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Temperature Effect on the Bandgaps of Surface
and Bulk Acoustic Waves in Two-Dimensional
Phononic Crystals

Zi-Gui Huang and Tsung-Tsong Wu

Abstract—In this paper, we analyzed the temperature
effect on two-dimensional phononic crystals. Bandgap vari-
ations of both of the bulk modes and surface modes due to
changing of temperature in an air/quartz band structure
from 0 to 50°C were calculated and discussed. The results
show that the elastic bandgaps can be enlarged or reduced
by adjusting the temperature of the band structure. The
temperature effects potentially can be used for fine-tuning
of the phononic bandgap frequency.

I. INTRODUCTION

ECENT successful application of photonic crystals has

led to a rapidly growing interest in the analo-
gous acoustic effects in periodic elastic structures, called
phononic crystals. Research in bandgaps of bulk acoustic
waves of phononic structures have been carried out in the
past [1]-[8]. The dispersion relations and bandgap prop-
erties of the transverse polarization modes for periodic,
elastic composites were analyzed and discussed [1]-[3]. The
dispersion relations of mixed polarization modes and the
experimental evidence for the existence of absolute acous-
tic bandgaps also were described [4], [5]. Bandgaps for out-
of-plane propagation of elastic waves were computed in the
phononic band structure of the anisotropic infinite square
array of parallel quartz rods embedded in an epoxy matrix
[6], and the effects of the orientation of square rods on the
acoustic bandgaps in a two-dimensional phononic crystal
(solid/air) were discussed [7], [8]. In [9]-[12], the multiple
scattering theory was applied to study the bandgaps of
bulk waves in three-dimensional periodic acoustic compos-
ites and the band structure of a phononic crystal consist-
ing of complex and frequency-dependent Lamé coefficients.
The finite-difference, time-domain method was applied to
interpret the experimental data of two-dimensional sys-
tems consisting of cylinders of fluids (mercury, air, and oil)
inserted periodically in a finite slab of aluminum host [13].
Surface wave propagation on layered superlattices with
traction-free surface parallel to the layers, has been ex-
plored extensively in the past [14]. However, investigations
into surface wave properties of solids, in which the periodic
modulation occurs on the traction-free surface did not take
place until quite recently [15]-[20]. In [15] and [16], the cal-
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culations for surface waves on a square and hexagonal su-
perlattice, consisting of cubic (AlAs/GaAs) and isotropic
(Al/polymer) materials were reported, and Wu et al. [17]
extended these works by studying the phononic bandgaps
of the surface and bulk acoustic modes in two-dimensional
phononic structures consisting of general anisotropic ma-
terials. Vines et al. [18], [19] conducted an experimental
study on the surface waves generated by a line-focus acous-
tic lens at the water-loaded surfaces of a number of two-
dimensional superlattices that intersect the surface nor-
mally. The propagation of Scholte-like acoustic waves at
the liquid-loaded surfaces of periodic structures also has
been studied [20].

Although many theoretical and experimental studies
have been done on two-dimensional periodic structures,
the temperature effect for different polarization propaga-
tion modes have so far not been investigated. In this paper,
we use the plane-wave expansion (PWE) method adopted
in [17] to calculate the variations of bandgap widths of
the quasishear vertical (SV), quasishear horizontal (SH),
quasilongitudinal (L), and surface acoustic wave (SAW)
modes due to the temperature changes. After a detailed
examination of the dispersion curves with different tem-
perature, we found that the behaviors of the variations of
bandgap width are quite distinct and obvious. We shall
refer to this obvious phenomenon as the fine-tuning of the
bandgap in such a band structure.

II. AcousTtic WAVES IN TwO-DIMENSIONAL
PHoNONIC CRYSTALS

In an inhomogeneous, linear, elastic, anisotropic
medium with no body force, the equation of motion for
the displacement vector u(r,t) can be written as:

p(r, T)ul (I‘, t) = 8j [Cijmn (I‘, T)anum (I‘, t)] ) (1)

where r = (x, z) = (z,y, ) is the position vector, T' is the
temperature variable, ¢ is the time variable, p(r,7T) and
Cijmn(r,t) are the position-dependent and temperature-
dependent mass density and elastic stiffness tensor, re-
spectively. In the following, we consider a phononic crystal
composed of a two-dimensional periodic array (z-y plane)
of material A, embedded in a background material B. Due
to the spatial periodicity, the material constants, p(x,T)
and Cjjmn(x,T) can be expanded at temperature 7' and
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in Fourier series, with respect to the two-dimensional re-
ciprocal lattice vectors (RLV), G = (G, G2), as:

p(x,T) = ¥ pa(T), (2)
G
Cijmn (X7 T) = Z eiG'ngmn (T)v (3)
G

where pg(T") and Cgm” (T') are the corresponding Fourier
coefficients at temperature 7.

To use the Bloch’s theorem and to expand the displace-
ment vector u(r,t) in Fourier series for the analyses of the
surface and bulk waves, we have:

u(r,t) _ Z 6ik~x—iwt (eiG~xAGeikzz) 7 (4)
G

where k = (kq, k2) is the Bloch wave vector, w is the circu-
lar frequency, k. is the wave number along the z direction,
and A is the amplitude of the displacement vector. We
note that, as the component of the wave vector k, equals
zero, (4) degenerates into the displacement vector of a bulk
acoustic wave. On substituting (2), (3), and (4) into (1),
and after collecting terms systematically, we obtain the
generalized eigenvalue problem as:

(AK2+Bk. +C)-U=0, (5)

where A, B, and C are 3n x 3n matrices, and they are
functions of the Bloch wave vector k, components of the
two-dimensional RLV, circular frequency w, the Fourier co-
efficients of mass density pg(7") and components of elastic
stiffness tensor C&™"(T). n is the total number of RLV
used in the Fourier expansion, and U = [Al , AZ, A2 ,]T
is the eigenvector. The expressions of the matrices A, B,
and C are listed in [17]. Where G and G’ are the two-
dimensional reciprocal lattice vectors.

Eq. (5) can be solved by introducing V = k,U and
rewritten in the form as [17]:

_anic —AIlB] [g} =k [g] : (6)

By applying the surface wave conditions in which the
surface waves propagate in a half space (z > 0), only
3n eigenvalues in (6), which attenuate in the positive z-
direction are chosen, i.e., Im (k,) > 0. Then the traction-
free boundary conditions, T3 [.—0 = CizmnOntm|,_, =0,
on the surface z = 0 are used in the calculations. T de-
notes the traction and ¢ = 1, 2, 3. Therefore, the disper-
sion relation for the surface waves propagating in the two-
dimensional phononic crystals, with both of the filling and
background materials belonging to the triclinic system, can
be obtained [17]. When k&, in (5) is equal to zero, the equa-
tion degenerates into the eigenvalue problem of the bulk
waves as:

C-U=0. (7)
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The dispersion relations of the bulk waves propagat-
ing in the two-dimensional phononic crystals can be ob-
tained by setting the determinant of matrix C equal to
zero. For materials with a symmetry higher than the or-
thorhombic symmetry, the matrix C can be decoupled into
two different polarization modes. They are mixed polariza-
tion modes (SH and L, shear horizontal and longitudinal
modes with polarization lies in the plane perpendicular to
the fillers) and transverse polarization modes (SV, shear
vertical mode with polarization along the filler direction).
As the elastic waves propagate along the z axis (I'-X sec-
tion), the nonvanishing displacements of the shear hori-
zontal mode, shear vertical mode, and longitudinal mode
are Uy, U, and ug, respectively.

However, for materials with a symmetry lower than or-
thorhombic symmetry, the matrix C cannot be decoupled
into two different polarization modes. The full matrix C
must be considered and distinguished as quasi-SV, quasi-
SH, and quasi-L modes.

III. TEMPERATURE EFFECT ON THE BANDGAPS OF
BAW AND SAW IN PHONONIC CRYSTALS

Consider phononic structures consisting of circular
cylinders and a background material forming a two-
dimensional square lattice with lattice spacing a (10 pum
for air/quartz). Air and quartz are used as the cylinders
and the background materials, respectively. From the elas-
tic constants and density at room temperature (25°C), the
temperature-dependent elastic constants and densities of
the material, quartz, can be obtained by using [21]:

X(T) = X (To) 1+ﬁ?)_§(T_TO)
1 9°X ®

where Tp is 25°C, and X (Tp) is the elastic constant eval-

2
uated at room temperature. ﬁg—? and %% are
the first and the second order temperature coefficients, re-
spectively. T is increased from 0 to 50°C. The first order
temperature coefficient of the density reads:

Loy _
p(To) 0T

— (a11 + a2 + ass), 9)

where aq1, oo, and asz are the expansion coefficients
along the z, y, and z axis, respectively.

In this paper, we only considered the first order tem-
perature coefficients and expansion coefficients of quartz
(Z-cut). The related constants can be found in [22] and
the thermodynamic properties (density and sound speed)
of air can be found in [23]. It is worth noting that the filling
fraction and the effects of the thermal stresses arising from
the thermal expansion mismatch between the superlattice
components when the temperature is varied are neglected
due to the air/solid band structure.
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Dispersion Relation of BAW and SAW modes
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Fig. 1. Dispersion relations of the quasi-SV, quasi-SH, quasi-L, and
SAW modes in air/quartz phononic structure with square lattice.
The bandgap width is defined as Aw = w2 — w1, and the lattice
constant is 10 pm. The upper right diagram shows the system of
circular rods (air) embedded in a background material (quartz) with
square lattice. The lower right diagram shows the Brillouin zone of
the square lattice. The shadow in the Brillouin zone is the irreducible
part of the Brillouin zone. The filling fraction is defined as f =

(m"g) /a?.

The case considered in this paper is that we increase
the temperature of the air/quartz band structure from 0
to 50°C. The phononic crystal consists of quartz substrate
and square arrays of air cylindrical holes. The modified
PWE method can be applied because of the high-density
contrast between solid and air [7], [8]. It is well-known
that the high density contrast between solid and air leads
to unexpected flat bands in the band structure. We get
around this problem by adopting the technique shown in
[7]. The flat bands can be removed by taking an artificial
transverse velocity inside the fluid. Instead of postulating
a purely longitudinal behavior of the solid [8], we also give
an artificial transverse character to the fluid [7].

Fig. 1 shows the dispersion relations of the surface and
bulk modes along the I'-X section in the irreducible part
of the Brillouin zone (see insert of Fig. 1) in air/quartz
band structure with a filling ratio of 0.2. In Fig. 1, the up-
per right diagram shows the system of circular rods (air)
embedded in a background material (quartz) with square
lattice; the lower right diagram shows the Brillouin zone
of the square lattice. In the calculations, the z-y plane
is parallel to the (001) plane and the z axis is along the
[100] direction of quartz; the elastic properties and densi-
ties of the materials from 0 to 50°C used in this example
are calculated from (8) and (9). The vertical axis is the
frequency in megahertz unit, and the horizontal axis is
the reduced wave vector k* = ka/w. k is the wave vec-
tor along the Brillouin zone. The thin solid lines repre-
sent the fundamental and higher quasi-SV modes, and the
diamond symbols represent the quasi-L. modes. The thin
dashed lines represent the quasi-SH modes, and solid cir-
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Fig. 2. The slowness curves of the bulk waves at the constant fre-
quency 74.55 MHz in the k, — ky plane in a two-dimensional view.

cles represent the surface acoustic modes. The bandgap
width is defined as Aw = wy — w; (w1, we are the fre-
quencies at the X point) and Awgy, Awsy, Awp, and
Awg aw represent the bandgap widths for quasi-SV, quasi-
SH, quasi-L, and SAW modes, respectively. At room tem-
perature, the bandgap widths for the above four types of
modes are Awgy = 89.98 MHz, Awsy = 78.04 MHz,
Awy, = 104.76 MHz, and Awgaw = 4.77 MHz.

To understand the phenomena of bulk modes in the dis-
persion curves, the slowness curves of the three bulk modes
in the k; — k, plane are shown in Fig. 2. The slowness
curves are plotted at the constant frequency 74.55 Hz in a
two-dimensional view. It is worth noting that the curves of
the three bulk modes are all deformed considerably from
a circle due to both the material as well as geometrical
anisotropy. However, the displacement fields of the surface
modes are illustrative to see the magnitudes of the dis-
placement components computed at the edge frequencies
of the bandgap both in the z-y plane and as a function of
distance from the surface at some selected point. Shown in
Fig. 3 are the relative amplitudes of the displacement com-
ponents computed at frequency w = w; at X point. The
selected point is the center of the cylinder. We found that
the relative amplitudes of the displacement components on
the surface consisted of three components, but the wave is
mainly polarized as longitudinal. The inset in Fig. 3 is
the magnitudes of the displacement components in the z-
y plane of a unit cell. The relative amplitudes in the inset
are equal to |ug|/ (u2 + u§)1/2, in which we neglect the
effect of component wu,. Similarly, in Fig. 4 are the relative
amplitudes of the displacement components computed at
frequency w = ws at X point. The displacement compo-
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Relative Amplitude

Fig. 3. Relative amplitudes of the displacement components of sur-
face modes computed at frequency w = wy at X point. The selected
point is the center of the cylinder. The inset is the magnitudes of the
displacement components in the z-y plane of a unit cell. The relative

)1/2

amplitudes in the inset are equal to |uz|/ (ui +u?

1.2

Relative Amplitude

z/a

Fig. 4. Relative amplitudes of the displacement components of sur-
face modes computed at frequency w = w2 at X point. The selected
point is the center of the cylinder. The inset is the magnitudes of
the displacement components in the x-y plane of a unit cell. The
definition of the relative amplitudes is the same as Fig. 3.
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Center frequency of the gap and relative bandgap width of
quasi-SV modes at X point
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Fig. 5. Normalized center frequency of the gap and relative bandgap
width of quasi-SV modes at X point.

nents on the surface consist of three components, but the
wave is mainly polarized perpendicular to the surface. The
inset in Fig. 4 is also the magnitudes of the displacement
components in the z-y plane of a unit cell. It is worth not-
ing that the velocity of surface modes propagating along
the x axis in this air/quartz band structure is higher than
that of the SH wave. The behavior is different from that in
the case of a homogeneous material, in which the surface
wave velocity is always slower than that of the shear wave.

With the temperature of the band structure being in-
creased from 0 to 50°C, Fig. 5 shows the center frequency
of the gap [Fig. 5(a)] and relative bandgap width [Fig. 5(b)]
of quasi-SV modes at X point. The center frequency wy is
calculated as a function of temperature, normalized to the
center frequency at 25°C. Alternatively, the bandgap is
plotted as relative bandgap width (we — w1) /wo to allow
better judgment of the temperature dependence. The hor-
izontal axis of Fig. 5 is the temperature which varies from
0 to 50°C. For the quasi-SV modes, we found that the fre-
quencies wy and ws at point X decrease as the temperature
rises. The normalized center frequency has the same phe-
nomenon and the relative bandgap width increases as the
temperature rises. Similarly, Figs. 6-8 show the normalized
center frequencies of the gap and relative bandgap widths
of the quasi-SH, quasi-L, and SAW modes at X point, re-
spectively. The results in quasi-SH modes show that the
w1 and we at point X increase as the temperature rises.
The normalized center frequency and the relative bandgap
width of the quasi-SH modes increase as the temperature
rises shown in Fig. 6. At point X, the w; of the quasi-L
modes decreases, and wo increases as the temperature rises.
This brings about that the normalized center frequency of
the quasi-L modes remains constant with 10~° accuracy
[Fig. 7(a)]. However, the relative bandgap width increases
as the temperature rises [Fig. 7(b)]. In regard of the SAW
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Center frequency of the gap and relative bandgap width of
quasi-SH modes at X point
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Fig. 6. Normalized center frequency of the gap and relative bandgap
width of quasi-SH modes at X point.

Center frequency of the gap and relative bandgap width of
quasi-L modes at X point
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Fig. 7. Normalized center frequency of the gap and relative bandgap
width of quasi-L modes at X point.

modes, the wi and ws frequencies at point X decrease as
the temperature rises. The normalized center frequency
also decreases, and the relative bandgap width increases
as the temperature rises. It is worth noting that the rela-
tive bandgap widths of quasi-SV, quasi-SH, quasi-L, and
SAW modes in Figs. 5-8 all increase in direct proportion
to the temperature change.

IV. SUMMARY AND CONCLUSIONS
Some important conclusions can be drawn from the

above studies. First, we found that the temperature effects
are obvious for all types of modes in the air/quartz band
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Center frequency of the gap and relative bandgap width of
SAW modes at X point
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Fig. 8. Normalized center frequency of the gap and relative bandgap
width of SAW modes at X point.

structure. Second, the tendencies of the relative bandgap
widths for the four type modes are the same in air/quartz
band structure, and the variations of the frequencies at
X point are quite different. The frequencies w; and wo
would decrease as the temperature rises. However, the wq
and wo of quasi-SH modes and the ws of quasi-L modes in
the air/quartz band structure increase as the temperature
rises. We note that the bandgap width can be enlarged or
reduced by adjusting the temperature of the band struc-
ture. These prominent features of the temperature effect
on the bandgap variations of the phononic crystals may
have potential applications in fine-tuning of the phononic
bandgap, and they are very important on the precise filter
design.
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