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中文摘要
當我們正準備進入 300mm 半導體製造的世紀，晶圓

在經過每一個製程步驟後的附加價值也急遽的增加。一般
常使用的製程後 (post-process) 工程資料量測與分析
(EDA) 或晶圓終端驗收測試 (WAT) 已不敷提高設備良
率的迫切需求，為了更緊密的監視晶圓製造過程並提早發
出設備偏差的警訊，及時設備監看成為極關鍵的技術，一
個準確且有效率的設備監看工具亦是提昇機台設備可使
用率的關鍵並進而增加設備的全面使用效能。第二年計畫
的目的是提出一配合機台監看技術的動態預防保養 (PM)
排程計畫。由於設備監看是及時的且其系統的健康狀況一
直不間斷地被估測，我們可建構一不斷更新的設備可靠度
模型，以此準確的可靠度預測模型為基礎，我們將提出一
更及時的主動式預防保養規劃。這一有效率的 PM 規劃
可大幅減少不必要的預防保養次數以增加其可使用時
間，亦可及時提供機台保養以防止製程差錯的發生並減少
停機時間，這些功能都將有助於總體設備效能 (OEE) 的
大幅提昇。

關鍵詞：機台監看、預防保養

Abstract
In semiconductor fabrication processes, the value added

on each wafer in every process step is increasing drastically
as we enter the era of 300mm wafer processing. Wafer
Acceptance Test (WAT) and post-process engineering data
measurement and analyses are no longer sufficient to fulfill
the urgent need of achieving a higher equipment yield. Real-
time monitoring of equipment conditions becomes critical to
keep a closer watch on wafer processing and to give early
warning on possible equipment excursions. Accurate,
effective equipment monitoring is also essential to ensure a
high availability and thus a high overall equipment
effectiveness. The objective for the second year of this
project is to propose a dynamic PM scheduling plan. Since

the equipment monitoring is in real time and the system’s
health is constantly evaluated, an equipment reliability model
with constant updates can be constructed. Based on the
accurate prediction of the equipment reliability, the PM
schedule can be planned more dynamically and proactively.
An effective PM scheduling plan is, thus, developed to
maximize the equipment’s availability by eliminating
unnecessary maintenance and to minimize the equipment’s
down time by providing needed maintenance before failures
occur. This will, in turn, greatly enhance the Overall
Equipment Effectiveness (OEE).
Keywords：Equipment Monitoring, Preventive Maintenance

INTRODUCTION

Fig. 1 shows a typical real-time equipment monitoring
scheme referred to as a “bull’s eye” or “simultaneous
monitoring” scheme [1-4]. Values of various machine data
items are displayed simultaneously on a monitoring board.
The board consists of 3 concentric circular regions with
different colors: green for SAFE, yellow for WARNING, and
red for DANGEROUS. The distance of the observation
points from the board center represents the deviation from
the target setting. The distribution of data points provides an
easy reading of the equipment’s current operating condition.
When the points are concentrated around the center, it
indicates a good overall health. In contrast, when data points
are scattered over a wide area, it indicates a worrisome
situation. Thus, the engineers can easily read the equipment
status by examining the distribution of the data points.

Similarly, an overall equipment health index can be
calculated by the distribution pattern of the data points. Using
the very same idea of process capability indices (PCI) [5], we
propose an integrated index called Machine Capability Index
(MCI) and then translate the index value into an equipment
health score in a range of [0, 100]. In this way, engineers can
easily interpret the equipment’s health condition by reading
health score. The real-time equipment health evaluation can



                  
also serve as the basis for determining an appropriate time to
perform machine preventive maintenance (PM). [6]

Fig. 1 Equipment Simultaneous Monitoring Scheme

MCI AND EQUIPMENT HEALTH SCORE

Eq. (1) shows a generic formula for the multivariate PCI:

dataobservedof99.73%containingvolume
regionion specificatofvolume

=pC (1)

Calculation of MCI basically follows the same method
used in calculating the multivariate PCI. Fig. 2 shows a
bivariate case on how this index is calculated.
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Fig. 2 Equipment performance vs. specifications

Based on a widely accepted assessment criterion, a
process with PCI≥2 is regarded as a very capable process
while a process with PCI<1.33 is said to be a poor process.
We develop a mapping function (Fig. 3) that translates
MCI=1.33 to a health score around 70 and MCI=2 to 95.
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Fig. 3 MCI to health score mapping function

In this way, engineers can easily understand what the
health score represents in terms of the machine capability.
The real-time equipment health evaluation can also serve as
the basis for determining an appropriate time to perform
machine preventive maintenance (PM). In the following
section, we first construct a stochastic prognosis model to
characterize and prognosticate the declining machine health.

EQUIPMENT HEALTH PROGNOSIS MODEL

Since the equipment health score fluctuates over time, it
can be viewed as a stochastic process: )0:( ≥= tHH t . The
value of H is available at each time point with specified
sampling interval. If Ht=i, then the process is said to be in
state i at time t. We suppose that when the process is in state i,
there is a fixed probability P i,j that the health index will be
becoming in state j at the next time point. Such a stochastic
process is known as a Markov chain. For a Markov chain, the
conditional distribution of any future state Ht+1 given the
earlier states H0, H1,… , Ht-1 becomes
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    We first establish a condition-based prognosis model
based on Markov chain theories. Let Φ denote the matrix of
one-step transition probabilities P i,j:
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P i,j is the probability that H transits to state j given its current
state is at i. If a machine is down, H will be no longer

available hence the failure state F is reached, which is also



                  
known as an absorbing state:

Sn=F , PF,F=1, 1,,2,1,,0, −== nFjforP jF Κ

However the value of health index is continuous in the
interval of [0,100], but the number of states is finite. To
simplify the problem, we should discretize the continuous
interval [0,100] into a finite number of segments. For
example, take [95,100] as the first state, [90,95) as the second
state… etc. The more the number of states, the better the
sensitivity of the model. But the model of large state space
size needs much more historical data for model estimation.

In Markov chain theories, the two-step transition
probability can be obtained by taking a square of Φ. For
instance, the (i,j)th entry of Φ2 is the probability to be at state
j after two periods of time, given the current state at i.
Recursively, we can calculate the probability for the
condition of the equipment to be at certain state after any
number of time periods.

To further interpret the matrix Φ, each row, say row i, of
Φ represents a state probability distribution given the current
state at i. This conditional probability distribution will be
likely to form a bell shape. For example, in the beginning of
operation, H is most likely to be at a good-condition state,
say state i, and remain at state i at the next available time
point. H, however, is less likely to move to other states. Thus,
P i,i is likely to be the highest probability among P i,j’s (see Fig.
4).

F   1  2   3  4 … .               n-1
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The highest value: P i,i

Health state j

Fig. 4  Bell shape of conditional state transition probability

  It is also natural to see that H=90 has a larger
possibility to become 80 than to become 70. This leads to a
probability distribution with a bell shape as illustrated in Fig.
4.

One of the most important properties of the above
proposed prognosis model is the bell-shape probability
distribution presented by entries in the same row of Φ. But as
the machine grows older the health index H tends to worsen
due to the deterioration of equipment; i.e., the probability of
becoming better will decrease and that of becoming worse
will increase. Let a larger value of state be corresponding to a
higher health score. We can then observe that each row of

matrix Φ, i.e. the conditional probability distribution, should
act like a moving wave, as shown in Fig. 5, as the equipment
ages.

  The moving wave effect is the result of the machine’s
deterioration over its run time. The longer the machine’s run
time, the worse the machine’s health tendency. We make a
modification to the Markovian prognosis model to describe
this aging effect, namely age-dependent prognosis model.
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Fig. 5 Wave-moving conditional probability distribution for
an aging machine

  Let’s observe the wave motion in Fig. 5. When the
machine ages, the machine’s health is more likely to become
worse; that is, the probability for the machine’s health to
become worse increases while the probability for the
machine’s health to become better decreases. According to
this fact, let P i,M be }1,...,2,1,,{max , −= nFjP ji

j
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Further assume that the amount of increase or decrease in
P i,j is proportional to the fraction P i,j takes in L

iP or R
iP .

We can now derive an age-dependent model to describe the
wave-moving conditional probability distribution. Given
current time t, the transition probability at the next available
time t+Δis,
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for j≥M.

This function is derived from the principle that P i,j

decreases for j≥M and increases for j<M. δ can be viewed as
an aging factor and also should be estimated from historical
equipment data. The above equations are developed to
describe the wave-moving phenomenon and ensure that ΣP i,j
remain equal to 1. By transforming the values of the entries
in Φ over the machine’s aging course, the prognosis model
that previous section mentioned is able to take the equipment
age into account. An age-dependent prognosis model is
therefore established.

DYNAMIC PM SCHEME

When minimizing the cost, we often take the long-term
average of total maintenance cost as the objective cost
function to be minimized. The main maintenance cost of the
equipment comes from the preventive maintenance and the
breakdown repair. The cost of a failure repair is usually much
higher than that of performing a PM. Sufficient PM’s can
reduce the possibility of equipment breakdown but increase
the PM cost. Therefore, a trade-off exists between the PM
cost and the failure cost. A metric to evaluate the efficiency
of a PM policy is the expected maintenance cost per unit time.
First, recall the age-dependent transition probability matrix in
the prognosis model:
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where m is the age index. Suppose the equipment data is
acquired at scheduled sampling time ΛΛ ,,,3,2, ∆∆∆∆ m ,
where ∆ is a constant time interval. At these specific time
points, a PM decision (to perform a PM or do nothing) is also
made. Since the health state transition probabilities are age-
dependent, Φ (m+1) can be only calculated from Φ (m)
using the age-dependent model presented in the previous
section.

Notice that our transition probability matrix is time
dependent and is therefore a nonstationary Markov chain.
That is, the equipment’s health will have a higher possibility
to become worse when it becomes older. In other words, the

matrixΦ(m) changes over the machine’s age. This has been
fully discussed in previous sections.

For a stationary Markov chain, the n-step transition
probabilities can be obtained from n powers of one-step
transition probability matrix, i.e. Φ (n). But in our age-
dependent prognosis model, the n-step transition probabilities
are different at different observation point. At any given
period m, the n-step transition probabilities are calculated
from the product of the current transition probability matrix
Φ(m) and the subsequent n-1 matrices as in (2).

)1()1()()()( −+Φ+Φ⋅Φ=Φ nmmmmn Λ (2)

We can now determine the expected cost per unit time,
denoted by µ..  Given a health index state s at the mth period,
the expected cost per unit time is expressed in (3) if we
decide to perform a PM after k periods (i.e. PM at (m+k)�)
as shown in Fig. 6.
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Fig. 6 Illustration of PM location on time axis
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where C is the cost of performing a PM, K is the additional
payment for a breakdown repair, i.e., the cost of a breakdown
repair is C+K. T(m) is the Time To Failure (TTF) from the
current time period m. Pr{k∆>T(m)|s} is the probability that
the equipment breaks down before the PM at period k is
performed given the current state is s. A maintenance cycle is
terminated by either the PM or the equipment breakdown.
Therefore, the numerator in (3) represents the expected cost
per cycle and the denominator E[min(k∆, T(m))|s] denotes
the expected cycle length. Our objective is then to find an
optimal k at any given period m that minimizes E(µ(m,k)| s).

The score of the health index reflects the condition of the
equipment’s health. In order to determine when the machine
needs a PM given a real-time score of the health index, we
should find a threshold for the health index scores. When the
observed score exceeds this threshold, a decision is made to
perform a PM at the next available time.

Suppose that
ü The current time is m∆ (i.e. the machine age = m∆)
ü The current state is s (i.e. the health index is

corresponding to state s)
ü A planed PM is schedule to perform after k periods of

time (i.e. PM at time (m+k) ∆)

The expected cost per unit time is E[µ(m,k)| s] which is
calculated from (3).



                  
Given the time point m∆ and the health index state s,

there exists k*(s,m) that minimizes E[µ(m,k)| s].

)|),((min)|*),(( skmEskmE
k

µµ = (4)

  Since we want to minimize the expected cost per unit
time, a minimum cost PM decision is therefore: If the
minimum cost appears at k*(s,m)>1, it implies that to plan a
PM at k*(s,m)>1 will attain a less average cost. Then, we
should not perform a PM at next decision making time. If the
minimum cost appears at k*(s,m)=1, we should perform a PM
right away. This rule will be used to construct a dynamic PM
policy.

A PM alarm boundary is formed by the least tolerable
values of the health index over the equipment’s age. Fig. 7
shows a typical PM alarm boundary in a dotted line and a
sample path of the equipment health in a solid line. Once the
health goes below the alarm boundary, a PM should be
performed.
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Fig. 7 Dynamic PM policy by equipment health
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