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中文摘要

線上檢測是半導體製程中非常重要之步驟。
由於半導體製造過程相當昂貴，一片晶圓在經過每
一步製程，其附加產值都將明顯增加。為了有效地
偵測出製程偏移以減少生產損失並改善良率，極為
關鍵的步驟便是使用線上檢測方法，一個有效率之
取樣策略將有助於使線上檢測能真正達到改善良
率的目的。然而，複雜的製造過程使線上取樣亦成
為不易之工作。在本計畫中，我們將發展出一套整
合取樣策略。我們尤其將重點放在提昇統計製程管
制圖 (statistical process control charts) 和扁移製程
檢出之功能。為達此目的，我們必須考慮一些關鍵
因素並找出一合理分組 (rational subgrouping) 與
管制圖建構策略且降低最後生產總成本。一個有效
率的管制圖建構策略應配合合理分組使其功能發
揮至最大並縮短檢出扁移原因所需時間。除了合理
分組外，我們亦需考慮如何去平衡檢測及生產損失
成本。為了使檢測之規畫更為經濟而有效率，我們
必須決定那些是需要檢測之關鍵製程步驟。本計畫
之主要目的是去發展出一有效率之取樣及管制圖
建構方法，這方法不但可使管制圖發揮其最大功
能，亦可使檢測及生產總成本降至最低。

關鍵詞：取樣策略，統計製程控制，良率改善，線
上檢測

1. Abstract

     In-line inspections are very important steps in
semiconductor manufacturing processes. Due to the
significant amount of value added on a wafer at each
process step, the in-line inspection has become a
crucial means to detect process excursions and to
improve the manufacturing yield. An effective
sampling strategy will help to achieve these goals.
However, the complex nature of the manufacturing
processes and the inspection technologies makes the
data sampling an intricate task. In this project, we

develop an integrated sampling strategy. Particularly,
we focus on the strategy to achieve effective statistical
process control (SPC) and process excursion
investigation. To accomplish this, some key factors
should be taken into considerations to determine a
rational subgrouping strategy and to minimize the total
cost. A rational subgroup is an inspection sample that
is taken in-line and represents a homogeneous group
within which sample measurements vary due only to a
constant system of common causes. Choosing an
effective rational subgrouping strategy and
constructing corresponding control charts can
maximize the power of the control chart and minimize
the excursion investigation efforts. In addition to
rational subgrouping and control chart construction
strategies, we also need to consider the trade-off
between the yield and the inspection cost. To make the
inspection scheme more cost-effective, inspection
points for critical process steps (layers) should be
determined.     The objective of this project is to
develop an integrated sampling and chart construction
approaches that maximize the power of SPC charts
and minimizes the costs of inspections and yield loss
in IC fabrication processes.

Keywords: sampling strategy, SPC, yield
improvement, In-line inspection

2. Background and Objective

Wafer inspections are the crucial means to
improve the production yield in the state-of-the-art
semiconductor manufacturing processes. Since each
process step adds significant amount of value on the
wafers, tight process monitoring via in-line inspections
is necessary for early detection of manufacturing
problems. By discovering and eliminating causes of
process excursions, the production yield can be then
improved significantly. The monitoring tool widely
used in the industry is the statistical process control
(SPC) chart [Cunningham et al.(1995), Shanks (1996),
and Leang et al. (1996)].
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A control chart is a graphical record of sample
data to track the process over time. It consists of upper
and lower control limits that represent the decision
boundary for a statistical hypothesis test. When a
sample statistic falls outside the limits, a process
excursion (out-of-control state) is said to occur. It is at
this event, an investigation takes place to find the
cause that led to the process excursion.

To employ an SPC chart, the chart must be
constructed first and several variables should be
determined. The variables include the sampling
frequency, the sample size, and the decision boundary.
There are two approaches to constructing a Shewhart
control chart. The first is to determine a rational
sampling strategy by carefully examining variation
sources of the process [DeVor, et al. (1992) Chap. 7].
The second is to minimize the total loss based on a
cost model [Duncan (1956), Lorenzen and Vance
(1986), and Elsayed and Chen (1994)]. While the
former focuses on maximizing the power of the control
chart and does not compromise with the out-of-control
processes, the latter intends to minimize the total cost
by considering the trade-off between the inspection
cost and yield loss. In practice, the rational sampling
approach is broadly adopted but is too process-specific
to be discussed in the more generic academic setting.
The cost-based approach, on the other hand, receives
many researchers’ attention but is mostly ignored by
the practitioners due to its mathematical complexity
and unrealistic assumptions.

The complexity of both approaches is further
magnified when applied in semiconductor processes.
This is because the nature of IC fabrication is very
complex by itself. Nurani et al. (1996) and McIntyre et
al. (1996) are the first, and by far the only, to
investigate the problem. They extend the cost-based
approach by introducing additional factors and
variables specific to the IC fabrication processes.
Their approach, however, overlooks the issues of
rational subgrouping. Without maximizing the control
chart power, the model suffers from biased cost
estimates of yield loss. The approach also inherits
from the traditional cost-based model many unrealistic
or ungrounded assumptions. Another problem of the
approach is that the complicated mathematical model
with numerous assumptions will make it slow to react
to the fast-paced IC fabrication technologies.

In this project, we first develop integrated
sampling and control chart construction approaches
that maximize the SPC chart power by considering
various variation sources [Roes and Does (1995),
Woodall and Thomas (1995) and Boning and Chung
(1996)]. In our research, multivariate control charts
[Jackson (1986) and Montgomery (1995)] will be
effectively constructed to monitor the nested variation
sources.

In addition to the effective control chart
monitoring, 100% inspection points are usually

allocated among process steps to sort out defective in-
process wafers and to prevent nonconforming wafers
from being further processed and shipped to customers.
The objective of the allocation problem is to determine
the optimum inspection locations such that a specified
outgoing quality level is met and/or the expected total
cost is minimized.

Lindsay and Bishop (1964) are the first to
propose an economic model to validate the rule for
inspection of in-process items. They consider the
situation where a penalty cost is associated with each
defective finished item and the total final cost is to be
minimized. They develop a dynamic programming
approach to find the location of 100% inspection
points among the production stages. Though Lindsay
and Bishops' model has been intensively extended in
the literature  [Raz (1986)], it is still a comprehensive
model that is relatively easy to apply in practice.
Important modifications and extensions include White
(1966), Pruzan and Jackson (1967), and Eppen and
Hurst (1974). However, the drastic increase in the
complexity often forces researchers to drop some
features.

The second objective of this project is to
demonstrate an alternative dynamic programming
approach that uses the expected cost of discovering
and discarding one defective item as an intermediate
objective function during the process of solution
search. It is proved that the approach eventually
minimizes the expected total cost. The alternative
approach will be illustrated using the same example
given in Lindsay and Bishop (1964).

3. Results and Discussions
　　

Our research results can be organized into two
parts: the first, effective sampling and control charts
construction, and the second, optimal allocation of
critical inspection points. Each research result will be
accompanied by some discussion.

3.1 Effective control char t construction for
processes with var ious var iation sources

We start with constructing a
model that can describe all possible situations such as
correlation and fixed differences among quality
measurements. In our research we have constructed
two models for two situations with different degrees of
complexity. The only difference between these two
models is that one model has the capability of
describing the interaction between effects of the wafer
and position on the quality measurements while the
other model is simplified and lacks this capability. In
this report, we shall show the model for the simpler
situation but still capable of explaining a large class of
practical situations.
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)i(k)i(jijk pwbX +++= iµ (2-1)

i=1..r，j=1..m，k=1..n

where bi ~ N(0,σb) , W=[wj]m×1 ~ N(µm×1(w)，Σm×m(w)),

and P=[pk]n×1~N(µn×1(p)，Σn×n(p))

A typical sampling plan will take (j=) m wafers
from each batch (i) of wafers and (k= ) n readings from
each wafer. In the model above, bi represents the effect
of the ith batch of wafers and follows a normal
distribution, W is a (m × 1) vector and follows a
multivariate normal distribution. The element wj
denotes the effects of the jth wafer in the same batch. P
is a (n × 1) vector and also follows the multivariate
normal distribution. Its element pk represents the
effects of the kth position of the wafer. Only with these
multivariate variables, be the model able to capture all
kinds of effects and variation components.

We assume in our model that there exist fixed
differences among wafers and among positions on the
wafer. In addition, every observation of X is affected
by 3 types of variation components: b, w, and p. To
construct corresponding SPC charts, we should
consider these fixed differences and variation sources.
This will help diagnose the root causes of out-of-
control process and enable the more effective
corrective actions. Take the CVD (chemical vapor
deposition) process as an example. The quality
characteristic of concern is the film thickness grown in
the process. There exist three types of variation
components: variation among positions on a wafer,
variation among wafers and variation among batches
of wafers. Correspondingly, we construct three types
of control charts. However, due to the number of
variation components is quite large, it is difficult to
estimate all the variances and covariance in the model.
To overcome this difficulty, we take the difference of
the observations and construct control charts for these
differences instead. For example, Xi22 denotes the
thickness reading from the second position of wafer 2
in batch i. There are 4 components in Xi22: µ , bi , w2(i) ,
and p2(i) . Similarly, Xi23 consists of four components:
µ , bi , w2(i) , and p3(i). By taking the difference of Xi22

and Xi23, we are able to remove the effects of µ , bi ,and
w2(i) to obtain  p2(i) - p3(i), that is, the variation
component only affected by the position difference.
We can then follow to construct control charts for
monitoring the variation component induced by
position differences. Using the same method, we can
also construct control charts for the variation
component by wafer differences.

Let us first construct multivariate T2 control
charts for position differences:

11             1 −=−= +•• n...kXXdp kiki)i(k

dpk(i) represents the difference between readings from
position k and k+1. We can then construct n-1 T2

charts for dp’s:

T2
(i) = (dp(i)- dp )’ Sdp

-1 (dp(i)- dp )

Where dp(i) is the ith observation. Since there are n
readings from every wafer, the reading differences
form a (n-1)×1vector: [dp1(i) dp2(i) dp3(i) dp4(i)]. Also,
dp  denotes the average of dp and Sdp is the estimated
covariance matrix of dp. The control limit (CLp)
becomes

T2
n-1,r,α=(r(n-1)/(r-n+2))*Fn-1,r-n+2,α .

When this control limit is exceeded, a possible fault is
said to occur to cause the change of the relationship
among positions. A more directed root-cause search
process can be then launched.

Now, we consider the variation component
caused by the wafer difference within a batch. Let dw
denote the difference between wafer readings:

1m...1jXXdw )1j(iij)i(j −=−= •+•                

T2 control charts can be then constructed against
dw’s：

T2
(i) = (dw(i)- dw )’ Sdw

-1 (dw(i)- dw  )

Where dw(i) is the ith obersvation and is a (m-1)×1
vector: [dp1(i) dp2(i) dp3(i) dp4(i)]; dw  is the average of
dw’s; and Sdw is the estimated covariance matrix of dw.
The control limit (UCLw) becomes:

T2
m-1,r,α=(r(m-1)/(r-m+2))*Fm-1,r-m+2,α .

Like the control charts for the positions, when the
control limit is exceeded, a more directed root-cause
search process and corrective action can be taken to
tackle the problem causing the changes of the
relationship among wafers within a same batch.

Finally, an X  control chart can be constructed
to monitor the effects of batches:

∑ ∑=
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n
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The upper and lower control limits are:
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respectively. Here, the control chart is used to detect
any process excursion that causes the mean shift of the
entire batch.

By using our approach, all variation sources
have been taken into consideration and only 3 control
charts are required to be constructed. In comparison,
the conventional approaches do not consider
correlation components and require to construct at
least n+m-1 control charts.

3.2 Optimal allocation of cr itical inspection points

The following parameters are used to describe the
multistage production process. n is the total number of
production stages. Pk is the probability that an item is
defective after going from stage 1 through stage k,
where every process stage is assumed to be in
statistical control. Since new defects may occur at
every stage, Pk >=  P l if k >  l. The costs involved in
the model are: Ik, unit inspection cost at stage k; Uk,
unit scrap cost of defective items discarded at stage k;
and Cd, penalty cost incurred for a defective finished
product that is shipped out to customers.

The objective is to find at which production stage
the inspection should be conducted such that the
expected total cost is minimized. Instead of using the
expected total cost, we here use the expected unit
discovering/discarding cost, namely, the expected cost
of discovering and discarding (ECDD) one defective
item,  as an intermediate objective function during
the search process for the optimum solution. An
alternative dynamic programming approach is derived
based on this intermediate objective function. We will
later show how this approach simplifies the solution
searching process. Hereafter, we shall refer to this
expected unit discovering/discarding cost as unit
ECDD. Let Dk denote the unit ECDD at stage k with
no removal of defective items at prior stages. We can
express Dk as:

k
k

k
k U

P
I

D +=
−1

. (1)

Suppose that l1 is the first inspection point
selected by comparing the unit ECDD among n stages.
The comparison can be formulated as:
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We continue the search for inspection points at
stages subsequent to l1.  The problem is turned to

which stage should be chosen as the second potential
inspection point among the subsequent stages, i.e.
stages l1 +1 to n. Again, intuitively, we should choose
the stage with a lowest unit ECDD. We already have
the first chosen inspection stage at l1. We are now
required to calculate a joint unit ECDD with
inspections performed at two stages: stage l1 and a
subsequent stage, say k.

1
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To actually minimize the total

discovering/discarding cost, we need to consider both
the joint unit ECDD, with inspection points at stage l1
and a subsequent stage, and the unit ECDD for a sole
inspection point at one of the subsequent stages with
no prior inspection performed at earlier stages. The
following equation expresses this comparison:
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where 
2lT  represents a set of one or two inspection

points that minimizes the total ECDD up to this
second chosen stage l2. After choosing the second
potential inspection point l2 and its corresponding set
of inspection points 

2lT , we may now skip stages

between stage l1 and stage l2 and concentrate only on
stages subsequent to l2. The search for the third
potential inspection point, as well as the forth, the fifth,
etc, will follow the same procedure as in Equation (4).

Assume that the mth potential inspection point
has reached stage lm and the corresponding set of
inspection points is 

mlT . Similar to Equation (3), the

joint expected cost of discovering and discarding one
defective item at a set of inspection points 

mlT and a

subsequent stage k:
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We prove that we will be allowed to skip stages
between lm and lm+1, if 1+mlT  is chosen as follows:
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Similarly, if expected costs of discovering and
discarding one defective item at the remaining



5

subsequent stages (after stage lm+1) are all greater than
the penalty cost Cd, then 

1+mlT is the optimum solution.

On the other hand,  if costs less than the penalty cost
can still be found among the remaining stages, the
search process continues.

The total number of computations using the
above program will be:

∑ −
−

=

1

0

m

i
i )ln( . (7)

The saving in calculation efforts using this new
dynamic programming approach can be clearly seen in
the example given by Lindsay and Bishop (1964).

4. Conclusions

In this project, we have investigated the problems
that arise when apply SPC techniques in a complex
semiconductor manufacturing processes. An effective
SPC chart construction strategy was proposed. In
addition, a cost-effective strategy to allocate critical
inspection points was also proposed. Both
methodologies were not only proved to be
mathematically sound but also shown to be quite
effective. What was reported here is only a brief
summary of our research results. Upon request and
with the consent of NSC, we would be glad to provide
the complete results to interested readers. Part of the
research results has been published in an international
journal.
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