Factory Operations Research Center (FORCe II)

SRC/ISMT 2004-OJ-1214

Configuration, monitoring and control of semiconductor supply chains

Jan. 7, 2005

Shi-Chung Chang (task 1) Argon Chen (task 2) Yon Chou (task 3) National Taiwan University

Multiple Threads of Manufacturing Services

Challenges of Manufacturing Services

- Effective collaboration between engineering and manufacturing
- Reliable delivery
- Supply and service monitoring and control

Supply Chain Configuration, Monitoring and Control

Objectives: to enhance

- Predictability
- Scalability

Fask 1: Empirical Behavior Modeling

- PI: Shi-Chung Chang Co-PIs: Da-Yin Liao, Argon Chen
- To develop methodology:
- 1. Definition of quality of service (QoS) metrics
 - Scalability
 - Controllability
 - Service Differentiability
- 2. Modeling and simulation
 - Performance
 - Variability (engineering and business)
 - Capacity allocation & control

NTERNATIONAL SE

Mid-year Progress – Task 1

- Definition of Performance Metrics
 - Have identified reduced set of QoS metrics from SCOR
 - Have defined the QoS translation problem among nodes of supply chain
 - Is developing a queueing network-based QoS translation method
- Fab Behavior Modeling
 - Have developed a baseline model
 - open queueing nework with priority
 - mean and variability
 - Have defined a response surface fitting problem
 - Is developing response surface modeling method
- Simulation
 - Have developed a baseline Fab simulator based on QN models

Performance Metrics Definition

- SCOR-based six categories
 - quality, cost, cycle time, delivery, speed, and service

Key Level 1 Metrics for SSC

Q	Yield	Sp	% Schedules Changed within Suppliers' Lead Time	
	Yield Variability		% Cohodulas Concreted within Suppliare?	
Co	% of Downtime due to Non-availability of WIP		Lead Time	
	Capacity Utilization		Intra-Manufacturing Re-Plan Cycle	
	Finished Goods Inventory Carrying Costs		Schedule Achievement	
	In-process Failure Rates		Schedule Interval	
	Machine Wait Time		Re-Plan Cycle Time	
ст	Actual-to-theoretical Cycle Time		Responsiveness Lead Time	
	Make Cycle Time	Sv	% Orders/Lines Received On-Time to Demand Requirement	
	Ratio of Actual to Theoretical Cycle Time		%Orders/Lines Received with Correct	
D	% of Orders Scheduled to Customer		Shipping Documents	
	Request		Delivery Performance to Customer	
	Average Days per Schedule Change		Request Date	
	Delivery Performance to Customer Request Date			
	Forecast Accuracy			
	Forecast Cycle			

INTERNATIONAL SEM

Characterization of Variability

- Sources
 - Process varieties
 - Engineering changes
 - Operation excursions
 - Demand plan
- Hybrid models
 - Response surface
 - Priority queueing
 - Simulation

NTERNATIONAL SE

Behavior Modeling Methodology

- Priority open queueing network (OQN)
 - Nodal and system characterization by mean and variance
 - Response surface matching with empirical data
- Simulation for performance prediction/model adaptation

Priority OQN Model: Fab Example

----→ flow of type B parts

- Node : Group of identical failure prone machines
- Queue : Infinite buffer for each step
- Job Class : Part type
- Arrival : General independent processes
- Service : General time distribution (single/batch, failure)
- Routing : Deterministic with feedback
- Discipline : Priority

Decomposition Approximation

- Two Notions
 - Each Network Node as an Independent GI/G/m Queue
 - Two Parameters, Mean & SCV, to Characterize
 Arrival & Service Processes

Three Flow Operations

• Merging

 $\lambda_j = \lambda_{0j} + \sum_{i=1}^n \lambda_i q_{ij}$ $C_{aj}^2 = a_j + \sum_{i=1}^n C_{ai}^2 b_{ij}$

• Splitting

$$\begin{split} \lambda_{ij} &= \lambda_i q_{ij} \\ C_{ij}^2 &= q_{ij} C_{di}^2 + 1 - q_{ij} \end{split}$$

- Flow Through a Queue Input (τ, C_s^2) Output (λ, C_a^2) (d, C_d^2)
- •Departure Rate $d = \lambda$ •Inter-departure Time SCV $C_d^2 = (1 - \rho^2)C_a^2 + \rho^2 C_s^2$

Traffic Equations: <u>*F(*</u>)

QoS Translation

- Given
 - Higher Level/Coarse QoS spec.
 - Service Node Parameters
 - Flow Routing Information
 - Priority OQN model
 - FCFS Discipline for Each Priority
- Derive by solving $\underline{Y} = \underline{F}(\underline{\alpha}, \underline{\theta}, \underline{Q})$
 - External control specs.
 - Nodal Level QoS reponsibility

Response Surface Modeling

- Given
 - Empirical I/O Characterization (I, O)
 - Service Node Capacity
 - Flow Routing Information
 - Priority OQN model
 - FCFS Discipline for Each Priority
- Fit $F(\underline{\alpha}, \underline{\theta}, \mathbf{Q})$ to $(\underline{I}, \underline{O})$ and derive - Node characteristic parameters $\underline{\theta} = (\tau_n, C_{sn}^2)$

*m*_n

Q

 $F(\alpha, \theta, \mathbf{Q})$

Modeling Capacity Allocation

Deliverables – task 1

- July 2005
 - Selection and definition of key QoS metrics
 - Translation algorithm of QoS from chain to nodes
 - Fab behavioral model
 - Priority, capacity allocation, source of variation
 - Fab behavioral simulator
- July 2006
 - Methodology generalization to the service thread from design house, fab to circuit probe
 - Methodology and tool integration with control (task 3) and optimization (task 2)

Task 2: Robust Allocation and
Monitoring

PI: Argon Chen Co-PI's: David Chiang, Andy Guo

Will develop:

- **1.** A baseline supply chain allocation strategy
 - Robustness on performance
 - Robustness on performance variability
 - Quadratic approximation
- 2. Supply chain sensitivity and monitoring
 - 2nd moment performance of priority queueing network
 - Decomposition of supply chain performance
 - Ranges of optimality and feasibility
 - Trigger of supply chain control actions

Mid-year Progress – Task 2

- Supply chain simulation model
 - Have defined environment variables and variability sources
 - Have defined control policies for various supply chain threads
 - Have built a preliminary simulation model using ARENA
- Supply chain allocation programming
 - Have defined allocation decision variables
 - Have formulated constraints
 - Have started development of implementation strategies
- Supply chain allocation optimization
 - Have studied quadratic programming methodologies
 - Have studied Wolfe-dual based algorithm
 - Have studied piecewise linear programming methodologies

Semiconductor Supply Chain

Supply Chain Routes and Threads

Supply Chain Allocation

- X_{rikq} (%)
 - Proportion of production for product type k at service-level q allocated to supply chain thread i of route r

Supply Chain Behavior Model

Signal S

Supply Chain Constraints (I)

Product Mix Constraints

The proportion of product type k to total production

$$\sum \sum \sum X_{\text{rikq}} = \rho_k \quad \forall k$$

Priority Mix Constraints q

 <u>The proportion of service-level q production to total</u> production

$$\sum_{r} \sum_{i} \sum_{k} X_{\text{rikq}} \leq \phi_{q} \quad \forall q$$

Supply Chain Constraints (II)

Demands Fulfillment Constraint

– The total production is equal to or less than the demand

$$\sum_{r} \sum_{i} \sum_{k} X_{rikq} \le 1$$

Example:

$$\sum_{r} \sum_{i} \sum_{k} X_{rikq} = 0.95$$

meaning 95% of demand will be fulfilled

Supply Chain Constraints (III)

Route Mix Constraints

 <u>The proportion of production allocated to route r can not</u> <u>exceed a predetermined limit</u>

$$\sum_{i} \sum_{k} \sum_{q} X_{rikq} \leq \alpha_{r} \quad \forall r$$

Thread Mix Constraints

 <u>The proportion of production allocated to thread i can not</u> <u>exceed a predetermined limit</u>

$$\sum_{r} \sum_{k} \sum_{q} X_{rikq} \leq \beta_{i} \qquad \forall i$$

Supply Chain Constraints (IV)

Resource (Capacity) Constraints

 <u>The proportion of capacity consumed by route r cannot exceed a given proportion</u> of route r capacity to the total capacity

$$\sum_{k} \left[\left(\sum_{i} \sum_{q} X_{rikq} \right)^* m_{rk} \right] \le C_r \quad \forall r \qquad \qquad \sum_{r} C_r \le 1$$

Where

- $m_{rk} = U \omega_{ki}$ the percent use of route *r* by one percent of production for product type *k* allocated to route *r*
- C_r : the proportion of route r available capacity to total capacity
- $\sum C_r$: the proportion of available capacity to total capacity
- U(%): capacity utilization (production to total capacity ratio)
 - ω_{ki} : the capacity of route r consumed by one unit of product type $k_{\text{INTERNATIONAL}}$

Supply Chain Allocation Optimization -Goal Programming

Solution Methodology

- Quadratic Stochastic Goal-Programming
 - Transform the model to a piecewise quadratic programming model
 - Construct Wolfe-dual based algorithm for the piecewise quadratic programming model
 - Develop a preemptive goal programming approach for differentiable service priorities
 - Perform sensitivity analysis through parametric quadratic programming

Implementation Case 1: Order fulfilled based on X_{rika}

Implementation Case 2: Order fulfilled by a lower priority

Deliverables – Task 2

- Supply chain quadratic goal programming model and solution (Model, Methodology, Report) (July-05)
 - Supply chain simulation model (March-05)
 - Supply chain planning goals (April-05)
 - Supply chain goal programs (May-05)
 - Baseline supply chain allocation model and solution (July-05)
- Supply chain sensitivity analysis and monitoring methodology (Model, Methodology, Report) (July-06)

Supports Needed – Task II

- Supply chain network data
 - Number of supply chain levels
 - Number of facilities at each level
 - Capacity and capability of each facility
 - Locations of facilities, etc.
- Supply chain operations data
 - Facility reliability data
 - Cycle time
 - Dispatching policies
 - Control policies
 - Order fulfillment policies, etc.
- Supply chain allocation practice
- Supply chain performance data

Task 3: Dynamic Control

Will develop:

PI: Yon Chou Co-PI: Shi-Chung Chang

1. A control model for demand support

and business plan

2. A control method to enhance delivery, speed and service

Mid-year Progress – Task 3

- 1. A control model for demand support
 - Have defined the problem scope
 - Have outlined the model
- 2. A control method to enhance delivery, speed and service
 - Have developed a workload flow model
 - Have developed an integer program (with preliminary implementation)

3.1 Salient feature

Demand (technology, product, etc.) has a life cycle

 Demand forecasts and channel inventory are signals. The total demand is a more reliable estimate.

Mean-reverting model

forecast

3.1 A control model for demand support

- Objectives
 - To monitor demand-capacity mismatch in medium-long term
 - To support the demand-capacity synchronization by capacity decisions (expansion, reservation, prioritization)
- Model scope
 - Relationship between capacity, cycle time, WIP and throughput
 - Integrating channel inventory and demand dynamics with supply capability

3.1 Elements of the model

- Channel inventory: an input, based on market intelligence data I(t)
- Demand dynamics
 - Demand lifecycle
 - Demand learning effect
- Supply capability of the nodes
 - Cycle time, WIP, throughput
- Objective functional
 - Capacity allocation (to control shortage points)

$$\overset{\bullet}{X(t)} = k(X(t))$$

WIP = (TH)(CT)

3.2 Delivery control

- Objectives:
 - To assess the impact of dynamic events on the performance under high-mix environment
 - To identify feasible revision, shortfall points and delay information in order to enhance delivery, speed and service

3.2 Workload variation propagation

- Elements
 - Events: uncertain job arrivals, urgent orders, disrupting events, and material availability
 - Modeling of capacity loss due to variety, variation and dynamic events
 - Cumulative workload

3.2 Behavior modeling of re-allocation

3.2 Variety-efficient relationship

- There are many parallel machine systems in semiconductor manufacturing.
- How to measure variety?
- How to characterize the relationship between variety and efficiency?

Deliverables – task 3

- A control model for demand support (Model, Report) (July-05)
- A delivery control method (Methodology, Report) (July-06)

