and set 61H and 6; R’
to be zero. The variational equation (25) is reduced to the Jourdain variational equation of particles in Eq. (3).



Based on this reduced form, we can recover all dynamical equations of particles, such as Lagrange’s equation,
Appell’s equation, Gibbs-Appell equation, and so on [1]. In addition, we can derive the equations of motion for
systems with nonlinear kinematical constraints. Details will be reported by Li-Sheng Wang in this workshop
along with a comparison of differential variational principles and integral variational principles. The former was
based upon the point variations and the latter on the path variation of physical variables describing the motion
of the system.

6 Dynamics of Rigid Bodies with Heat Conduction

For a heat-conducting material body, we convert the internal energy density U to the free energy density F' in
the variational equation by the definition U = F + 0S. The variational equation (25) is then converted to

/61v-(dF—i‘dm)+/(—pS6lé— %V@-élq)dV

B v

I/(p51F+51R/)dV. (26)
v

Applying the condition of kinematic constraints on a rigid body, ¥ = #° + w x (r — r°) and assuming that F’
is a function of @ only and R’ is a function of # and q only, we reduce the previous variational equation into
a simple form of variational equation in §1v°, 1w, 519, and d1q. From the first two variations, we recover the
Euler’s equations of motion for a rigid body, Eq. (7), and from the last two we recover the Fourier equation of
heat conduction

q=—-kV0, (27)

where x denotes the coefficient of heat conduction as a constitutive equation. In addition, if we assume that F'
is a function of 6, q, we can recover the Maxwell-Catteneo equation which gives rise to the wave equation for
the temperature 6 in heat conduction [20]. Details will be given by Kuo-Ching Chen in another report of this
workshop.

7 Dynamics of Thermoelastic Solids

For a deformable material body, we first applied the variational equation (25) with dF =pfZdV + t™dA to
a cubic element bounded by six rectangular planes AA;, with unit outer normal ny, J = 1,...;6. and found
that the relation between the stress vector £ and the stress tensor as in the Cauchy stress principle. We then
obtain another variational equation involving five virtual variables, d1v, 61D, 0:1Q = 61(Vv —vV)/2, 6197 and
d1q. By assuming that F is a function of 0, ¢,and R’ a function of # ,q , we can recover the Cauchy’s first
equation (9) and second equation (10) from the variations d1v, §:€2 and establish the constitutive equations for
a thermoelastic solid as follows.
n n /!

P o oF 1., oR

Oe 00 0 oq
The last constitutive equation reduces to the Fourier equation of heat conduction (27) if we assume that
R = (1/2/€9)qTq7 and it can be modified to derive the Maxwell-Catteneo equation as in the previous sections.

Substituting the previous results of five equations derived from the variational principle into the first and
modified second laws (13), (23), respectively, we find the reduced energy equation and the expression for the
internal energy loss

g

OR’
dq
These seven equations and the conservation of mass complete the formulation of the linear theory of thermoelas-
ticity for heat waves [20].

Finally we note the complete theory of thermomechanics as discussed in this report can not be deduced from

a single variational principle proposed by Piola[16], Germain[17], Maugin[19], or in a recent report by Green &
Naghdi[18].

p9 S=p"—V-q  R=q- ——. (28)
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Part I1

1. Introduction

Tracking control for autonomous vehicles or mobile robots plays an essential role in the
exploration of hazardous areas or planets, such as Mars. If the motion is realized through
no-sliding wheels, the problem associated with nonholonomic constraints naturally arise. Based
on Jourdain’s variational equation, it is possible to formulate the dynamics of such system in
terms of the privileged coordinates. Given the desired trgectory, the corresponding reduced
Appell’s equation can be used to design the control law for the privileged coordinates. On the
other hand, to track the non-privileged coordinates, the conditions of constraints are re-structured
from which the compensations for the desired values of privileged coordinates are computed.
From the simulation results, it is shown that such hierarchical tracking control strategy which
simultaneously takes kinematics and dynamics into consideration indeed gives rise to an effective
algorithm for tracking problem.

2. Problem Description

The non-integrability of the nonholonomic constraints makes the problem of tracking control
of mobile robot with rolling-without-sliding wheels very difficult to be managed. In the literature,
cf. [1], some approaches are based on the kinematic equations and the dynamical equations of the
system are not taken into consideration. Such methods ignore the mass and the moment of inertia
of the system and thus the designs are deemed impractical. Some of the other methods combine
both sets of kinematic and dynamic equations together and consider either enlarged or reduced set
of equations to find the control law. However, the former case raises the complexity of the design,
while the latter may be subject to under-actuated problem. It is then desired to develop afeasible
and practical methodology of controller design which appropriately accommodates the dynamics
and the kinematic constraints. The hierarchical tracking control algorithm proposed in this paper
suits such need.

The practical problem to be solved in this paper is the tracking of a desired tragjectory for a
three-wheeled mobile robot, cf. [3], whose configuration is depicted in Figure 1, moving on a
horizontal plane. The system may be modeled by a rigid body interconnected with two
rolling-without-sliding wheels, cf. Figure 2. The castor wheel is ignored due to its negligible
effects on the dynamics of the system. The motion of the wheels may be described by (x;,
Yiw;.6,),i=12, where (X, y;) denote the coordinates of the center of mass and y,.6, are the

rotation angle and the orientation angle of the wheels, respectively. The body may be
characterized by (xs, y3,6,), where 6, denotes the heading angle of the vehicle. There are total of

11 variables which are subject to five holonomic constraints: (1) 6,=6,=0, (2) 6,=6,=6, (3)
Y,=Y,—bcos@+dsind , (4) x=x+bsnd+dcosd, (5) r¢,=rp,+2b0 ; and four nonholonomic
constraints: (6) x =rg,cos6, (7) y,=r@sind, (8) x =rp,cos0, (9) y,=rg,sné. It is assumed
further that the two wheels are rotated by motors which generate torques r,,z,, respectively. The

objective of the design is to obtain a controller which enables the system to track a reference
trajectory (Xr(t), Vir(t), v, ()., (1), i =12%, (1), (1).6, (t) ) which satisfies the above-mentioned

geometric and kinematic constraints.

3. The Methodology

Based on Jourdain’s variational equation and Appell’s approach, cf. [2], one may choose
w,,0 as privileged coordinates, and derive the reduced Appell’s equations of motion as follows:



(m, +2m, +2m)r@, + (m, + 2m, + 2m)brd —mdré® = 7, + 7,
(m, +2m, +2m")br g, +[m.(d* + bz)Jém;(w2 +02)+m(r? +4b%) + 4m b°]0 + mdrg0 = szrz,

where m,m,,m' denotes the masses of the components of the system. It is noted that these two
equations are decoupled from the non-privileged coordinates, and the controller can be designed
independently to track (w,(t),0(t)). Various methods can be applied to obtain such a controller.

Here, the adaptive dliding mode controller is adopted due to its capability of dealing with
parameter uncertainties.

While the privileged coordinates can be drived to the desired values without too much effort,
the non-privileged coordinates may deviate from the reference values significantly if the initial
conditions are not set appropriately or there are some disturbances during the motion. To solve
this problem, it is noted from the practical experience of driving that we may change the
reference values of the privileged coordinates to steer the non-privileged coordinates. The

compensated values for the privileged coordinates may be computed from the kinematic
equations: (6), (7), (8') % =r¢cosf+200cosd, (9) y,=rpsnd+20dsnd, and those for the

reference trajectory. Let z,=(x,y,), z5=(% —%. Yo ~¥) V. =(%.6), y=(0.0), v, =(¢,,0), ad

B.(y) = r cosd 0 Bi(y )= r cosd, 0 . 10 0}
2% tsng 2dsng| 27| rsno 20sng | “T| 0 10

It is found that the corresponding compensation is (sp,,50)" = (B;}(y)(BL(y, )v, +z5)—v,)At, Where
A 1S used to specify the rate of convergence. From these data, a new set of reference values for
the privileged coordinates is computed. The adaptive diding mode controller mentioned above
is then invoked to track the new reference, which in turn drives the non-privileged coordinates to
the desired values. It can be shown that with such hierarchical design, al the variables can be
steered to the desired value asymptotically.

4. Simulation Result

Consider the wheeled mobile robot with the following parameters. m, = 1, m = 20, b = 0.5,
d = 0.25, r = 0.1. Simulations are conducted to evaluate the performance of the proposed
methodology. As shown in Figure 3 and 4, the motion of the wheeled mobile robot can track the
desired trgjectory (including the heading) successfully, even if the initial configuration is away
from the desired configuration. The results demonstrate the effectiveness of the proposed
hierarchical control scheme which may be extended to general reducible mechanical systems.
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