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Level repulsions of bulk acoustic waves in two-dimensional composite materials and phononic crystals are
analyzed in this paper. Detail dispersion curves and displacement fields(polarizations) of bulk acoustic modes
in the k (wave vector) space around the region of level repulsion are calculated and discussed. We show that
some cross points of the modes that appear in the dispersion curves in the literature are not true intersections.
Those cross points due to the level repulsions in the dispersion curves imply mode anticrossing. The displace-
ment fields of the two modes around the cross points interchange with each other abruptly. On the other hand,
the other cross points appearing in the dispersion curves are true intersections which implies that the couplings
between the modes are vanishingly small. The continuous displacements of the two wave modes around the
cross points provide the continuous dispersion curves. The polarizations of the different modes could be used
as the criterion of real or apparent cross points in the dispersion curves.
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Recently, the studies of photonic crystals have led to a
rapidly growing interest in the analogous acoustic effects in
phononic crystals or periodic elastic structures. Investiga-
tions on the band gaps of bulk acoustic waves in composite
materials or phononic band structures have been conducted
in the past decade.1–10 The dispersion relations and the band
gap properties of the transverse and mixed polarization
modes have been studied,1–3 and experimental evidence was
given for the existence of absolute acoustic band gaps.4 The
band gaps for out-of-plane propagation of elastic waves
computed in the phononic band structure consisted of an
anisotropic infinite square array of parallel quartz rods em-
bedded in an epoxy matrix.5

In Refs. 6–9, multiple scattering theory was applied to
study the band gaps of bulk wave properties in three-
dimensional periodic acoustic composites and the band struc-
ture of a phononic crystal consisting of complex and
frequency-dependent Lame’ coefficients. The finite differ-
ence time domain method was used to interpret the experi-
mental data of the two-dimensional systems consisting of
cylinders of fluids(Hg, air, and oil) inserted periodically in a
finite slab of aluminum host.10 Recently, the phononic band
gaps of the surface and bulk acoustic modes in two-
dimensional phononic structures consisting of general aniso-
tropic materials were analyzed.11 It is worth noting that there
is nothing in the literature that analyzes and discusses the
level repulsion effect in two-dimensional composite materi-
als or phononic crystals. Level repulsion which avoids cross-
ing in the distribution of eigenvalues is common knowledge
within the physics community. The effect is a phenomenon
that is likely to be encountered in any system where there are
eigenvalues which depend on some parameter.12–15

This paper reports on the occurrence of level repulsion in
the dispersion relations of the composite materials and
phononic crystals. In this paper, the effects of the level re-
pulsions between the different modes in the dispersion
curves of two-dimensional composite materials(PMMA/Ni )
and phononic crystals(Ni/PMMA ) are analyzed and dis-
cussed. The criteria and conditions under which the cross
points are distinguished as real or apparent are also dis-

cussed. We employed the plane wave expansion method to
calculate the dispersion relations and displacement fields of
all the bulk acoustic wave(BAW) modes, i.e., the transverse
polarization modes[shear vertical(SV) mode with polariza-
tion along the filler direction] and mixed polarization modes
[shear horizontal(SH) and longitudinalsLd modes with po-
larization lies in the plane perpendicular to the fillers]. The
continuous displacements of the two wave modes around the
cross points provide the continuous dispersion curves. The
polarizations of the different modes could be used as the
criterion of real or apparent cross points in the dispersion
curves.

In the following calculations, the formulation based on
the plane wave expansion method presented in Ref. 11 was
adopted. In an inhomogeneous linear elastic medium with no
body force, the equation of motion of the displacement vec-
tor usr ,td can be written as

rsr düisr ,td = ] jfCijmnsr d]numsr ,tdg, s1d

wherer =sx ,zd=sx,y,zd is the position vector andrsr d and
Cijmnsr d are the position-dependent mass density and elastic
stiffness tensor, respectively. We consider a phononic crystal
composed of a two-dimensional periodic array(x-y plane) of
materialA embedded in a background materialB. Due to the
spatial periodicity, the material constantsrsxd and Cijmnsxd
can be expanded in Fourier series with respect to the two-
dimensional reciprocal lattice vectors(RLVs), G=sG1,G2d,
as

rsxd = o
G

eiG·xrG, s2d

Cijmnsxd = o
G

eiG·xCG
i jmn, s3d

where rG and CG
i jmn are the corresponding Fourier coeffi-

cients.
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To utilize the Bloch’s theorem and to expand the displace-
ment vectorusx ,td in Fourier series for bulk wave analysis,
we have

usx,td = o
G

eik·x−ivtseiG·xAGd, s4d

wherek =sk1,k2d is the Bloch wave vector,v is the circular
frequency, andAG is the amplitude of the displacement vec-
tor of a bulk acoustic wave.

Substituting Eqs.(2)–(4) into Eq. (1), and after collecting
terms systematically, we obtain the eigenvalue problem of
bulk waves as

3MG,G8
s1d − v2RG,G8

s1d LG,G8
s1d UG,G8

s1d

LG,G8
s2d MG,G8

s2d − v2RG,G8
s2d UG,G8

s2d

WG,G8
s1d WG,G8

s2d MG,G8
s3d − v2RG,G8

s3d 4
33AG8

1

AG8
2

AG8
3 4 = 0, s5d

where then3n matricesMG,G8
s1d , MG,G8

s2d , MG,G8
s3d , LG,G8

s1d , LG,G8
s2d ,

FIG. 1. Dispersion relations of
all the bulk modes: pure SV, SH,
and L modes along theG-X sec-
tion and the pure SV, quasi-SH,
and quasi-L modes along the
X-M section in PMMA/Ni com-
posite materials with square lat-
tice. The irreducible part of the
Brillouin zone is shown in the
inset.

FIG. 2. Dispersion relations of
all the bulk modes: pure SV, SH,
and L modes along theG-X sec-
tion and the pure SV, quasi-SH,
and quasi-L modes along the
X-M section in Ni/PMMA
phononic band structure with
square lattice.
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UG,G8
s1d , UG,G8

s2d , WG,G8
s1d , WG,G8

s2d , RG,G8
s1d , RG,G8

s2d , and RG,G8
s3d are

functions of the Bloch wave vectork, components of the
two-dimensional RLV, circular frequencyv, the Fourier co-
efficients of mass densityrG, and components of elastic stiff-
ness tensorCG

i jmn. n is the total number of RLVs used in the
Fourier expansion andU=fAG8

1 AG8
2 AG8

3 gT is the eigenvector
used to calculate the displacement fields(polarizations)

ux = o
G8=1

n

eik·x−ivtseiG8·xAG8
1 d,

uy = o
G8=1

n

eik·x−ivtseiG8·xAG8
2 d, and

uz = o
G8=1

n

eik·x−ivtseiG8·xAG8
3 d.

It is worth noting that the eigenvalues(resonance frequen-
cies) calculated from Eq.(5) are real by dealing with Her-
mitian operators, whereas the exceptional points considered
in Refs. 12–14 have to do with complex eigenvalues. Equa-
tion (5) can be decoupled as the mixed polarization modes
[i.e., longitudinalsLd and shear horizontal(SH)] and shear
vertical (SV) modes with polarization of the displacement
along thez direction (i.e., the filler’s length direction). The

explicit formulations of the plane harmonic bulk wave dis-
persion relations in such a phononic structure in Eq.(5) were
listed in Ref. 11.

Consider the PMMA/Ni composite materials and Ni/
PMMA phononic band structures forming the two-
dimensional square lattices with lattice spacinga. Figures 1
and 2 show the dispersion relations of the bulk modes along
the boundaries of the irreducible part of the Brillouin zone
with filling fractions f =0.5 and f =0.6 respectively. In the
calculations, thex-y plane is parallel to the(001) plane and
thex axis is parallel to the[100] direction of Ni and PMMA.
The elastic properties of the materials utilized in these two
examples are adopted from Ref. 16 and listed in Ref. 17. The
vertical axis is the normalized frequencyv* = va/Ct and the
horizontal axis is the reduced wave vectork* = ka/p. Ct in
Figs. 1 and 2 are the shear velocities of Ni and PMMA for
PMMA/Ni and Ni/PMMA band structures, respectively.k is
the wave vector along the Brillouin zone. In this paper, we
used the 441 numbers of RLV to construct the results in Figs.
1 and 2 and this resulted in a good convergence. In the dis-
persion relations, the bold solid lines represent the funda-
mentalsSV0d and the higher shear vertical modes(SV2 and
SV4, etc.). The thin solid lines represent the higher shear
vertical modes(SV1 and SV3, etc.). The square symbols are
those for the fundamentalsL0d and the higher longitudinal
modes(L1 and L2, etc.). The bold dash lines represent the
fundamentalsSH0d and the higher shear horizontal modes
(SH2 and SH4, etc.) while the lines with3 symbols represent
the higher shear horizontal modes(SH1 and SH3, etc.).

We note that the SH andL modes can be decoupled as
pure modes in a specific propagation direction and become
quasi-SH and quasi-L in the other propagation directions.11,18

As the elastic waves propagate along thex axis (G-X sec-
tion), the nonvanishing displacements of the shear horizontal
mode, shear vertical mode, and longitudinal mode areuy, uz,
andux, respectively. For the subsequent modes to appear, we
denote them as the fundamental, first, and second modes, etc.
For waves propagating along the other directions(i.e., in the
X-M sections), they are indeed quasi transverse or longitudi-
nal modes. For convenience, we used the notations of the
pure modes atX point to designate the quasi modes in the
X-M section.

The calculated results of the dispersion curves in the
X-M section shown in Fig. 1 seem to show that the funda-
mental and the higher shear horizontal modes, quasi-SH0 and
quasi-SH1, cross over at pointT1; the dispersion curves of
the higher shear horizontal modes and the higher longitudi-
nal modes(quasi-SH2 and quasi-L1) crossover at pointsT3
and T4. The dispersion curves of the shear vertical modes
and higher shear vertical modes(SV0 and SV1, SV3 and SV4)
make crosses at pointsT2 andT5 in theX-M section. In Fig.
2, the dispersion curves of the fundamental and the higher
shear horizontal modes, quasi-SH0 and quasi-SH1, cross over
at point T6; the dispersion curves of the two higher shear
horizontal modes(quasi-SH3 and quasi-SH4) crossover at
pointsT7. It is worth noting that the dispersion curves of the
two higher shear horizontal modes in theG-X section(SH3
and SH4) cross over at pointsT8. However, by decreasing the
values of both of the frequency and the wave vector intervals
in the calculations around the points ofT1–T8 (Fig. 3), we

FIG. 3. Enlarge plots of the dispersion curves around the cross
pointsT1–T8.
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found that the intersections of the modes mentioned above
are not true intersection, instead, these modes repel away
from each other due to the level repulsions at these points.

To further examine the characteristics of the level repul-
sions at these points, we calculated the displacement fields of
the SH0, SH1, and L0 modes in PMMA/Ni band structure
along all the boundaries of the irreducible part of Brillouin
zone shown in Figs. 4(a)–4(c), respectively. Along theG-X
section, the nonvanishing displacement of the shear horizon-
tal mode isuy as expected and it vanishes at the band gap
point X in Fig. 4(a). As the propagating direction rotates
away from theX point, one finds thatuy remains very small;
however,ux increases gradually until pointT1. At this par-
ticular propagating direction,ux suddenly jumps to a very
small value, whileuy jumps from a small value to a finite
value and then decays to a small value at the band gap point

M. It is worth noting that in the SH0 mode, the magnitudes of
the displacementsux anduy in theG-M section are equal due
to the symmetry of the lattice arrangements. The relative
amplitudes of the displacementsuuxu anduuyu shown in Fig. 4
are normalized to the maximum value ofuuyu of the SH1
modes in theG-X section[Fig. 4(b)].

Similar to the displacement fields of the fundamental
shear horizontal mode shown in Fig. 4(a), Figs. 4(b) and 4(c)
show the calculated results of the displacement fields of the
SH1 and L0 modes. From Fig. 4, we found clearly that the
level repulsion phenomena appear at the sharp bend of the
dispersion curves. Through detailed calculations, we found
the similar results occurring at pointsT3 andT4 in Fig. 1 and
pointsT6, T7, andT8 in Fig. 2. It is worth noting that level
repulsion not only exists in the mixed modes(SH,L) but also
in the decoupled SV modes. For example, level repulsion

FIG. 4. Displacement fields of
(a) SH0 (b) SH1 (c) L0 modes
along the irreducible part of the
Brillouin zone.
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phenomena occur between SV0 and SV1 modessT2d, SV3

and SV4 modessT5d in the X-M section of Fig. 1. Figure 5
shows the displacement fields around pointT2. The vertical
axis is the displacement responses and the horizontal axis is
the angle rotated from theX point. In Fig. 5, around the point
T2, we observe that the phenomenon and the displacement
responses jump rapidly and interchange with each other.
From the results shown above, we conclude that in the dis-
persion curves, the displacement fields change rapidly and
interchange with each other around those points where level
repulsions occurred.

On the other hand, we note that the other cross points in
the dispersion curves of Figs. 1 and 2 are real, i.e., the dis-
persion curves are true intersections. The reason for causing
the true intersections of the dispersion curves is due to the
vanishing small mode couplings. To further demonstrate that
the cross points appeared in the dispersion curves of Figs. 1
and 2 are whether real or apparent, we calculated the dis-
placement fields of the different modes around the cross
pointsR1 [Fig. 6(a)] andT1 [Fig. 6(b)] in the G-X andX-M
sections of Fig. 1. The cross pointR1 represents the intersec-
tion of theL0 mode and SH1 mode with propagating direc-
tion along thex axis. As shown in Fig. 6(a), the nonvanishing
displacement of theL0 modesuxd and the SH1 modesuyd are
continuous through theG-X section and therefore it is con-
firmed as a real cross point; that is, there is no coupling
between these two modes. Figure 6(b) shows the apparent
cross-point in theX-M section of Fig. 1. Two sharp changes
of ux anduy between the quasi-SH1 and quasi-SH0 modes are
found. We note that as the propagation direction turning
away from theX point, those SH modes are not pure SH
modes; instead, they are quasi transverse mode and coupled
with the longitudinal mode.

The ultranarrow band gaps induced by the level repulsion
in composite materials or phononic crystals may be sorted
into two groups: Group I(T2, T3, andT4) and group II(T1,
T5, T6, T7, and T8). The bends of the dispersion curves in
group I are smooth, no frequency gap exists between the two
dispersion curves. In group II, the sharp bends of the disper-
sion curves induce a very small frequency band gap width.
For example, the width of the band gap around theT1 point
is 0.000026v* and located rotated 20.35° from theX point.

In summary, we have examined the level repulsion phe-
nomena of BAW modes in two-dimensional composite ma-
terials and phononic band structures. From the detail calcu-
lations of the dispersion curves and the displacement fields
of BAW modes in thek space, we observed the level repul-
sion and the peculiar effects on the displacement fields of the
modes. We found that the cross points of the modes appeared
in the dispersion curves of Figs. 1 and 2 are apparent due to
the strong mode couplings. The dispersion curves around the
apparent cross points, in fact, approach to each other and
then bend away follow the trace of the opposite mode. Fur-
thermore, the displacements of the two modes around the
cross points interchange with each other abruptly. On the
other hand, the other cross points appeared in the dispersion
curves of Figs. 1 and 2 are real and in fact they are due to the
vanishing small mode couplings. The continuous displace-
ments of the two wave modes around the cross points pro-
vide the continuous dispersion curves. Finally, the polariza-
tions of the different modes due to the level repulsions could
be used as the criterion of real or apparent cross-points in the
dispersion curves.

The authors thank the National Science Council(Grant
No. NSC92-2212-E-002-058) and the NTU-ITRI center of
Taiwan for financial support.

FIG. 5. Displacement fields around the cross pointT2.

FIG. 6. Real and apparent cross points: real cross pointR1 and
apparent cross pointT1.
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