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In dealing with the mechanics of material bodies modeled by particles, rigid body, or
deformable body subject to various types of constraint, variational principles can usually
provide a suitable path to obtain the solutions. The main objective of this project is to seek
additional applications and possible extensions on the basis of the Principle of Virtual
Power, and to explore whether the proposed principle can be unified with the law of
thermodynamics to form a unified variational principle. After nearly two-year term of
endeavor, we are able to obtain the desired Principle by choosing the velocity and the
velocity gradient as fundamental variables in mechanics, and the entropy and the hear flux
as the fundamental quantities in theomodynamics. The Principle indeed unify the theory of
thermodynamics and continuum mechanics, from which a variational equation can be
established. The Cauchy’s laws of linear and angular momentum and the newly developed
variational constitutive law are then deduced. By selecting appropriate interna energy
function and dissipating function, we have derived the constitutive equations for elastic
body or viscous fluid in mechanics, and Fourier law and Maxwell-Catteneo Equation in the
first year. In the second year, we established the constitutive laws for the thermo-viscous
fluid and micro-polar material. See Part | of this report for more details. On the other hand,
in the aspect of tracking control, we have used the Reduced Appell Equation to construct
equations of motion of the privileged coordinates, and found that the equations are
decoupled from the non-privileged coordinates in the first year. The fuzzy controller and
sliding mode controller were then used to design the tracking control loop. This year, we
adopt the backstepping method applied to the chained form of the kinematic equation to
compute the compensated values for the privileged variables. Simulation results on the
tracking control of wheeled vehicle show that the performance is excellent. The results are
shown in Part Il of thisreport.
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Part 11 Global Backstepping Tracking Control for Car-Like Mobile Robots
1. Introduction

Rolling wheels are frequently installed to enhance the mobility of a robot such that the working space can be
enlarged significantly. However, due to the appearance of the nonholonomic constraints, the motion planning and the
tracking control of wheeled mobile robots are difficult to be managed. In the phase of motion planning [1, 2], a
suitable trgjectory is designed to connect the initial posture (i.e. the position and the orientation of the robot) and the
final one such that no collisions with obstacles would occur and the kinematic constraints are satisfied. Once the
optimal path is obtained, the navigation and control process enters the tracking phase in which the kinematics as well
as the dynamical equations must be considered. To appropriately integrate the kinematics and the dynamics such that
every path can be followed efficiently and globally is the main subject of this report.

Among various schemes in performing nonholonomic motion planning and stabilization, the transformation of the
kinematic equations to chained form or skew-symmetric chained form attracts the interests of many researchers|[3, 4]
due to their simple structures. Based on the chained form, time-varying feedback [5], discontinuous feedback [6], and
hybrid strategy [7] can be applied to circumvent the under-actuated problem. In particular, the idea of backstepping
[8, 9] can be adopted to systematically design recursive algorithms for the stabilization of a multi-input chained
system such as a fire truck [10], the tracking of a two-input chained system such as an articulated vehicle [5], or the
tracking with saturation constraint for a class of unicycle mobile robot [11]. However, in transforming the kinematic
equations to the chained form according to the algorithm given in [3], singularity problems may occur. In certain
postures, the transformation becomes singular and thus the corresponding controller is not global [12]. This problem
needs to be solved before the backstepping controller can be applied to all possible trajectories.

Most of the methods in honholonomic motion planning only deal with the kinematics of the wheeled mobile robot.
To perform tracking control, the mass and the moment of inertia of the vehicle cannot be ignored. Therefore, for the
nonholonomically constrained mechanical systems, it is desired to develop a controller which takes the kinematic
model and the dynamic model into account simultaneoudly. In [13, 14], a kinematic controller and a neural network
computed torque controller are integrated to stabilizing a nonholonomic mobile robot in which uncertainty exists.
The point stabilization problems were solved in [15, 16] by first transforming the kinematical equation into a
skew-symmetric chained form, and then designing the adaptive controller for the combined system. In [17], a robust
adaptive control scheme is proposed for the tracking control of wheeled mobile robot. However, it shall be seen in
this paper that by suitably choosing state variables, the dynamical equations can be decoupled from the kinematics.
This feature has not been observed in these works so that the previously designed controllers are more complex.

In this report, based on the decoupling feature of the underlying system, a global hierarchical tracking controller
using backstepping idea is proposed. By selecting a proper set of privileged variables, it is seen that the reduced
Appell equations discussed in [18] is decoupled from the kinematic equations. The tracking of a desired trajectory
can thus be fulfilled by a kinematic compensator, which generates updated desired values for the privileged variables,
and a dynamic controller, which issues control commands such that the new set of privileged variables can be
followed. To resolve the above-mentioned singularity problem, it is found that two chained systems can be used to
encompass al postures of the car-like mobile robot. A recursive backstepping controller can be designed to each
chained system in its region of applicability. However, the compensations of the privileged variables may be severely
discontinuous when the active chained system is changed. Therefore, a switching algorithm with associated
continuation method which adjusts the control parameters is proposed in this paper to yield smooth signals while
maintaining the desired performance. Simulation results performed in the paper show that the proposed scheme can
be used effectively to track arbitrary paths.

2. Problem Description

The practical problem to be attacked in this paper is the tracking of a desired trajectory for a four-wheeled mobile
robot, as shown in Fig. 1, moving on a horizontal plane. The system may be modeled by a platform with mass m,
width w, length |, and height h., attached by four rolling-without-dliding wheels with equal masses m,, and radius a.
To simplify the analysis, we assume that the two wheels on each axle (front or rear) can be treated as a single wheel
centered at the midpoint of the axle (Qf or Q;, respectively), cf. Fig. 1. The approximated model is the so-called
car-like mobile robot, which consists of a platform (body c), a front wheel (body f) and a rear wheel (body r). The
masses of the rim of each wheel and platform are denoted by m, and M., respectively. Let p,, O, be the
distance between the point Q; , Q; and the mass center of platform C, respectively. The contacts between the wheels
and the ground are assumed to be pure rolling without slipping.
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Fig. 1. A four-wheeled mobile robot.

Fig. 2. The configuration of the car-like mobile robot.

The trandational motion of body i (i = ¢, f, r) may be described by the position of its mass center, which is expressed
with respect to the inertial frame {E*,EY,E*} as

C=xE*+yEY+zE" D
To describe the rotational motion, the type (3-1-2) Eulerian angles are used to rotate the inertial frame
{EX, E’, E*} to {i, j;, kK, =E?} by the heading angle €, and then to {i, =i, j;, K;} by the camber

angle (., and finaly to the prespecmed body frame {€", €’ —j , €} of body i by the spin angle @, . If the
rotation is time-varying, the rates of change of the Eulerian angles are related to the angular velocity , by:

o, =GE* +yii, +¢,j;. 2
The six variables ()g N/ ,6’|) are adopted here to describe the configuration of body i, and therefore
there are eighteen variables to be specified for the system. However, due to physical constraints, the number required
may be reduced. By the assumption that the motion is horizontal, we have (i) Z =a, (i) z; =a, (i) 2. = hC
The platform is assumed to be kept horizontal as well so that (iv) @, =0 and (v) ¢ = 0 and hence the triad
{ef, e, €} coincides with {i_, j_, K.} and {i_, j., k .t for the platform. If the wheels are properly
ahgned the camber angles for the wheels vanish, (vi) ¢/, —O (vii) ¢, =0, sothat {i , j;, K} coincides
with {II, JI, k. } for the wheels (i = r, f). Moreover, if the vehicle is FWD (front-wheel-driven), we have (viii)
g «9 67) From the geometry of the interconnected bodies (Fig. 1), we have the last four geometric
constraints: (ix) X, =X +p 0088,(x) Y.=Y, +p,Sn8,(xi) X, =X +pc0sb, (xii) Y, =Yy, +psind,
where 0= p; + 0, . Findly, the condition that the wheels roll without slipping is realized by the following
velocity constraints:

X =ag, cosd, y. =ag, sing,
X; =ag; cos(@+¢), Y, =ag; sin(d+¢),

where @ isthe steering angle of front wheel (@ =&, — ). Applying the previous geometric constraints, the four
kinematic constraints can be converted to the following independent ones:

(xiii) x. sin@-y, cosd =0,
(Xiv) X cos@+y, sinf=rg,,
(Xv) X sin(@+ @) -y, cos(6+ @) —dfcosp=0
(xvi) X cos(8+ @) + Y. sin(@+@ +ddsinp=rg, .
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Based on these constraints, the angular velocities of the bodies in (2) can be simplified as
0 =6E, 0 =0E'+9|, o, =(0+9E +4,j,. €)
It is desired to control the steering angle of the front wheel and the spin of the rear wheel by exerting torques
T, (i =1,2), respectively, such that the system is able to track a reference trajectory which satisfies the constraints.
ue to the twelve, geometric ones, the dimension of the system becomes six, and we may choose
X,Y,,6,0..9, ,(0)) as the generalized coordinates. The desired trajectory may be then specified by (X4(t), Yra(t),

1), @ra(V), pra(t), qa(
further dropped to two.

), t0(0, t;). Due to the four nonholonomic constraints, the degree of freedom of the system is

3. Reduced Appell’s Equation of Motion

The framework described in [8] for reduced Appell’s equation is applied to derive the equations of motion. By
choosing ¢, and ¢ asthe privileged coordinates, the dynamic equation can be expressed in matrix form as

M(y)y +C(y,y)y =B(y)r (4)

where

17 tan’ g+ 1 +1 sec’ @ nl tang
M(y) = :
nl_tang |

m

. |72 +1, ) psec® ptang 0 1 ntang
C(y,y){( ) , } B(y){ }
n| @sec’ ¢ 0 0 1

— 2 2 _ 2 2
L=0+mp +mp +1 )1, =(ma +2ma” +1 ),

| =ma/2,1, =ma’,1_=m (W +I%)/3.

Various control schemes can be used to fulfill the objective of steering the privileged variables with (17). To deal
with uncertainties on the parameters of the system, one may apply the idea of adaptive control for which some
intrinsic properties of the reduced Appell equations is essentia. For the dynamic systems, the following lemmas can
be established.

Lemma 1: M(y) isan mxm positive-definite symmetric matrix.
Lemma2. M (y)—2C(y,y) isskew-symmetric.

If al the system parameters such as masses, moments of inertia, and physical specifications of the mobile robot,
etc, are known, we may use traditional methods to steer the privileged coordinates. However, in many cases, some
parameters are unknown or uncertain, which may form an uncertain parameter vector® O R®. By appropriate
re-arrangement, we may express the left-hand side of (4) in the following linear parametric form

M(y)y +C(y.y)y =Y (y.y.9)O, ©)

where Y (DIOR™" istermed the regressor matrix [20], whose elements consist of known functionsof Y, Y, and
Y . This form shall be used later to design the adaptive control law in the dynamic level. In particular, by choosing
the unknown vector of parameters as

o=[n1, 1, n1, 1], (6)
the corresponding regression matrix Y in (5) isgiven by
8, tan’ g+ g psec” ptang ¢, gtan @ @, sec’ g+ g psec” ptan
0 0§ tang+ggsec’ g 92 '

It is noted that z does not appear in (4), and hence the system of mobile robot is reducible so that the idea of the
hierarchical control proposed in this paper is applicable.
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4. Hierarchical Tracking Controller Design

As described in the previous section, the dynamics of a reducible mechanical system may be separated into two
parts: the reduced Appell equation (4) and the corresponding kinematic equation relating the privileged velocities and
the non-privileged ones. Since the reduced equations are decoupled from the kinematic equations, a controller may
be designed to steer y to the desired y4(t) independently. However, if the initial condition is not perfect or there are
some disturbances during the motion, the desired non-privileged variables z4(t) cannot be tracked. It is then necessary
to invoke the kinematic relation to fulfill the control objective. To accommodate the constraints and take the
advantage of the decoupling property of the mobile robot system, the idea of hierarchical tracking controller with
three levels will be proposed. The specific structure with the backstepping controller in the kinematic level for the
car-like robot is described below, with details given in the next section.

A.  Transformation to Chained Forms

It is noted first that, in the tracking of the vehicle’s motion, the front wheel is not the driven wheel and its rotation
angle @, is not concerned. In fact, for the planar motion of the vehicle, it is desired to track the non-privileged
posture variables (Xr Y 6?) , Which is subject to the kinematic constraints

X =ag, cosl, y. =ag, sinf, =n,¢, tang. (7
The goal of the kinematic compensator is to find a set of new reference privileged velocities U (=Y,) such that
desired posture variables can be followed. To construct a suitable Lyapunov function so that tracking can be assured,
the idea of backstepping controller discussed in [8, 9] may be adopt, since the kinematic relation may be transformed
into a chained form. To perform the transformation, the steering angle @ is added to form the state variable
X= (Xl, X5, X5, X4) = (Xr . Y,,0, ¢7) dueto its presence in (7), and the state equation becomes

acosx, O
asin 0

X = % u. (8
n tanx, 0O
0 1

The technique of input-state linearization [19] is next used to conduct the transformation. By using the set of state
transformation §(X) =Z=(X) and input transformation U = W(X)V , where

_ . i
“ t
an
E(x) = “lol )
- & | | —tanxsec’x, |
P
S
L X i
L 1
PRt “secx, 0
a
\P(X) = _Ln—lg 1 = 3 , (9)
— — -—sin’x, tan X, SecX, COS’X,CoS X,
ng Lg, <(1 ng Lg, <(1 P

system (8) can be transformed into the following chained form

f’l = ctZ\/ZL

gtz = qr3V1

. . 10
‘e (10)
5.4 = Vl

The tracking problem now becomes to track the desired &, by designing suitableinput V through (10). However,
singularity may occur around Hd =t 7T/ 2, where the tracking of the chain form (10) with the transformation (9) is
not feasible. To overcome the above problem, we construct another set of coordinate transformation & ==(X) and
input transformation U = W(X)V by using the same procedures described before, as
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D w
= co
E(x) = “ |- )
B & | |-—tanx,csc’x |
Z p
S,
L % i
1
—CSCX, 0
Yoos| , C , (1
—sin® x, cotx,cscX, —pcos’ X, sin’ X,

0

such that the state equation can be transformed into another set of chained form

£=Zy
£=%
c. (12)
3:\/2
£ =Y,

It is observed that singularity occurs when Hd =0,£77. Thus, the set of equations (10) is complementary to that of
(12), which shall be used interchangeably according to the following switching mechanism.

B.  Switching Mechanism

To avoid the singularity arising in the tracking process, we adopt two sets of complementary chained form
systems to design the backstepping controller. From the above discussion, If @ isclosedto k7r(k =0,%1),itis
desirable to adopt the & subsystem to design the kinematic compensator U_(t). On the other hand, if & is
closed to +(77/2) , then one should change the chained form to the one with & . Depending on the heading angle
6 of the mobile robot, a mechanism is designed to perform the switching, which is divided into two phases. As &
increases, cf. Figure 3(a), the switch from & -system to & -system occurs at 6 = 77/3,-277/3, and that from
€ -system to & -system at 6 =57/7/6,-7/6. For example, as @ increases from 77/6 and enters the region
6271/ 3, the system which generates U, (t) shall be changed from (10) to (12). On the other hand, as 7
decreases, the switching occursat 6 = 77/ 6,-77/3,-577/ 6,277/ 3, as shown in Figure 3(b).

2r . z 21 _ n
3\ s ; 3. 3 .3
\ coordinate \ coordinate /

4 N /

Fig. 3(a): The strategy as & increases. Fig. 3(b): The strategy as 6 decreases.

The un-symmetric patterns are imposed to prevent the chattering phenomenon. If @ enters the region
6= 77/ 3 and moves back to the region 77/6 < 8 < 77/ 3, the active system remains (12) until & goes below
771 6. Therefore, it @ moves back and forth around a switchi ng angle, no switching happens except the first one.

C. Hierarchical Tracking Control Scheme
14



Based on the switching algorithm, the overal design of the hierarchical scheme is depicted in Figure 4. On the
top level, the motion planner produces the desired trajectory (er (t),Y.q (t)) according to task requirements and
the conditions of congraints. The switching agorithm determines which set of desired values,
either ¢, (t) or f,d (t),i =1,2,3,4, are computed from either Eq. (30) or (33), respectively. For the active
chained system, the backstepping technique is then used to design suitable V_(t) or V_(t), from which the
compensation U, (t) is obtained by using the transformation W or ¥. A continuamion method is established to
make the switching smooth, with details given in Section 5. The updated desired privileged coordinates Y. arethen
found, which is fed along with U_ to the dynamical controller in the bottom level as discussed in Section 6. It will
be shown that with such a hierarchical design, including privileged or state variables, all the variables can be steered
to the desired value asymptotically.

Motion Planner
Turning Controller Parameters

vy

Input’
Y (& Vq é Vy Backstepping Controller |Vc/ V. Tran;opr”maﬂon
R in Kinematic Level ° b 4

Switching
Mechanism
Sliding Mode Controllen T Mechanical
. . Actuator
Y in Dynamic Level System
e +

y
Sensor(1)

= Change of < X <
L_|  Coordinates Sensor(2)

Fig. 4. The block diagram of hierarchical control design.

|

5. Continuation Method in Kinematic Compensator Design

After the state equation being transformed into the chained forms, the technique of backstepping can be applied to
design an effective controller. While the method discussed in [5] may be adopted, a new algorithm is devel oped here
to efficiently generate the controller.

A Backstepping Controller Design

Consider a general 2-input chained system in the following form,

E=&y,  (lsisn-2)
$1s =V, (13)
& =v.
To track the desired states Ed, [ —12 ,N, and control inputs Viy, i =1,2, for which (13) aso holds, we
first define &, =& =&, (i = Ny, and derive the tracking error equations as

$ie 5 Qzld _£2eV1 + &0 (Vy Vg )_
& & é-Zd oVt $aq (Y ~Vig)
E.=| 1 |= : = : : (14)
Cé(n—l)e 4( n-1 C((n—l)d (V; = Vpq)
gne 1 L Cc End 1 L (Vl _Vld)

15



The goal isto find atime-varying controller,

Vie ~
Vc = |:Vl :| = Vc (&e’vld ’VZd) ' (15)

2c

such that the tracking error &, converges to zero asymptotically, i.e., !i m||§ -&, || =0.

The idea of backstepping is used to systematically construct the Lyapunov function so that the asymptotical
stability can be assured. Following the standard procedure, we obtain the control law

V, =V ~ kzXn—l + (,Bn—z _/Yn—Z)Vl'
Vi =V ~ klAn’

where An:(z)ﬁ’ﬁmd “ XYt kﬁm)- By performing the Lyapunov stability analysis, we can show that the

closed-loop system is stable.
B.  Continuation Method

The control law developed above for general 2-input chained systems is now used to design the kinematic
compensator for the car-like mobile robot. As discussed in Section 1V, two chained systems (10) and (12) are used
interchangeably depending on the heading of the vehicle. The respective control laws are (n = 4)

{Vl =Vig _k1(/Y1‘§(2d +X2£3d +X3£2d + k3£4e) =Viq _k1A4’ (16)

Vo = Vo4 — kz)(a - 2X2V1’

and

{vl =V _E_()_ﬁ@?zd +)_(2§?3d +/?3<?2d + Eszte) = Vi _Ezm a7
V, =V, — kz)_(s - 2)_(2V1-

With appropriated designed controller parameters k', kK, i =1,2,3, the updated desired values u, for the
privileged variables are then computed from W(X)V, and W(X)V,, respectively. However, large discontinuity
may appear when the active chained system is switched, which may lead to the failure of the adaptive controller in
the dynamic level. To solve this problem, the following continuation method is proposed. First, we note that if
€ -system is active, the computed U, is related to the control parameters kl, k2 according to the following
formula

u,=¥(x)(FK +G), (18)

i sl
2/Y 2A4 X3 Vag _2)( 2Vig kz

On the other hand, if E -system is active, we have
u =¥x)(FK+G), (19)

R LS P
2X. 2A4 X3 Vog — 2X. 2Vig kz

Recall that in the above analysis, the asymptotic stability is guaranteed if K, >0, Kk, >0. Therefore, we may
adjust the control parameters in the positive region to make U, continuous during switching. If F or F becomes

where

where
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singular, which meansthat Y, or A, is zero, both (18) and (19) lead to the original desired value of U, and the
value of K or K becomes immateria. We simply set K =K~ or K =K. On the other hand, if the slack

variables X; are away from zero, both F and F are nonsingular. We may try to find the appropriate control

parameters such that the difference between (18) and (19) is minimized. Nevertheless, the performance of the
controller may be sacrificed, and a mechanism must be used after switching to drive the control parameters to their
designed value K''s. Detailed process for switching from & -system to & -system consists of the following two

steps.
Step 1: Given K, find the control parameters K

The problem is converted to the constrained optimization program:
min 1(PK -Q)" (PK -Q),
K2 (20)
subject to k, >0, k, >0,

where P=YF, Q= YFK +¥G —YG. Thisis a problem of quadratic programming, and the cost function

can be further simplified as
1 -1n1T -1
J(K)ZE[K—H N]'H[K =H™N],

whereH =P"P isasymmetric matrix and N =P'Q . The non-singularity of F implies that H is
nonsingular. Let
[k K] =K'=H*N=(P'"P)*P'Q

The objective function is then expressed as

30, k) =2 (Hyy(k ~K)? + Hoy (g K+ 2Hy, (k, —K)(K, —K)
2

where H denotes the (i,j)-component of H. It is easily seen that if ki and K, are both positive, they are the
solutions, 'i.e. Ko =K, Ky =K, . If they are both negative, the minimum occurs at (O, 0) and we sat
Ko =&, Kyy =&, where é‘ is a very small positive number. Alternatively, if k<0 and k, >0, we set
Ko, =& and search for the optimal k20 >0 such that the cost function restricted to the axis k1 0 is
minimized. If the corresponding solution K, +k/H,, /H,, ispositive, it is set to be the value of K, . Otherwise,
weset K,y = €. S|m|lartreatment|sappI|edtothecasethat ki >0 and Kk, <0, for which the solutions are

k1+k ,if k1+k >0,
Ky =&, ko= H11 H11 (21)

&, otherwise.

Step 2: Design amechanismsuch that K starting from K, approaches K " Asimple recursive scheme

{K(O):KO,
. (22)
K@i+ =uK —K())+K(),

may be used to drive the control parameters to K™ with rate of convergence p. Larger p implies that the desired
K™ isreached faster but the performance may be worse due to the rapidly changing of U, .
Analogous process can be used to perform the switching from & -system to E -system. It shall be shown later by

simulation that the proposed scheme can solve the problems with singularity and discontinuity such that the global
tracking isfeasible.

6. Sliding Mode Control in Dynamical Level

According to the discussions in the previous two sections, the output of the global kinematic compensator using
the idea of back-stepping and the continuation method is a set of updated privileged velocities U, which is fed
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into the dynamic controller to complete the tracking process. Among various methods, the diding mode controller is
chosen here to deal with the uncertainties in the car-like mobile robot system. The decoupling of the reduced
dynamics from the kinematic equations makes it possible to design the dynamical controller independently. However,
if there is no kinematic compensator and U isdrivento u, =Wv_, the tracking of the posture of the robot cannot
be fulfilled due to the absence of (X.,Y,,8) in the reduced dynamics athough the privileged variables can be
tracked. The information of the posture is used in the kinematic compensator to give the direction to which the
privileged coordinates should be driven. The relation of the kinematic compensator and the dynamic controller is
very similar to that of the navigator and the pilot in steering an airplane.

The reduced dynamics of the privileged variables is given in (4), which may be re-written in the following

form:

{ . Y= o (23)
M(y)u+C(y,y)u =B(y)r.

To accommodate the uncertainties in the knowledge of system parameters, an adaptive diding mode controller is
adopted to design the control torque T such that the tracking errors C(t) =u(t)—u.(t) - O and
y(t)=yt) -y (t) - O ast—w. Applying the idea of sliding mode control [20], the sliding surface is given by s
= 0 where the diding variable sis chosen as
T ~ ~

s:[% 52] =a+Ay, (24)
where A is a positive definite matrix. The sliding variable may be further written as S=uU—ug, where the
auxiliary variable U, =[@,, ¢S]T =u, — AY . With the unknown parameter vector ® given in (6), it is desired to

drive the system toward the sliding surface, i.e. the diding variable s—0. By taking the difference between Eq. (68)
and the second equation in (23), we obtain the evolution equation of the diding variable as

M(y)$+C(y,y)s=B(y)r - Y.(y,¥,u,,0,)0. (9
The control torque must depend on the unknown parameter vector @, and hence an estimation for. @, i.e. @ , needs

tobeavalable. Let @ =@ —@ betheestimation error. Since @ isconstant, we have @ =@ . The control and
adaptive law can be chosen as

(26)

=B (Y)[Y,(y,y,u,,0,)0-K g,
O=-T"Y(y,y,u,u)s,
where B” istheleftinverseof B,and K _ and T are positive-definite matrix. With such laws, it can be shown

then that the privileged variables can be steered to their respective desired values. Details of the proof can be found
in[21].

7. Simulation Results

To examine the effectiveness of the proposed global backstepping tracking control methodology, computer
simulations for a car-like mobile robot were performed. The system parameters of a large vehicle shown in Fig. 1
were selected as a = 03m, o = 05m, p;, = 075m, ¢ = 175m, w = 15m, m. = 20kg,
m, =6kg, m, =1 kg, m, =2Kg. The desired trgjectory (x(t), yra(t)) is obtained by finding a cubic B-spline
function (cf. [20]) passing through 12 intermediate points, {(-15,-5), (-13,4), (-10,11), (-8,13.5), (-5,15), (-2,13),
(-0.5,10), (2,6), (7,8), (7,15), (2,17), (-2,13)}. Assume that the current values of the states are available so that the
slack variables x  or ¥ can _be obtained. By _ choosing the sets of control parameters as
(k; =16, k, =24, k, =3) and (k; =36, k, =24, k, =3), we find the controls Vv, and V. for the
E-systemand the &-Systemby the laws (16) and (17), respectively, as described in Section V.

Whichoneof V., and V_ isused to generate the updated privileged velocity U, = (¢rc, ¢C) depends on the
heading angle & according to the switching mechanism discussed in Section IV. To make U, continuous before
and after switching, the continuation method described in Section V is applied with the parameter £/ =0.001. The
diding mode controller described in Section VI is then invoked to track the privileged variables to the updated
desired values adaptively and asymptotically with the parameters K = diag{30, 30}, A = diag{4, 4}, and " =
diag{ 100, 100, 100} in (26).

. To signify the adaptive performance of the controller, the initial values for the estimator is selected as
@20% =[0,0,0]" , which is different from the true value @y, = [0.3, 2.1, 0.4]". It is further assumed that initially
x.(0) =-10,y, (0) =-5,6(0) =0°,¢(0) =0° , which is away from the desired ones, i.e (-15, -5,
45°, 35.6°). For the above-described scenario, simulation results are shown in Figs. 5to 8. In Fig. 5, the solid line

18



is the desired B-spline curve, and the shaded block line shows the tracking performance. The switch of active trained
system between the E-System and the &-System isshown in Fig. 6. It is shown that while the initial condition
is significantly away from the desired posture, the hierarchical control scheme proposed here can successfully steer
the mobile robot to the desired tragjectory, with the tracking errors of state variables { X : Y, ) and ?5, @) being
plotted in Fig. 7 and Fig. 8, respectively. Without switching mechanism, either system alone cannot be used to track
the selected trajectory where the heading angle of the vehicle varies from O to 2z and singularity must appear at some
point for either chained system.

Shitching Status

Systemo T2 é 4 5 é 7 8 é 10 11
Time (9

Fig. 5: B-splinetrajectory tracking Performance. Fig. 6: Switching status.

Error Response

Error Response

Time(s) Time (9)
Fig. 7: Tracking error of state variables Fig. 8: Tracking error of state variables

8. Conclusions

A global tracking controller was designed for a car-like mobile robot after its model being established based on
the reduced Appell equation, which is decoupled from the kinematics for the tacitly selected privileged variables.
The advantage of the decoupling feature was taken in the hierarchical design in which the control scheme is
separated into the kinematic compensator and the dynamic controller. The updated reference values for the privileged
variables were obtained from the compensator were fed into a diding mode controller for the reduced dynamics to
steer the privileged variables and all the other variables shall follow suit due to the nature of the system. This concept
is quite different from that of the two-stage controllers discussed in [15, 16, 17] such that it is possible to run the
controller and the compensator at different sampling rates in our design. Our design scheme may be even more
beneficial in dealing with more complicated systems. A mobile robot in fact consists of many components interacting
with each other and the Lagrangian formulation may not be tractable. The formulation of Appell’s equation is much
more transparent and |eads to a suitable structure for controller design as shown in this paper.

In the development of the kinematic compensator, the state equation was first transformed into chained forms
such that the structure becomes simpler and the idea of backstepping can be applied directly. To deal with the
singularity problem arising from the transformations, a switching mechanism based on the posture of the robot was
proposed. A continuation algorithm was then invoked to yield continuous changing of the desired privileged
variables by adjusting the control parameters. The performance of the controller is maintained by the approaching
method such that the control parameters reach their specified values in due course. In previous works, it is more
emphasized on the techniques for the controller design of chained systems, while the singularity problem has not
been addressed. According to the simulation results, the proposed methodology successfully integrates the kinematic
congtraints and the dynamics to generate practical control command to track all the trajectories for the car-like
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mobile robot.
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