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Level repulsions of bulk acoustic waves in composite materials
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Level repulsions of bulk acoustic waves in two-dimensional composite materials and phononic crystals are
analyzed in this paper. Detail dispersion curves and displacement (ji@idsization$ of bulk acoustic modes
in thek (wave vectoy space around the region of level repulsion are calculated and discussed. We show that
some cross points of the modes that appear in the dispersion curves in the literature are not true intersections.
Those cross points due to the level repulsions in the dispersion curves imply mode anticrossing. The displace-
ment fields of the two modes around the cross points interchange with each other abruptly. On the other hand,
the other cross points appearing in the dispersion curves are true intersections which implies that the couplings
between the modes are vanishingly small. The continuous displacements of the two wave modes around the
cross points provide the continuous dispersion curves. The polarizations of the different modes could be used
as the criterion of real or apparent cross points in the dispersion curves.
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Recently, the studies of photonic crystals have led to a&ussed. We employed the plane wave expansion method to
rapidly growing interest in the analogous acoustic effects ircalculate the dispersion relations and displacement fields of
phononic crystals or periodic elastic structures. Investigaall the bulk acoustic wavéBAW) modes, i.e., the transverse
tions on the band gaps of bulk acoustic waves in composit@olarization modegshear vertica(SV) mode with polariza-
materials or phononic band structures have been conductefn along the filler directiohand mixed polarization modes
in the paSt d_ecadJe_.lOThe disperSion relations and the band [Shear horizontaﬂSH} and |ong|tud|na|(|_) modes with po-
gap properties of the transverse and mixed polarizationyizaiion lies in the plane perpendicular to the fillerghe

mOde‘? ha\r/]e been studé?,at?d Iexpenment'al SV'%eng? Was continuous displacements of the two wave modes around the
given for the existence of absolute acoustic band gae cross points provide the continuous dispersion curves. The

band gaps for out-of-plane propagation of elastic wave olarizations of the different modes could be used as the

computed in the phononic band structure consisted of ariterion of real or apparent cross points in the dispersion
anisotropic infinite square array of parallel quartz rods em- PP P P

bedded in an epoxy matrix. curves. . . .
In Refs. 6-9, multiple scattering theory was applied to In the following calculations, the formulation based on

study the band gaps of bulk wave properties in threelhe plane wave expansion method presented in Ref. 11 was

dimensional periodic acoustic composites and the band stru@dopted. In an inhomogeneous linear elastic medium with no
ture of a phononic crystal consisting of complex andbody force, the equation of motion of the displacement vec-
frequency-dependent Lame’ coefficients. The finite differ-tor u(r,t) can be written as

ence time domain method was used to interpret the experi-

mental data of the two-dimensional systems consisting of p()Gi(r,t) = 5[ Cijmn(r) dnum(r, )], (1)
cylinders of fluids(Hg, air, and oi inserted periodically in a

finite slab of aluminum hos Recently, the phononic band wherer =(x,2)=(x,y,2) is the position vector ang(r) and
gaps of the surface and bulk acoustic modes in twoC;.,(r) are the position-dependent mass density and elastic
dimensional phononic structures consisting of general anisastiffness tensor, respectively. We consider a phononic crystal
tropic materials were analyzéd#lt is worth noting that there composed of a two-dimensional periodic artayy plang of

is nothing in the literature that analyzes and discusses th@aterialA embedded in a background mate@alDue to the
level repulsion effect in two-dimensional composite materi-spatial periodicity, the material constant&) and Cijmn(¥)

als or phononic crystals. Level repulsion which avoids crosscan be expanded in Fourier series with respect to the two-

ing in the distribution of eigenvalues is common knowledgedimensional reciprocal lattice vecto(BLVS), G=(G;,G,),
within the physics community. The effect is a phenomenoryg

that is likely to be encountered in any system where there are

eigenvalues which depend on some paraniétét. =S o 5
This paper reports on the occurrence of level repulsion in px) = e € Pe 2)

the dispersion relations of the composite materials and

phononic crystals. In this paper, the effects of the level re-

pulsions between the different modes in the dispersion Cijmn(x)zﬁe‘G'Xcgm”, (3)

curves of two-dimensional composite materigdMA/Ni) G

and phononic crystalgNi/PMMA) are analyzed and dis- B

cussed. The criteria and conditions under which the croswhere pg and C{™ are the corresponding Fourier coeffi-

points are distinguished as real or apparent are also disients.
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Dispersion Relations of BAW modes, Cylinder: PMMA / Base: Ni/f = 0.5, RLV=441
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FIG. 1. Dispersion relations of
all the bulk modes: pure SV, SH,
and L modes along thd-X sec-
tion and the pure SV, quasi-SH,
and quasi: modes along the
X-M section in PMMA/Ni com-
posite materials with square lat-
tice. The irreducible part of the
Brillouin zone is shown in the
inset.

To utilize the Bloch’s theorem and to expand the displace- | M — ,2RY Lo yv
. . . . G,G’ G’ G,G’ G,G’
ment vectoru(x,t) in Fourier series for bulk wave analysis,
L(z) M(z) _ w2 (2) U(z)
we have GG’ GG’ G’ GG’
Lo . 1) 2) (3 23
u(x,t) = >, kxTio(@exp ), (4) V\/G,G’ VV(G,G’ Mge ~ @ Rge
wherek =(ky,k,) is the Bloch wave vectow is the circular 5
frequency, and\ is the amplitude of the displacement vec- x| Asr | =0, (5
tor of a bulk acoustic wave. A3
Substituting Eqs(2)—(4) into Eq.(1), and after collecting
terms systematically, we obtain the eigenvalue problem of o @ @ o @
bulk waves as where then X n matricesM M M L L

Dispersion Relations of BAW modes, Cylinder: Ni/ Base: PMMA / f = 0.6, RLV=441
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FIG. 2. Dispersion relations of
all the bulk modes: pure SV, SH,
and L modes along thd-X sec-
tion and the pure SV, quasi-SH,
and quasi: modes along the
X-M section in Ni/PMMA
phononic band structure with
square lattice.
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s I explicit formulations of the plane harmonic bulk wave dis-
quasi-SH, ﬁf’ | Svy persion relations in such a phononic structure in Gywere
e e listed in Ref. 11.
Ty Consider the PMMA/Ni composite materials and Ni/
f quasi-SH.™ T P_MMA_ phononic ban_d structures forming .the two-
w‘" g = 3 ‘ dimensional square lattices with lattice spacag-igures 1
and 2 show the dispersion relations of the bulk modes along
o & the boundaries of the irreducible part of the Brillouin zone
# ‘:%%SuasFS"h with filling fractions f=0.5 andf=0.6 respectively. In the
T 0, ooy calculations, the-y plane is parallel to th€¢001) plane and
S Te“f“ thex axis is parallel to th¢10Q] direction of Ni and PMMA.
rgv & “Foooj The elastic properties of the materials utilized in these two
o 0 < quasi-SH, oo, examples are adopted from Ref. 16 and listed in Ref. 17. The
- vertical axis is the normalized frequeney = wa/C; and the
%o quasi-SH, o(ﬁ”c horizontal axis is the reduced wave veckdr=ka/ . C; in
0% quaSI SH, de'p Figs. 1 and 2 are the shear velocities of Ni and PMMA for
o, 13 %mﬁfﬁ- PMMA/Ni and Ni/PMMA band structures, respectivekyis

©0060066000000009

00000000000000000 7 5 Mumblx the wave vector along the Brillouin zone. In this paper, we
. %%, & quasi-SHy used the 441 numbers of RLV to construct the results in Figs.
quasi-Ly "o, ,poodj' 1 and 2 and this resulted in a good convergence. In the dis-
o Lo , persion relations, the bold solid lines represent the funda-
%, mental(SV,) and the higher shear vertical modé&V, and
%, . SV,, etc). The thin solid lines represent the higher shear
b%%f’_\%:"%% quasi-SH, T vertical modegSV; and S\, etc). The square symbols are
quasi-L, °°¢°:°°°°o¢,,, 3~ SH those for the fundamentdl,) and the higher longitudinal
T4 %oy, o ’ modes(L; andL,, etc). The bold dash lines represent the
K ) fundamental(SH,) and the higher shear horizontal modes
Reduced Wave Vector (ka/r) (SH, and SH, etc) while the lines withx symbols represent
the higher shear horizontal modé3H, and SH, etc).
FIG. 3. Enlarge plots of the dispersion curves around the cross We note that the SH and modes can be decoupled as

T1
\59‘ o, R

Normalized Frequency (walC,)

points T;—Tg. pure modes in a specific propagation direction and become
quasi-SH and quadi-in the other propagation directiofs!®
us D U(z V\/l V\/Z) R(l R(z and R® As the elastic waves propagate along thexis (I'-X sec-

GG GG "'GG"” GG GG GG GG’
functions of the Bloch wave vectd( components of the
two-dimensional RLV, circular frequenay, the Fourier co-
efficients of mass densifys, and components of elastic stiff-
ness tenso€™. n is the total number of RLVs used in the
Fourier expansion and = [AG, AG, AG,]T is the eigenvector

used to calculate the displacement fielgdslarization$

tion), the nonvanishing displacements of the shear horizontal
mode, shear vertical mode, and longitudinal modeuwgre,,
andu,, respectively. For the subsequent modes to appear, we
denote them as the fundamental, first, and second modes, etc.
For waves propagating along the other directi@res, in the

X-M sectiong, they are indeed quasi transverse or longitudi-
nal modes. For convenience, we used the notations of the

n pure modes aK point to designate the quasi modes in the
= > @kxendsxal ), X-M section.
G=1 The calculated results of the dispersion curves in the

X-M section shown in Fig. 1 seem to show that the funda-
mental and the higher shear horizontal modes, quagie®d
u, = S eik.x—iwt(eiG’-xAé,L and quasi_-SH, cross over at poinT,; the dispersiqn curves _of _
G'=1 the higher shear horizontal modes and the higher longitudi-
nal modes(quasi-SH and quask,) crossover at point3s
n and T,. The dispersion curves of the shear vertical modes
u=> eik-x—iwt(eiG’-xAé/)_ and higher shear vertical mod(ﬁvo and SV, SV?, and 5\4})
make crosses at points andTs in the X-M section. In Fig.
2, the dispersion curves of the fundamental and the higher
It is worth noting that the eigenvalugsesonance frequen- shear horizontal modes, quasi-g&hd quasi-Sk cross over
cies calculated from Eq(5) are real by dealing with Her- at point Tg; the dispersion curves of the two higher shear
mitian operators, whereas the exceptional points consideregbrizontal modes(quasi-SH and quasi-Sk) crossover at
in Refs. 12-14 have to do with complex eigenvalues. EquapointsT,. It is worth noting that the dispersion curves of the
tion (5) can be decoupled as the mixed polarization modeswo higher shear horizontal modes in theX section(SH;
[i.e., longitudinal(L) and shear horizontalSH)] and shear and SH) cross over at points. However, by decreasing the
vertical (SV) modes with polarization of the displacement values of both of the frequency and the wave vector intervals
along thez direction (i.e., the filler's length direction The in the calculations around the points ®f—Tg (Fig. 3), we

G'=1
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Displacement Fields of SH,Modes, Cylinder: PMMA / Base: Ni/ f = 0.5, sq.
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Displacement Fields of SH, Modes, Cylinder: PMMA / Base: Ni/f = 0.5, sq.

FIG. 4. Displacement fields of
(@ SHy (b) SH; (c) Ly modes
along the irreducible part of the
Brillouin zone.
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Displacement Fields of L,Modes, Cylinder: PMMA / Base: Ni/f = 0.5, sq.
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found that the intersections of the modes mentioned abovM!. It is worth noting that in the Sfimode, the magnitudes of
are not true intersection, instead, these modes repel awdle displacements, anduy in theI'-M section are equal due
from each other due to the level repulsions at these pointsto the symmetry of the lattice arrangements. The relative
To further examine the characteristics of the level repul-amplitudes of the displacemerjtg| and|u,| shown in Fig. 4
sions at these points, we calculated the displacement fields afe normalized to the maximum value hzfy| of the SH
the SH, SH;, and Ly modes in PMMA/Ni band structure modes in thd-X section[Fig. 4(b)].
along all the boundaries of the irreducible part of Brillouin  Similar to the displacement fields of the fundamental
zone shown in Figs. (4)—-4(c), respectively. Along thd’-X  shear horizontal mode shown in Figasl Figs. 4b) and 4c)
section, the nonvanishing displacement of the shear horizorshow the calculated results of the displacement fields of the
tal mode isu, as expected and it vanishes at the band gaggH, andL, modes. From Fig. 4, we found clearly that the
point X in Fig. 4(a@). As the propagating direction rotates level repulsion phenomena appear at the sharp bend of the
away from theX point, one finds that, remains very small; dispersion curves. Through detailed calculations, we found
however,u, increases gradually until poirf;. At this par-  the similar results occurring at poinig andT, in Fig. 1 and
ticular propagating directiony, suddenly jumps to a very pointsTg, T7, andTg in Fig. 2. It is worth noting that level
small value, whileu, jumps from a small value to a finite repulsion not only exists in the mixed mod&H, L) but also
value and then decays to a small value at the band gap poiitt the decoupled SV modes. For example, level repulsion
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Displacement Fields around cross-point T, Distinguishing of real and apparent cross-points,
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FIG. 5. Displacement fields around the cross pdint

The ultranarrow band gaps induced by the level repulsion
phenomena occur between gdnd S\ modes(Ty), SV iy composite materials or phononic crystals may be sorted

and SV, modes(T5) in the ?(—M section of Fig. 1. Figu_re 5 into two groups: Group (T, T, andT,) and group II(T;,
shows the displacement fields around pdipt The vertical Ts, Te, T, and Tg). The bends of the dispersion curves in
axis is the displacement responses and the horizontal axis b?oup | are smooth, no frequency gap exists between the two
the angle rotated from thé point. In Fig. 5, around the point  gispersion curves. In group II, the sharp bends of the disper-
Tp, we observe that the phenomenon and the displacemegjo curves induce a very small frequency band gap width.
responses jump rapidly and interchange with egch othgpor example, the width of the band gap around Thepoint
From the results shown above, we conclude that in the disg 9 000026,* and located rotated 20.35° from thepoint.
persion curves, the displacement fields change rapidly and |, summary, we have examined the level repulsion phe-
interchange with each other around those points where levelymena of BAW modes in two-dimensional composite ma-
repulsions occurred. _ terials and phononic band structures. From the detail calcu-
On the other hand, we note that the other cross points iftions of the dispersion curves and the displacement fields
the (_jlspersmn curves of_ Figs. 1 _and 2 are real, i.e., the d!stjf BAW modes in thek space, we observed the level repul-
persion curves are true intersections. The reason for causingon and the peculiar effects on the displacement fields of the
the true intersections of the dispersion curves is due to thg,gdes. We found that the cross points of the modes appeared
vanishing small mode couplings. To further demonstrate thaf, the dispersion curves of Figs. 1 and 2 are apparent due to
the cross points appeared in the dispersion curves of Figs. the strong mode couplings. The dispersion curves around the
and 2 are whether real or apparent, we calculated the diggynarent cross points, in fact, approach to each other and
placement fields of the different modes around the crosghen pend away follow the trace of the opposite mode. Fur-
pointsR, [Fig. 6@)] and T, [Fig. &b)] in the'-X andX-M  hermore, the displacements of the two modes around the
sections of Fig. 1. The cross poiR{ represents the intersec- ¢ross points interchange with each other abruptly. On the
tion of theL, mode and Skimode with propagating diréc- other hand, the other cross points appeared in the dispersion
tion along thex axis. As shown in Fig. @), the nonvanishing  ¢yrves of Figs. 1 and 2 are real and in fact they are due to the
displacement of the, mode(u,) and the SHmode(uy) are  yanishing small mode couplings. The continuous displace-
continuous through th&'-X section and therefore it is con- ments of the two wave modes around the cross points pro-
firmed as a real cross point; that is, there is no couplingide the continuous dispersion curves. Finally, the polariza-
between these two modes. Figuré)sshows the apparent tions of the different modes due to the level repulsions could

cross-point in theX-M section of Fig. 1. Two sharp changes pe ysed as the criterion of real or apparent cross-points in the
of u, anduy between the quasi-Stind quasi-Skimodes are  gispersion curves.

found. We note that as the propagation direction turning

away from theX point, those SH modes are not pure SH The authors thank the National Science CourGtant
modes; instead, they are quasi transverse mode and couplbid. NSC92-2212-E-002-058nd the NTU-ITRI center of
with the longitudinal mode. Taiwan for financial support.
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