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I. INTRODUCTION

Periodic structures with dielectric materials have been extensively studied since 1987 [1, 2]. Their optical properties
mainly depend on the dielectric constant of the material, the geometry of the structure and the direction of the
polarization. If the structure contains metallic components, then the motion of the electrons will drastically alter the
optical properties. In general, there are three levels to model the metal property. The first one is to assume metals
to be perfect conductors. The second one is to model metals as dispersive materials with the simple free-electron
form of dielectric function. The third one is to model metals as dissipative materials with the Drude type of dielectric
function. The most significant feature of periodic metallic structures is the existence of surface plasmon modes. And
for this reason, periodic structures made of the latter two types of metals are also named plasmonic crystals [3, 4].
Surface plasmon modes are highly localized around the interface of the metal and the surrounding dielectric. Also,
intensive gathering of the surface plasmon modes around the surface plasma frequency ωsp gives rise to high density
of states and field enhancements. These features of surface plasmons may find various applications in optical data
storage, miniaturized photonic circuit, surface-enhanced Raman scattering, bio-sensing, light generation and solar
cells [5–10].

It has been a difficult issue to compute surface plasmon modes and band structures for frequency-dependent
materials, in particular, for the TE modes. The free-electron model, though simple, enables us to investigate some
very important optical properties of dispersive metallic structures. On one hand, the highly localized nature of surface
plasmon polaritons requires very fine resolution schemes. On the other hand, the eigensystem for frequency-dependent
materials no longer has standard format that can be solved by standard eigenvalue solvers. In fact, it is referred to as
one type of nonlinear eigenvalue problem [11], which is nonlinear in eigenfrequency. Besides, the change of type of the
eigensystem across the interface of the metal and the dielectric material (with the dielectric constant positive in the
dielectric and negative in the metal) makes the problem non-definite, which adds further difficulty to compute the band
structures. Nevertheless, a few methods have been applied for this frequency-dependent nonlinear eigenvalue problem.
In the most commonly used plane wave expansion method, the field is expanded by a series of Fourier components.
The wave equation is then converted to a quadratic eigensystem [12]. In the finite-difference time-domain method,
an oscillating dipole is introduced in the structure to excite the surface plasmon modes. The eigenfrequencies are
obtained by Fourier transforming the time series of the resultant fields [13]. In the multiple multipole method, the
field is expanded as a linear superposition of analytical functions based on different expansion centers. A carefully
designed cost function is used to test for the eigenfrequencies [14].

In one previous paper [15], we studied the effect of metallic components modelled as perfect conductors as well as
dispersive metals for TM modes. Recently, we further proposed an interfacial operator approach to compute band
structures for dispersive metals with the free-electron model [16]. In this study, we employ the interfacial operator
approach to compute band structures for plasmonic crystals in one and two dimensions as shown in Fig. 1. For the
layered structure (Fig. 1(a)), it will be shown that the frequencies of two surface plasmon modes converge to the surface
plasma frequency ωsp at large off-line wavenumbers. Mode splitting and convergence rate are related to interaction of
the modes from both sides of the metal as well as the dielectric. For two-dimensional structures (Fig. 1(b)-(d)), very
sharp feature of surface plasmon modes can be resolved in details. In particular, surface plasmon polariton (SPP)
modes and localized surface plasmon (LSP) modes are identified regarding their extending characteristics along the
interface. The transverse electric fields, surface charges and polarization currents for a typical surface plasmon mode
are illustrated to study the properties of surface plasmon modes, as well as the active response of dispersive metals.
For TE modes, we observed the phenomenon of a band flattening, the origin of which is explained through the help of
the Rayleigh quotient for the eigensystem. In addition to the band flattening, we also observed the band broadening,
which is more obvious for thin structures, due to lifting of the degeneracy by effective interaction of the modes. For
moderate thick structure, balance of band flattening and broadening may result in a possible plasmonic band gap
around ωsp.

Another aspect of metallic structures is the cutoff behavior in the TM modes. In general, a larger fraction of metallic
component may produce a higher cutoff frequency. This can be made clear by considering the energy density of the
electromagnetic field for dispersive materials. For very high fractions of the metal, all the TM bands may lie above
ωp and coincide with the TE bands there, while the other TE bands below ωp reduce to a few flat bands. Appearance
of the cutoff frequency also implies that no static modes (ω = 0) are allowed for any wave vectors in the TM bands.
However, static modes do appear in the TE bands. The reason is explained on a unified basis by examining different
types of boundary conditions for the TM and TE modes, respectively. It is found that a full or partial band of static
modes with zero frequency for TE modes may exist if the metallic components are connected. The same phenomenon
is also observed for the one-dimensional layered structure. As a result, large full band gaps between the first few
frequency bands are opened. For isolated metallic structures, however, there is no similar behavior. In the present
study, we also investigate the effect of the plasma frequency ωp on surface plasmon modes and band structures. First
of all, ωp is a measure of how dispersive metals approach to perfect conductors. As ωp is increased, both the TM and
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TE bands move to higher frequencies, for there is more energy contained in the metal. In particular, static modes at
the point Γ are illustrated to explore the evanescent fields and related skin depths in the metal. In the limiting case
where ωp approaches to infinity, dispersive metals behave like perfect conductors, and the surface plasma frequency
ωsp goes to infinity as well, and therefore no surface plasmon modes exist at finite frequencies. Moreover, longitudinal
modes with eigenfrequency equal to ωp can also be obtained with the present approach. These modes correspond to
coherent oscillations at the bulk plasma frequency, and also to zero of the dielectric function. Finally, we consider the
effect of dissipation in terms of the Drude damping by developing the first-order perturbation analysis to correct the
eigenfrequencies.

II. BASIC EQUATIONS

Based on the Maxwell theory, the wave equations for linear, isotropic and nonmagnetic materials in two dimensions
are given by
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for TM and TE modes, respectively, assuming that the fields vary harmonically in time with frequency ω as e−iωt.
The eigenmodes are solutions of the wave equations bound by some constraints. In this study, the periodicity of the
structure serves as a constraint to the wave equations. For periodic structures, it is sufficient to solve the problem on
one unit cell, along with the Bloch conditions

E(r + ai) = eik·aiE(r), (3)
H(r + ai) = eik·aiH(r), (4)

where k is the wave vector, and ai(i = 1, 2) are the lattice translation vectors.
In the present study, we consider the free-electron model [17]

ε (ω) = 1− ω2
p

ω2
(5)

for the metal, where ωp is the bulk plasma frequency. It is noted that in the free-electron model, the dielectric function
of the metal is real, and the conductivity is purely imaginary. That means the conductivity is 90 degrees out of phase
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FIG. 1: (Color online) Plasmonic crystals made of dispersive metals. (a) 1D layered structure (b) 2D array of square cylinders
(c) 2D array of circular cylinders (d) 2D array of grid cylinders.
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with the field, and there is no loss with this model. However, in the optical range of frequencies, dissipation due to
electron collisions cannot be ignored. For this purpose, the Drude model [18]

ε (ω) = 1− ω2
p

ω2 + iγω
(6)

is employed to consider the contribution of damping. The appearance of the collision frequency γ makes the dielectric
function complex, and the allowed frequencies of the electromagnetic field become complex as well, resulting in a
decay factor of the field in the time domain.

For the dielectric function (5), the eigensystems (1) and (2) can be written in the format

L (Λ)φ = Λφ, (7)

where Λ = ω2/c2 is the eigenvalue, and φ is the eigenfunction, which can be either the E or the H field. Note that
the eigenvalue Λ itself appears in the solution operator L. If we discretize Eq. (7) in a straightforward manner, for
example, by a finite-difference scheme, we will obtain a nonlinear discrete eigensystem

B (Λ)y = Λy, (8)

where B is the system matrix and y is the eigenvector. This is one type of nonlinear eigenvalue problem, that is,
nonlinear in eigenfrequency. Equation (8) does not have a standard format that can be solved by standard eigenvalue
solvers such as QR or inverse iteration [19]. However, for the TM modes, Eq. (1) can be rearranged to yield

(−∇2 + Λp

)
E = ΛE, (9)

which is now a standard linear eigensystem, where Λp = ω2
p/c2. Equation (9) has been used to study the effect of

metallic components embedded in the dielectric structure [15]. Nevertheless, this cannot be done for the TE modes
because the dielectric function lies inside the operator. Surface plasmon modes may appear at the interface between
the metal and the dielectric for the TE modes. The highly localized nature of surface plasmon modes requires very
fine resolution near the interface, across which the dielectric function changes its sign. This is equivalent to the change
of type of Eq. (2) across the interface, adding further difficulty to obtain the solutions numerically.

III. INTERFACIAL OPERATOR APPROACH

The present authors have developed the interfacial operator approach [16] to solve the band structures as well as
surface plasmon modes in one and two dimensions. This is a direct approach to solve the eigensystem (2) within the
finite-difference framework. The basic idea is first to deal with the eigensystem (2) in the regions of the dielectric and
the metal separately so that the dielectric function can be moved out of the Laplace operator to yield

− 1
εd
∇2H = ΛH, (10)

(−∇2 + Λp

)
H = ΛH (11)

for points in the strict insides of the dielectric and the metal, respectively, where εd is the dielectric constant of the
dielectric medium. The two equations (10) and (11) are then joined together with the interface condition

[
1
ε

∂H

∂n

]

S

= 0, (12)

where ∂/∂n denotes the derivative in the surface normal direction, and [ ]S = 0 denotes the jump across the interface
S. The interface condition (12) is obtained by integrating both sides of the eigensystem (2) over a thin box located
on the interface, and taking the limit as the box height goes to zero. The crucial step of the interfacial operator is to
introduce an interfacial variable R into the the discretized form of the interfacial condition (12), and reformulate the
eigensystem in terms of the H field in the strict insides of the dielectric and the metal, along with this new variable R.
Based on the finite-difference formulation, the difference equation of (12) is rearranged so that the eigenvalue Λ only
appears on the right hand side to fulfill the standard format of the eigensystem. Next, the H field at the interface that
appears in the difference equation in the strict insides of the dielectric and the metal is replaced by R. Combing the
discretization of Eqs. (10) and (11), together with the reformulation of Eq. (12), we obtain a resultant eigensystem

Ax = Λx. (13)
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The system matrix A differs from B in two ways: (a) the eigenvalue Λ does not appear in the operator A, and
(b) the H field at the interface, being replaced by the interfacial variable R, does not appear in x. However, The
eigensystems (8) and (13) are equivalent to each other in the discrete sense that the eigenvalue Λ is the same for
both eigensystems, and the eigenvector x can be converted to the original eigenvector y, and vice versa. Nevertheless,
the eigensystem (13) has the great advantage of being a standard format that can be solved by standard eigenvalue
solvers. The detailed formulation of the interfacial operator approach is referred to Ref. [16].

Having obtained the solutions of (1) and (2) with the free-electron model (5), the contribution of Drude damping
can be considered by using the perturbation technique, applied with the interfacial operator approach. Ordinarily, the
collision frequency γ is small compared to the frequency ω such that γ ¿ ω. This suggests us to regard the solution
with damping based on the Drude model (6) as a perturbation to the undamped solution based on the free-electron
model. Here, we refer to the standard perturbation theory [20] to obtain the first-order correction of the eigenvalue.
First, the operator of the eigensystem Lφ = Λφ is split into two parts as

L = L0 + L1, (14)

where L0 is the operator of the undamped eigensystem. Assume the eigenvalue Λ and eigenfunction φ be expanded
as

Λ = Λ0 + Λ1 + · · · , (15)
φ = φ0 + φ1 + · · · , (16)

where Λ0 and φ0 are the eigenvalue and eigenfunction, respectively, of the operator L0. The correction of the
eigenfrequency ω1 is then given as

ω1 = c
(√

Λ0 + Λ1 −
√

Λ0

)
. (17)

Since the perturbed eigenvalues are in general complex, so are the perturbed eigenfrequencies. The imaginary part of
the eigenfrequency results in a decay factor of the electromagnetic field in the time domain, which tells the effect of
Drude damping.

IV. RESULTS AND DISCUSSIONS

Surface plasmons are waves that propagate along the surface of a conductor, due to collective oscillation of electric
charges coupled with the electromagnetic fields [21]. Because of the hybrid or mixing nature, surface plasmons are
also named surface plasmon polaritons [22]. Under suitable conditions, surface plasmons may appear at the interface
across which the dielectric constant changes sign. Ordinarily, it is the interface between a dielectric and a metal at
some frequency range. It is noted that the electromagnetic field is transverse in nature, for the electric field satisfies
the divergence free in a homogeneous medium (∇ · E = 0). On the other hand, the plasma or electron oscillation
is longitudinal in nature, which corresponds to zero of the dielectric function (ε = 0). Basically, the two motions
are not coupled with each other. But the presence of the interface gives the field a longitudinal component due to a
discontinuity of the dielectric function across the interface (∇ · E = −E · ∇ ln ε 6= 0) [23]. Therefore, the motions of
the electrons and the electromagnetic fields could be coupled at the interface. However, because the fields inside the
conductor have no longitudinal components to couple with the plasma oscillations, they rapidly decay away from the
interface. Therefore, surface plasmons are highly localized at the interface and evanescent otherwise. It is also noted
that only in the TE modes can surface plasmon modes be sustained. This is because in the TM modes the E field is
always tangential to the interface and continuous over there ([E]S = σ = 0), and therefore no surface charges exist
to support surface plasmons. On the other hand, in the TE modes the E field has a component across the interface,
which allows the surface charges to exist ([E]S = σ 6= 0).

Due to the binding of electrons, surface plasmons have larger momentums, or equivalently, larger wave numbers
than the light wave at the same frequency. Therefore, in order to excite surface plasmons by light, some coupling
mechanisms have to be introduced to cover the momentum deficit [23]. In the prism coupling technique, attenuated
total reflection is applied on a thin metal film to provide a larger wavenumber by reducing the wave speed. In
the grating coupling technique, the wavenumber is increased by the amount equal to the Fourier component of the
periodicity of the grating. Another way to excite the surface plasmons is using the lattice coupling to supply additional
dispersive modes. In this case, multiple scattering of the fields within the periodic structure is responsible for providing
extra momentums.
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A. One-Dimensional Layered Structures

For the one-dimensional structures (Fig. 1(a)), there are two surface plasmon modes in the TE bands. One has
a lower frequency with odd symmetry and the other has a higher frequency with even symmetry. However, they
eventually converge to the same surface plasma frequency ωsp at large off-line wave numbers β, where β is the wave
number parallel to the metal surface. Figure 2 shows the dispersion relation at ka/2π = 0.5 for the thickness ratio
t/a = 0.2 and ωpa/2πc = 1. Splitting of the modes comes from interaction of surface plasmon polaritons on both
sides of the metal as well as the dielectric. The mode with even symmetry has a higher frequency because the mode
structure has a larger area that effectively corresponds to a larger energy. For a very thin structure, convergence of
surface plasmon modes is slow. This is due to effective interaction of the modes from both sides of the metal, which
lifts the degeneracy. Figure 3 shows the dispersion relation for thickness t/a = 0.1. In a range of medium fractions of
the metal, convergence of surface plasmon modes becomes faster. However, for a very high filling fraction, convergence
is slow again, for the degeneracy is also lifted by effective interaction of the modes from both sides of the dielectric.
Figure 4 shows the dispersion relation for thickness t/a = 0.9. In the meanwhile, the second TE branch has a higher
frequency that approaches to the bulk plasma frequency ωp at zero off-line wavenumber. This is reasonable for the
whole lattice is almost filled with the metal. Another important fact in Fig. 4 is the negative group velocity for
the second TE branch, which occurs as the dielectric portion becomes sufficiently small. This is consistent with the
property of left handedness for the waveguide stack in Ref. [24], which serves as an approach to making a material
with a negative index of refraction.

B. Surface Plasmon Modes

Surface plasmon modes are eigenmodes of surface plasmon polaritons bound by some constraints in the structure.
In this study, the periodicity provides such a constraint, which is also a mechanism to excite surface plasmon modes.
It is known that

ωsp =
ωp√

1 + εd
(18)

is the asymptotic surface plasma frequency at large k limit of the dispersion relation for a metallic flat surface [25].
It is also a good approximation for several two-dimensional structures [13, 14]. Typically, these modes are widely
extended through the interface between the dielectric and the metal, which are identified as surface plasmon polaritons
(SPP). The curved or even edged interface does not change the frequency of surface plasmon polaritons. Figure 5
shows the H field in magnitude for three typical SPP modes at the point Γ near the surface plasma frequency ωsp for
a square array of square metallic cylinders of half width w/a = 0.3 with ωpa/2πc = 1. Note that in all the plots of the
TE eigenmodes, the H field is normalized to have maximum unity, that is, |H|max = 1. The computed results show
very localized patterns near the interface as they should have. In some extreme cases, the surface plasmon mode may
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FIG. 2: (Color online) The dispersion relation at ka/2π = 0.5 for a one-dimensional metallic layered structure (Fig. 1(a)) of
thickness t/a = 0.2 with ωpa/2πc = 1.
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FIG. 3: (Color online) The dispersion relation at ka/2π = 0.5 for a one-dimensional metallic layered structure (Fig. 1(a)) of
thickness t/a = 0.1 with ωpa/2πc = 1.

be as sharp as a knife edge living on the interface. With the interfacial operator approach, it only takes a few points
to resolve this feature.

Here, the spatial extension of surface plasmon modes can be estimated by the skin depths at both sides of the
metallic flat surface [25]

δd =
λ

2π

(
εd + εm

ε2
d

)1/2

, δm =
λ

2π

(
εd + εm

ε2
m

)1/2

, (19)

where λ is the wavelength of light in vacuum, the subscript d denotes the dielectric side, and m the metal side.
The skin depths of surface plasmons modes could be very small. As the frequency approaches to the surface plasma
frequency ωsp, we have εd +εm ' 0. In fact, they can be much smaller than the skin depths of the metal, which can be
seen from Fig. 5. For comparison, the skin depth for the metal is given by δ ≡ 1/Im[k], where k = ω

√
ε/c = 2π

√
ε/λ.

Based on the free-electron model (5), it is given as

δfree =
λ

2π

(
ω2

ω2
p − ω2

)1/2

, ω < ωp. (20)
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FIG. 4: (Color online) The dispersion relation at ka/2π = 0.5 for a one-dimensional metallic layered structure (Fig. 1(a)) of
thickness t/a = 0.9 with ωpa/2πc = 1.
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FIG. 5: (Color online) The H field in magnitude for three typical SPP modes with ωa/2πc = 0.707 at the point Γ near
the surface plasma frequency ωsp for a square array of square metallic cylinders (Fig. 1(b)) of half width w/a = 0.3 with
ωpa/2πc = 1.

FIG. 6: (Color online) The H field in magnitude for a typical LSP mode with ωa/2πc = 0.5585 at the point Γ for a square
array of square metallic cylinders (Fig. 1(b)) of half width w/a = 0.3 with ωpa/2πc = 1.
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C. Localized Surface Plasmons

On a metallic flat surface, surface plasmons can be widely extended along the surface. For a curved surface,
especially for an edged or cornered surface, surface plasmons may be confined in local regions. And for that reason,
they are termed as localized surface plasmons (LSP) [25]. In addition to SPP modes, LSP modes also appear but
with somewhat lower frequencies. This is more obvious for structures with sharp edges or corners, such as the square
or grid cylinders. Figure 6 shows the H field in magnitude for a typical LSP mode at the point Γ for a square array of
square metallic cylinders of half width w/a = 0.3 with ωpa/2πc = 1. Note that the eigenfrequency ωa/2πc = 0.5585 is
somewhat lower than the surface plasma frequency ωspa/2πc = 1/

√
2, and the mode structure is concentrated at local

areas instead of widely extended along the interface between the dielectric and the metal. Besides, the frequencies of
LSP modes may change somehow for different geometries, and the band widths are a little bit larger than those for
SPP modes. However, there is no clear cut between the modes of LSP and SPP. They belong to different branches
of the eigenmodes, possessing the same coupling mechanism but to different degrees. Discussions on localized surface
plasmons, in particular, on grating structures can be found in Refs. [26–28].

In order to measure the degree of localized behavior of surface plasmon modes, we define an extending factor fext

as follows

fext =
A′

A
=

L′

L
, (21)

where L is the total length of the interface, and L′ is the length of the portion of the interface where the magnitude of
the H field exceed a reference value, for example, 0.5, and A and A′ are the corresponding areas with unit extension
along the the offplane direction. For a typical LSP mode, fext is usually small. For example, fext = 0.33 for the LSP
mode in Fig. 6. On the other hand, fext has a larger value for a widely-extended SPP mode. In Fig. 5, the SPP
mode has an extending factor fext = 0.67.

D. Surface Charges and Polarization Currents

Surface charge oscillation is the essential mechanism that supports surface plasmons. For a source-free problem
(ρf = 0), surface charges come from discontinuity of the transverse electric field across the interface between the
dielectric and the metal. From Gauss’s law, we have ρb = ρ = ε0∇ · E. For the TE modes, in particular, the
transverse electric field components can be obtained from the H field,

Ex =
i

ωε

∂Hz

∂y
, Ey = − i

ωε

∂Hz

∂x
. (22)

Therefore, we have

ρb =
iε0

ω

[
∂

∂x

(
1
ε

∂Hz

∂y

)
− ∂

∂y

(
1
ε

∂Hz

∂x

)]
. (23)

Figure 7 shows the transverse electric fields in vectors along with the electric charge strengths in color for a typical
surface plasmon mode with ωa/2πc = 0.7047. Note that in the inset the electric field lines flow along the interface,
whose nodal points (Ex = 0) located at the points where variation of the H field along the interface (the x-direction)
attains its local maximum value. It is also obvious from the above equation that in the strict insides of the dielectric
and the metal, the electric charges are identically zero. Therefore, all charges appear on the metal-dielectric interface.

The linear motion of the charges in the metal cause the polarization currents Jp when the polarization field P
changes. According to the free-electron model (5), we have

P = −ω2
p

ω2
E, Jp =

iω2
p

ω
E. (24)

Figure 8 shows the polarization currents in vectors and their strengths in color for the same surface plasmon mode in
Fig. 7. Note that the polarization currents, flowing in the inside of the metal, also concentrate on the interface, and
are 90 degrees out of phase to the electric fields, as compared to Fig. 7.

E. Band Flattening

The most distinguished feature of band structure for plasmonic crystals is the flatten bands [12, 29] associated with
SPP modes of small band widths, which is due to strong electron-photon coupling that reduces the band dispersion
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[30]. The band flattening also indicates that massive surface plasmon polaritons are difficult to propagate in the
metal. Figure 9 shows the band structure for a square array of circular metallic cylinders of radius r/a = 0.3 with
ωpa/2πc = 1. On one hand, they are nearly dispersionless and intensively gathered around the surface plasma
frequency ωsp. On the other hand, they are highly degenerate in nature. Very high density of states around ωsp give
rise to strong field enhancements. It seems that variations of the H field along the interface between the dielectric
and the metal do not alter the value of the eigenfrequency, and the interface can sustain as many stationary modes
as it could. Consequently, it is expected that there is infinite number of surface plasmon modes around ωsp, based
on the free-electron model or Drude model [13]. This can be addressed further in two aspects. First, the computed
results show that the more field points placed on the interface, the more stationary modes around ωsp to appear. They
have almost the same frequency, but with different variations along the interface. The number of stationary modes
increases linearly with the grid resolution at the interface. Second, the resonant states of a single metallic circular
cylinder also show that there are infinite states that converge to the same frequency ωsp. Based on the description of
linear combination of atomic orbitals (LCAO), it is a fairly accurate approximation to surface plasmon modes [13].

The highly degenerate nature and infinite number of surface plasmon modes can be further explained through the
Rayleigh quotient for the operator in the eigensystem (2),

RH =
〈H,LH〉
〈H, H〉 . (25)

It is known that the eigenfrequency corresponds to minimization of the Rayleigh quotient under a constraint that
the corresponding eigenfunction be orthogonal to all previously obtained eigenfunctions. Substituting the interfacial
operator for L in Eq. (25) along with the Bloch condition (4), we obtain

RH =

∫
Vd

1
εd
|∇H|2 dτ +

∫
Vm

(
|∇H|2 + (ωp/c)2 |H|2

)
dτ

∫
Vcell

|H|2 dτ
, (26)

where Vd and Vm denote the volumes of the dielectric and the metal, respectively, and Vcell the volume of the unit
cell. From Eq. (26) we know that variations in tangential direction along the interface will not change the value of
the Rayleigh quotient, and the eigenfrequency neither. There can be as many modes as possible if the variation of
the field in the normal direction to the interface remains unchanged. This is also verified in Fig. 5 that the typical
feature of the SPP modes is similar except a different variation along the interface. However, the eigenfrequency is
almost identical. Numerically, the modes can be resolved only when the grid resolution is fine enough to tell the
tangential variation. However, this infinite degeneracy of the eigenmodes may be removed if a more realistic model is
considered, by taking into account, for instance, the interband transition and the spatial dispersion [13].

F. Band Broadening

In addition to the band flattening, we see another feature of SPP modes, that is, the band broadening. For thin
metallic structures, SPP modes become more widely spread around the surface plasma frequency ωsp. The physical

FIG. 7: (Color online) The transverse electric fields in vectors (the inset) along with the electric charge strengths in color for
a typical surface plasmon mode with ωa/2πc = 0.7047.
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FIG. 8: (Color online) The polarization currents in vectors (the inset) and their strengths in color for a typical surface plasmon
mode with ωa/2πc = 0.7047.

origin of this broadening could be explained as effective mode interaction due to geometry of the interface. In
particular, for thin grid structures, interaction from both the normal and the lateral directions of the interface further
lifts the degeneracy, making the bands spread even more widely. Figure 10 shows the band structure for a square
array of grid metallic cylinders of thickness t/a = 0.1 with ωpa/2πc = 1. On the other hand, for thick grid structures,
there may be a balance between band flattening and band broadening. As a result, a plasmonic band gap between
surface plasmon modes may occur around ωsp, although it is usually small. Figure 11 shows the band structure for
a square array of grid metallic cylinders of thickness t/a = 0.3 with ωpa/2πc = 1. A plasmonic band gap with a
gap-midgap ratio 3.9% and the midgap frequency 0.738 is shown in the figure.
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FIG. 9: (Color online) The band structure for a square array of circular metallic cylinders (Fig. 1(c)) of radius r/a = 0.3 with
ωpa/2πc = 1.
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G. Cutoff Behavior

For dielectric structures, there is an acoustic branch which is linear at small wave vectors with zero eigenfrequency
at the point Γ for both the TM and TE modes. However, for structures that contain metallic components either
modelled as perfectly conductors [31] or dispersive metals [15], this branch may disappear in the TM modes due to
the cut-off behavior. In other words, zero-frequency solutions do not exist for all wave vectors. For one-dimensional
layered structures, the greater the filling fraction of the metal, the smaller the required threshold for the occurrence
of the cutoff frequency [11]. Also, the higher the fraction of the metal, the larger the cutoff frequency. The cutoff
frequency significantly modify the band structure for the TM modes by introducing a zeroth-order band gap [31].
When the cutoff frequency is large enough, the full band gap is solely determined by the TE bands. A comparison of
Figs. 10 and 11 shows that the cutoff frequency for a thick structure is larger than for a thin structure. Besides, as the
fraction of metallic components increases, the TE bands below ωp tend to be dispersionless. For very high fractions
of metals, all the TM bands may lie above ωp and coincide with the TE bands there, while the other TE bands below
ωp are reduced to a few flat bands. Figure 12 shows the band structure for a square array of grid metallic cylinders of
thickness t/a = 0.8 with ωpa/2πc = 1. On the other hand, for the same metal fraction, dispersive metals with larger
plasma frequency ωp also exhibit larger cutoff frequency [15]. Both cases indicate that the density of free electrons
contained in the metal is responsible for the cutoff behavior. In another aspect, the cutoff frequency is also related
to the energy stored in the electromagnetic field. The integrand ω2

p|H|2 in the Rayleigh quotient (26) indicates that
the free electrons in metallic materials are likely to raise the energy of the field, which is in contrast to the situation
in dielectric materials, where the field tends to concentrate on the high-ε region in order to lower its frequency. This
can be made clear by the energy density u of the electromagnetic field for dispersive materials [32],

u =
1
2
Re

[
d (ωε)

dω

]
E2 +

1
2
Re

[
d (ωµ)

dω

]
H2. (27)

TM modes
TE modes

M ΓXΓ

F
re

qu
en

cy
(ω

a/
2π

c)

0

0.2

0.4

0.6

0.8

1

FIG. 10: (Color online) The band structure for a square array of grid metallic cylinders (Fig. 1(d)) of thickness t/a = 0.1 with
ωpa/2πc = 1.
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Based on the free-electron model (5), we have

u =
1
2
ε0

(
1 +

ω2
p

ω2

)
E2 +

1
2
µ0H

2, (28)

which reveals that the energy may increase with increasing the plasma frequency.
It is natural for us to consider that the cutoff behavior is analogous to that in the conventional waveguides.

However, the origin of the cutoff behavior in the TM modes for the metallic structure is very different from that of the
conventional waveguide. In the latter, the cutoff frequency originates from sustenance of the transverse oscillations
[33], while in the former, the electric fields are identically zero inside the perfect conductors, or exponentially decay
inside the dispersive metals. In particular, we consider the TM modes at the symmetric point Γ. If the zero-frequency
solution (without a cutoff frequency) is allowed in the structure, the E field should be constant everywhere outside the
metal. By the continuity of the E field at the metal boundary for perfect conductors ([E]S = 0), this constant must
be zero, resulting in a trivial solution. For dispersive metals, another continuity condition of the E field at the metal
boundary ([∂E/∂n]S = 0) excludes the possibility of a constant solution outside the metal and exponentially decay
inside. In either case, the TM modes with zero frequency do not exist, making appearance of the cutoff frequency.

On the other hand, the cutoff behavior is not observed in the TE modes for metallic structures. This is because
constant solutions outside the metal (and zero inside) with zero frequency are allowed in the structure without violating
the boundary condition for perfect conductors ([∂H/∂n]S = 0). For dispersive metals, the zero-frequency solution is
also valid, for the interface condition (12) allows a discontinuity in the normal derivative of the H field across the
metal boundary, which is necessary for a solution to be constant outside the metal and exponentially decay inside.

H. Static Modes

Static modes are zero-frequency solutions mentioned in the preceding subsection. Figure 13 shows the static mode at
the point Γ for a square array of circular metallic cylinders of radius r/a = 0.3 with ωpa/2πc = 1. They are eigenmodes
correspond to the long wavelength limit, also the electrostatic field for the TM modes or the magnetostatic field for
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FIG. 11: (Color online) The band structure for a square array of grid metallic cylinders (Fig. 1(d)) of thickness t/a = 0.3 with
ωpa/2πc = 1.
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the TE modes. In dielectric structures, static modes appear both in the TM and TE modes. For metallic structures,
however, only the TE modes sustain static modes. Besides, in isolated metallic structures, static modes appear only
at k = 0 (point Γ), but for connected structures, static modes may appear at other and even all wave vectors. This is
because connectivity of the structure provides a degree of freedom to let static modes to accommodate themselves in
the metal to any value of k in the direction perpendicular to the connectivity, without violating the Bloch condition
at the cell boundary. For example, the band structure for a square array of metallic grid cylinders shown in Figs. 10
to 12 have a zero-frequency branch in the TE bands along the Γ −X −M − Γ path in the first Brillouin zone. We
also observe the same feature in one-dimensional layered structures. In fact, this is the extreme case of the resonant
modes in the cavities [33]. They are standing waves confined in the metal, which are independent of the wave vectors.
For isolated structures, this does not occur.

If this phenomenon is true in both directions of lattice translation, for example, a square array of metallic grid
cylinders, then a branch merely consisting of static modes is formed. As a result, the first branch is a straight zero
band, and a very large band gap is opened and solely determined by the second branch. This is demonstrated in
the band structure for a square array of metallic grid cylinders in Fig. 10. In a sense, this band gap resembles the
zeroth-order band gap caused by the cutoff frequency in the TM modes. This observation also applies to the case
of perfect conductors, where all branches are indeed straight lines [34]. On the other hand, if the structure exhibits
connectivity in only one lattice direction, then a partial zero band is observed. For example, a hexagonal array of
metallic grid cylinders will have a zero-frequency branch in the TE bands along the Γ−M path in the first Brillouin
zone. Figure 14 shows the band structure for a hexagonal array of grid metallic cylinders of thickness t/a = 0.1 with
ωpa/2πc = 1.

I. Plasma Frequency

The plasma frequency ωp is the natural frequency of collective oscillation of free electrons. It is a measure for
the number density of free electrons [17]. The higher the plasma frequency, the more free electrons contained in a
metal. Based on the free-electron model (5), the plasma frequency ωp has several effects on the skin depth of the
metal (20), the Rayleigh quotient of the eigensystem (26), the energy density of electromagnetic fields in the metal
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FIG. 12: (Color online) The band structure for a square array of grid metallic cylinders (Fig. 1(d)) of thickness t/a = 0.8 with
ωpa/2πc = 1.
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FIG. 13: (Color online) The static mode at the point Γ for a square array of circular metallic cylinders (Fig. 1(c)) of radius
r/a = 0.3 with ωpa/2πc = 1.

(28), and most important, the surface plasma frequency ωsp, through the relation (18). Besides, the surface plasmon
band structures are no longer scale invariant because of the appearance of ωp. That means solutions with different
ωp cannot be scaled with each other. Figure 15 shows the band structure for a square array of grid metallic cylinders
of thickness t/a = 0.1 with ωpa/2πc = 2. Note that the detailed structure is different from the case of ωpa/2πc = 1
in Fig. 10, although the overall pattern is similar. Besides, surface plasma frequency ωsp switches to a higher value
ωspa/2πc =

√
2.

As ωp increases to a higher value, the energy density of electromagnetic field (28) becomes larger, and the group
velocities of surface plasmon polaritons becomes even smaller. In another aspect, dispersive metals behave more like
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FIG. 14: (Color online) The band structure for a hexagonal array of grid metallic cylinders of thickness t/a = 0.1 with
ωpa/2πc = 1.
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perfect conductors at large ωp. The transition from dispersive metals to perfect conductors can be illustrated through
the changes of static modes. Figure 16 shows the static mode at the point Γ for a square array of circular metallic
cylinders of radius r/a = 0.3 with ωpa/2πc = 8. The skin depth (20) for static modes is given by

δfree =
c

ωp
, (29)

where c is the speed of light in vacuum. As ωp becomes larger, the skin depth becomes smaller and the field more
evanescent. In the limiting case where ωp approaches to infinity, dispersive metals behave like perfect conductors.
Figure 17 shows the static mode at the point Γ for a square array of circular perfectly conducting cylinders of half width
w/a = 0.3. There are unlimited supply of free electrons [35], and all fields are expelled out from the metal and vanish
inside. Consequently, there are no bound states to support surface plasmons. This can also be explained through the
relation (18) between ωsp and ωp. When ωsp approaches to infinity, surface plasmon modes with finite frequencies
disappear. Nevertheless, surface plasmons may be mimicked on a perfectly conducting surface with structured array
of holes much smaller than the wavelength [36].

J. Longitudinal Modes

The electromagnetic fields are transverse in nature. However, longitudinal modes may exist in a material when
the dielectric constant becomes zero. According to the free-electron model (5), a longitudinal mode exists when its
eigenfrequency is equal to the plasma frequency ωp. That also means oscillation of the electric field coincides with the
coherent motion of the electrons. Like surface plasmon modes, longitudinal modes appear only in the TE modes, for
the transversality condition of the E field (∇ ·E = 0) is always met for the TM modes. However, longitudinal modes
are difficult to obtain due to singularity of the operator in Eq. (2). Nevertheless, with rearrangement of the interfacial
operator approach in Eq. (2), based on the free-electron mode (5), the singularity is removed and longitudinal modes
can be solved. Figure 18 shows the static mode at the point Γ for a square array of circular metallic cylinders of
radius r/a = 0.3 with ωpa/2πc = 1. Note that the longitudinal mode is constant in the metal, which is the typical
feature of longitudinal oscillation.
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FIG. 15: (Color online) The band structure for a square array of grid metallic cylinders (Fig. 1(d)) of thickness t/a = 0.1 with
ωpa/2πc = 2.



16

FIG. 16: (Color online) The static mode at the point Γ for a square array of circular cylinders (Fig. 1(c)) of radius r/a = 0.3
with ωpa/2πc = 8.

Static and longitudinal modes are two unique features in the TE modes for metallic structures. In a sense, they are
dual to each other; static modes have constant solutions outside the metal, while longitudinal modes have constants
inside. In another aspect, for example, in one-dimensional layered structures, both the static mode and the longitudinal
mode eventually converge to two surface plasmon modes at sufficiently large off-line wave numbers. These unique
features originate from the fact that the dielectric function lies inside the operator for the TE modes (2). On the other
hand, they do not exist in the TM modes because the interface condition for the E field ([∂E/∂n]S = 0) excludes such
solutions. That also means surface charges are responsible for static and longitudinal modes as they are for surface
plasmon modes.

K. Drude Damping

Using the perturbation technique, we can study the effect of Drude damping, provided that the collision frequency
γ is small compared to the eigenfrequency ω. The imaginary part of the first-order correction ω1 in Eq. (17) gives rise
a decay factor eIm[ω1]t of the mode structure in the time domain. Note that Im [ω1] is negative for e−iωt dependance
of the fields. Figure 19 shows the imaginary part of ω1 of the first few bands for a square array of square metallic
cylinders of half width w/a = 0.3 with ωpa/2πc = 1 and γ/ωp = 0.01. In general, Im [ω1] is smaller than the collision
frequency γ about one order of magnitude. Even bands have larger dissipation at the zone center, while odd bands
have larger dissipation at the band edges. Moreover, the dissipation becomes even smaller for higher bands.

FIG. 17: (Color online) The static mode at the point Γ for a square array of circular perfectly conducting cylinders (Fig. 1(c))
of radius r/a = 0.3.
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FIG. 18: (Color online) The longitudinal mode at the point Γ for a square array of circular metallic cylinders (Fig. 1(c)) of
radius r/a = 0.3 with ωpa/2πc = 1.

V. CONCLUDING REMARKS

In this paper, we compute surface plasmon modes and band structures for plasmonic crystals, based on the free-
electron and Drude model. By using the interfacial operator approach, surface plasmon band structures can be solved
directly in the frequency domain. In particular, introduction of interfacial variables enables resolution of highly
localized nature of surface plasmon modes near the interface of the dielectric and the metal. The above two features
facilitate greatly investigation of the optical properties of plasmonic crystals. For one-dimensional layered structures,
we study the mode splitting and convergence of surface plasmon modes, as well as the negative group velocity for the
second TE branch. For two-dimensional problems, we study the typical mode structure of surface plasmon modes,
along with identification of SPP and LSP modes. The transverse fields, surface charges and polarization currents are
visualized to study various properties of surface plasmon modes, which include SPP and LSP modes. The localized
nature of SPP modes around the surface plasma frequency provides the theoretical basis for plasmonic circuit.

In addition, the band flattening, band broadening and possible plasmonic band gaps are presented for thin and thick
metallic structures. The Rayleigh quotient for the TE modes is employed to understand the highly degenerate nature
of surface plasmon modes, and the possibility of infinite degrees of degeneracy. The cutoff behavior for TM modes
(but not for TE modes) is explained on a unified basis by examining different types of boundary conditions for TM and
TE modes, and which is further clarified by considering the energy density in the electromagnetic fields for dispersive
metals. The band broadening for thin metallic structures allows a wide range of absorption, and therefore may find
potential applications in solar cells. Interesting discussion has being also devoted to the relationship of the existence
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FIG. 19: (Color online) The imaginary part of ω1 of the first few bands for a square array of square metallic cylinders (Fig.
1(b)) of half width w/a = 0.3 with ωpa/2πc = 1 and γ/ωp = 0.01
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of static modes and connectivity of the metal. The related skin depth for the dispersive metal and the transition to
the perfect conductor are also discussed. Moreover, longitudinal modes, which appear only in the TE bands, are also
obtained in the present study. Finally, the effect of Drude damping is studied by a perturbation technique to the
undamped solutions. Nevertheless, in the wide range of energy spectrum: 0 ∼ 2}ωp, the effect of interband transitions
is not negligible [37, 38]. This proposes a further challenge for the present methodology because contribution of the
interband transitions lacks a simple functional form in frequency. This topic is now under investigation and the results
will be reported elsewhere.

[1] E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[2] S. John, Phys. Rev. Lett. 58, 2486 (1987).
[3] I. I. Smolyaninov, W. Atia, and C. C. Davis, Phys. Rev. B 59, 2454 (1999).
[4] G. Shvets and Y. A. Urzhumov, J. Opt. A: Pure Appl. Opt. 7, S23 (2005).
[5] B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, Phys. Rev. Lett. 77, 1889 (1996).
[6] J. Pendry, Science 285, 1687 (1999).
[7] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, Phys. Rev. Lett. 78, 1667 (1997).
[8] S. M. Nie and S. R. Emery, Science 275, 1102 (1997).
[9] P. Andrew, S. C. Kitson, and W. L. Barnes, J. Mod. Opt. 44, 395 (1997).

[10] M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, and D. Meissner, Sol. Energy Mat. Sol. Cells 61, 97 (2000).
[11] O. Toader and S. John, Phys. Rev. E 70, 046605 (2004).
[12] V. Kuzmiak, A. A. Maradudin, and F. Pincemin, Phys. Rev. B 50, 16835 (1994).
[13] T. Ito and K. Sakoda, Phys. Rev. B 64, 045117 (2001).
[14] E. Moreno, D. Erni, and C. Hafner, Phys. Rev. B 65, 155120 (2002).
[15] C. C. Chang, J. Y. Chi, R. L. Chern, C. C. Chang, C. H. Lin, and C. O. Chang, Phys. Rev. B 70, 075108 (2004).
[16] C. C. Chang, R. L. Chern, C. C. Chang, and R. R. Hwang, Phys. Rev. B 72, 205112 (2005).
[17] C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, New York, 1996), seventh ed.
[18] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles (John Wiley & Sons, New York,

1983).
[19] J. W. Demmel, Applied Numerical Linear Algebra (SIAM, Philadelphia, 1997).
[20] J. J. Sakurai, Modern Quantum Mechanics (Addison-Wesley, New York, 1994).
[21] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature 424, 824 (2003).
[22] E. Burstein, Polaritons (Pergamon, New york, 1974).
[23] N. Peyghambarian, S. W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, New Jersey,

1993).
[24] G. Shvets, Phys. Rev. B 67, 035109 (2003).
[25] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings (Springer-Verlag, Berlin, 1988).
[26] W. C. Tan, T. W. Preist, and R. J. Sambles, Phys. Rev. B 62, 11134 (2000).
[27] W. C. Liu and D. P. Tsai, Phys. Rev. B 65, 155423 (2002).
[28] W. A. Murray, S. Astilean, , and W. L. Barnes, Phys. Rev. B 69, 165407 (2004).
[29] A. R. McGurn and A. A. Maradudin, Phys. Rev. B 48, 17576 (1993).
[30] W. Zhang, X. L. An Hu, N. Xu, and N. Ming, Phys. Rev. B 54, 10280 (1996).
[31] E. I. Smirnova, C. Chen, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin, J. App. Phys. 91, 960 (2002).
[32] J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York, 1999), 3rd ed.
[33] C. A. Balanis, Advanced Enginerring Electromechanics (John Wiley & Sons, New York, 1989).
[34] T. Suzuki and P. K. L. Yu, Phys. Rev. B 57, 2229 (1998).
[35] D. J. Griffiths, Introduction to Electrodynamics (Prentice Hall, New Jersey, 1999), 3rd ed.
[36] J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Science 305, 847 (2004).
[37] P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).
[38] A. Pinchuk, U. Kreibig, and A. Hilger, Surface Science 557, 269 (2004).


