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Abstract

Semiconductor manufacturing network consists of 1C
design houses/IDM, foundry fabs, probing, assembly, and
final test processes. Demand planning is the very first critical
task for the planning of the entire manufacturing network. Its
result serves as the basis of every planning activity and
ultimately determines the quality of the planning decisions
and thus the efficiency of operations in the network.
Nevertheless, the demand information propagated through
the network is the most uncertain information that plagues
the planning quality. In the first year of this research, we
have constructed a complete framework of demand planning.
The framework consists of multidimensional demand
planning,  datistica demand  forecast,  demands
aggregation/granularity, and synchronization of demand
signas in the network. In the second year, multidimensional
planning strategies are proposed to better handle the
complicated supply-demand relationships in the network.
Statistical forecast techniques with aggregation/granularity
considerations are al so developed accordiingly.

Keywords : demand planning, demand forecast, supply chain
planning (SCP)

1. Introdution
Demand planning is the very first step of supply chain
planning. Its results affect the quality of its subsequent
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planning activities. Yet, the demand signal is known to be the
most unreliable information in supply chain planning. The
demand uncertainty is then propagated and further magnified
(Lee et d., 1997) in the supply chain. That is, the further
down the supply chain level, the worse the planning quality.
To improve the quality of supply chain planning, demand
planning becomes one of greatest challenges facing modern
manufacturers.

It is known that demand uncertainty can be effectively
reduced through appropriate demand aggregation
(Simchi-Levi et a., 2000) and forecasting. An On-Line
Analytical Processing (OLAP) toal is thus useful for analysis
of multi-perspective (multi-dimensional) demand aggregation
and forecasting. Demand planners can use the tool to quickly
roll up demands to an aggregated level for atota demand or
drill down atotal demand to detailed demands from different
perspectives. For example, a semiconductor demand planner
can roll up (or aggregate) the detailed demand to calculate
the total demand for logic IC in North America and Europe
during the first during the last two quarters of the year. The
demand planner may find such an aggregated demand is less
fluctuated and more suitable for demand forecasting and
supply chain planning. The demand planner can aso drill
down (or disaggregate) the total demand to see, for example,
the proportion of the North American market. There are three
perspectives (dimensions) of demands. time, product type,
and region. To better understand the natures of certain
demands, users of OLAP tools can choose desired
perspectives to perform the roll-up and/or drill-down
analyses. Such anayses ae aso referred to as
“slice-and-dice” anayses. However, the demand planners
have to rely on their own understanding of the market or
simply their intuitive, subjective judgment to perform the
aggregation analysis. Following demand
aggregation/disaggregation, demand forecasting is the next
step of demand planning also noted as an important means to
improve the accuracy of demand plans. However, the effect
of statistical forecasting is obscure and planners are hesitant
to use the pre-determined statistical models because the
flawed models often incur more errors and cause poorer
forecasts.

This paper will use the bivariate vector autoregression
(VAR(1)) time series model as a study vehicle to investigate
the effects of aggregating two interrdlated demands.
Performance of corresponding forecasting approaches will be
then derived and evaluated. The goal of this paper is to use
certain statistical properties of the demands to develop



principles that can assist the demand planners to determine
whether demand aggregation and/or statistical forecasting are
needed. This paper is organized into five sections. Following
the introduction section, we first briefly describe the VAR(1)
demand mode and five demand planning approaches. The
performance of the five approaches is then anaytical derived
in Section 3. Section 4 will use eight scenarios to evaluate
and compare the performances among different approaches.
Findly, principles and guidelines will be provided to
practitioners for adopting appropriate aggregati on/forecasting
approaches.

2. VAR(1) Demand M odel

In practice, most time-variant demands are observed to
follow autoregression time-series models. Particularly, the
first order autoregression, AR(1), model is widely applied in
both practice and literature (Lee et d., 1997). Since the
interrel ation of demands is the focal point of our research, the
first order bivariate vector autoregression, VAR(1), time

series model is chosen as a study vehicle. Bivariate VAR(1)
demands can be denoted as a vector: X, = [Xl th]‘I and

the VAR(1) model can be expressed as.

t

X, =utBEX,  ta )
where

u= [qu, uﬁ]¢is the constant vector;

_ éfn flzf}- - iy
= 1] is the autoregr on parameter matrix;
&a i

and a, :[ait,azt]q:is the white noise vector following iid
bivariate normal distribution:

N, = (0,) with 0=[o0¢* a=5n %Y
€0 sx{

In the VAR(1) mode, [7 1, and[J[J] » represent the
“auto-correlation e ements’ that dictate how much a demand
depends on its own earlier demands; (7, and/J[J,, represent
the “inter-corrdlation elements’ that determine how the two
demands correlate to each other.

It can be seen that the bivariate VAR(1) can clearly
describe the interrelation of two autoregressive time series:

(1) When both the two interrelation elements of F ,[J f 1,

andJ f,, equa to zero, the two time series are
independent and can be in effect expressed as two
separate AR(1) time series models with autoregression
parameters f1, and/7 f», , respectively;

(2) When only one of fq, and f,is zero, the relation will be
uni-directiona. That is, if f1,=0 and f,;1 0, then Xj;is a
univariate AR(1) while X;; will be affected by Xj;1;

(3) When both f1,and f,, are not zero, the two time series are
interrelated; and

(4) When all the elements of F , fy, f15, fx and fo, are

statistically insignificant, the two time series will appear
as two time-invariant data sequences.

The demand plans serve as basis of inventory planning
and/or capacity planning. Safety stock and/or auxiliary
capacity are prepared to minimize the effect of demand
uncertainty. For instance, under the (s, § inventory policy,
the reorder point sis set based on a safety stock level that
meets a predetermined service level (Caplin, 1985, and Silver
et al., 1998):

s=L" AVG+Zz STD /L

where

AVG isthe average unit time demand;

STD is the standard deviation of unit time demand;
L isthe replenishment lead time; and

Z STD /L isthe safety stock prepared to meet a
desired service level under demand uncertainty.

It can be seen that the inventory cost under the (s, 9
policy increases as the demand uncertainty, i.e. STD, grows.
Similarly, the capacity cost rises owing to the preparation of
auxiliary capacity for uncertain demand. However, demands
are not aggregated without an additiona planning cost. In the
inventory problem, the replenishment lead-time is often
prolonged because the inventory planned for the aggregated
demand is stocked in a centraized warehouse and the
transportation distance to the demand sources is thus
extended. For the capacity planning problem, aggregating
demands often means a higher product mix on the shop floor
and causes possibly lower yield, more machine change-over
time and higher machine breakdown rate.

3. Demand Planning Approaches

In this research, we investigate five possible demand
planning approaches in response to the bivariate VAR(1)
demands:

(1) Approach 1. The manufacturer lacks the technology of
statistical forecasting. Demands are handled as simple
time-invariant data sequences. The demand variability is
measured by the standard deviation. The safety stock (or
production capacity) is planned separately for each
demand based on amultiple of its standard deviation.

(2) Approach 2:  The manufacturer aggregates the two
demands together. The aggregated demand, denoted by Y;
(=Xt X5y, is handled as a time-invariant data sequence.
The safety stock (or production capacity) is planned for
two demands together based on a multiple of Y/s
standard deviation.

(3) Approach 3: The manufacturer owns the statistical
forecasting technology but lacks knowledge of
multivariate time series. Demands are handled as two
independent time series. AR(1) time series models are
used as the datistical forecasting models. Statistical
forecasting is carried out separately based on the



estimated AR(1) time series model for each demand. The
safety stock (or production capacity) is planned
separately for each demand based on a multiple of its
forecast standard error.

(4) Approach 4: The manufacturer aggregates the two
demands together. The aggregated demand is handled as
an AR(1) time series. The safety stock (or production
capacity) is planned for two demands together based on a
multiple of the Y{s forecast standard error.

(5) Approach 5: The manufacturer owns the technology of
forecasting multivariate time series. Statistical
forecasting is based on the VAR(1) model. Safety stock
(and/or production capacity) is planned separately for
each demand based on a multiple of its forecast standard
error.

4. Performance Analyss of Demand

Approaches
To analyze the performance of Approaches 1 and 2, the

variances of individua demands, denoted as [y, and [y,

respectively for variances of demands X;; and X, and the

covariance, [Jy,, has to be first derived under the VAR(1)
time series model. Without loss of generality, we assume that

the constants are zero, i.e. U = 0. Model (1) becomes:

Planning

X, =FX,, +a,. @

It is then straightforward to derive [Ty, e and Lgyp.
Therefore, under Approach 1, the safety stock (or production
capacity) will be prepared for each demand separately. The
total safety stock will be then based on a multiple of [74+7,,

(:\/S Xl +\/S wxe )- Similarly, under Approach 2, the

safety stock (or production capacity) will be prepared based
on a multiple of the aggregated standard deviation, denoted
by O,

sy:\/s)(l)d+s)(2)(2+25)(l)(2 3

To derive the forecast standard error under Approach 3,
we first derive the following theorem.

Theorem 1.

If Xy and X5 follow VAR(1) model in (2), then Xy can be
expressed as Vi+ Vo where Vi and Vo are two AR(1) time
series:

Vie =1 Vi + ay and
- 816
a) = a - a
L e16,- B8y | G4 6,6
‘/Zt = l 2‘/2t-1 + a;t and
v _ B %1612 %1611
a2t - 1‘+ 2t
6.6, - 6,6 6.6, - 6,6

Smilarly, X can be expressed as Wi+ Wy where Wy, =
W are two AR(1) time series:

W, =1 W, +ay and
w_ €8 L &8y
! €160 - 626 €16n - 626
W =1 ,W,,., + ay and
a¥=—_ €»6» s G a,
€16n - 626 €16n - 626

In above Equations, [; and [, are two eigenvalues of
F with corresoondi nge genvectors.'

The result of Theorem 1 simplifies the bivariate time
series into two individua time series. In addition, each time
series can be expressed as a sum of two AR(1) time series.
Granger and Morris (1979) have proved that the sum of two
ARMA time series will be also an ARMA time series. For
demand planning practice, AR(1), with or without model
identification, is usualy used as the demand time series
model. Theorem 2 is, thus, derived to estimate the forecast
standard error when the sum of two AR(1) time series is
estimated as an AR(1) time series.

Theorem 2.
D, and D, are two stationary AR(1) t/me series:

Dy =Uy+j,D,,+e, and elr N(O S el) and

D, =uUp, +] , D, + €, and ezr - N(Oasezz) .
Let D; be the sum of Dy and Dz, i.e D, =D, +D,,.
Suppose that D; is thought to be an AR(1) time series, i.e.
ii.d.
D, =u,+j ,D,,+e,, where e, ~ N(0,s2). If =, ands 2

are estimated using maximum likelihood estimators (MLE),
then their expected values can be found to be:

=(9)
- D 15 D1D1 +s D1D2 (l) +s D2D1(1) +j 2s D2D2]+ [le + rnDZ]2

[S D1D1 +2s D1D2 +s D2D2]+ [le + mD2]2

and

E(-§52») = |_5 Dp1D1 +2s D1D2 +s D2D2 +(le + sz)ZJ
b £7.)7]

where

[p; is the mean of time series Dy,

Opy is the mean of time series D,

Opip2(1) is the covariance of Dy and Dy for any t;

Op2pi(1) is the covariance of Dy and Do) for any t; and
[papy IS the covariance of Dxand D for any t.

Based on Theorem 1, the two demand time series X;;
and X can be  expressed a X, =V, +V,,

and X,, =W, + W,, , respectively. Under Approach 3, the



two time series are estimated as two separated AR(1) time
series asfollows:

X — X X;
-Ia 1l‘1+at and X2t_/ a2X2t-1+at2

From Theorem 2, we can obtain the one-step-forecast
mean squared errors as.

ES%)=

[5 \2/1 +25 1, +5\32 +(m, + mfz)z][l' E(/A;ﬁ)z]
E(SA;X2 )=

[sj,l+ZszW2 +s2, +(’71m+’7h/2)2][1' E(/A;‘Z)zl.
where
B =

[1152+5 1,0+ 1@+ 1,5 3]+ [m, + m, [
I,s \2/1 +25 0 +552J+[m/1 + ”1/2]2

EG )=
52045 s O+ s @ + 1,5 2 )+ [mp + my, |
|_SIiAL+2‘SWlW2 +55v2J+[mm+mA/2]2
é u
. _ é(e_LleZé§21Q.2)sll+(ellceﬂ)23220.
viv2 114, ;

é U
- g(elzgfzz)zsll +(en%é%1elz )s 228

Swwz =

1- 1,1,

Sy =1Svivat Svan@ =1,5 s

Sz =TS vz Swonr @ =125 vawa ;
2 2
s "
2 _ Ta . L2 _ 360 28,6, 0 .
- 1sv_ - + S y
wTr fa Tl gt gcg”
s% B,6,0 | @60
2 a 2 1+~12 ¢ 1+11
s i 52 = TS5, + zs.,,;
ST Ecatidcy®
S H6r O ., Eyn 0
s2 = 612, 5.2W:(; 2 2_5.11_,_9 2005
1- /7 e Cg e
s? 2
2 _ “a 2 _ 86,0 &, 6
s2 =—%_- g% = TS, t +S,; and
w2 =2 2 g C & 1 g c 2
C=e16,l16,6;.

Therefore, under Approach 3 the safety stock (or
production capacity) will be prepared for each demand
separately. The total safety stock will be then based on a
multiple of the sum of forecast  standard

errors, \/ EsS j{n ) + \/ Es ;XZ) .

To derive the forecast standard error of Approach 4, we

first derive the form of the aggregated time series, which is
the sum of two time series obeying a VAR(1) time series
model. This can be easily done by the following Corollary.

Corollary 1.

Xy and Xy follow the AR(1) model in (2). If Y; is the sum
of Xy and Xz, then Y; can be expressed as U+ U where Uy,
and Uz are two AR(1) time series:

Uy =11Uy, +ay and
= (—)( a,)
.8, - 6,6, €pdy - €48y
Uy =1,Uy, + & and
u %2 + %1
a, = (—=—2—)(- +e,a,).
bt .8, - 6,6, €,a, t 6,8,

Corollary 1 shows that the aggregated time series is
again a sum of two AR(1) time series. To estimate the
one-step-forecast standard error of Approach 4, the results of
Theorem 2 can be again applied. Suppose the following
AR(1) time series model is used to estimate the aggregated
time series.

=i, +a&

t

Then, Theorem 2 tells us that the one-step-forecast mean
squared error will be:

E(S2) =[5 2, +25 up +5 2+ (my + myp)2 )t EG°2)?)

where
EG )=
[/ S *S s +S @ +/,8 52]+[’7b1 + ’7112]2 ;
|_s L2}1 +2‘SU1U2 +SL2!2J [rrbl + ,71}2]2
5y, =[(BBt DGO+ o1 * Qi)

C?
(G2t * %iqlqcz AT AT
Svw2M =11S vz Suvaw @ =155 w2
s2
s T a;z ;
gf(el.z + el.l)ezz g{elz en.l)ezl Qs
& ¢ 5 c
2
Su2 = 1- /§ ;
5%2 + %1)612 s, + é %1)611 2s,,;

e c P e c
and C=ey6,06,64. Thus, under Approach 4 the safety
stock (or production capacity) will be prepared based on a
multiple of the aggregated forecast standard error,



[EES2) .

For Approach 5, the one-step-forecast standard error will
be smply the standard deviations of white noises. ,/s,;

and ./s,, , since the correct VAR(1) model will be used for

the statistical forecast and only the white noises are
unpredictable and will be let out by the forecast. The safety
stock (or production capacity) will be prepared for each
demand separately. The total safety stock preparation will be
then based on the sum of the two forecast standard errors,

Jsu+ysz

5. Evaluation Results and Summaries

With the understanding of the aggregated time series in
the previous section, five demand planning approaches can
be now anayticaly evaluated and compared. Overal, we
have the following observations based on evaluation and
comparison results.

a. With aggregation and statistical forecasting capabilities,
Approach 4 appears to be the best approach regardless of
the scenarios. Approach 4's effetiveness is also the most
stable and less affected by changes of demand correlation
and ratio of variation sizes.

b. The simple aggregation approach, Approach 2, performs
quite as good as Approach 4 and outperforms Approach 5,
the most sophisticated statistical forecasting approach,
when the demand correlation is weak or negative. Its
performance, however, worsens quickly as the demand
correlation becomes positive and large and the two
variation sizes become significantly different.

c. Approach 3, even with its statistical forecasting capability,
appears to be the worst approach. It outperforms
Approach 2 only in Scenario 1 when two demands are
more positively correlated and the variations sizes are
different.

Now, we summarize our observations and provide the
following principles and guidelines for practitioners to adopt
appropriate demand planning approaches under different
situations.

(1) Demand correlation is negative (7 < Q)

a. If aggregating demands only incurs alimited extra cost,
Approach 2 appears to be the best choice since it
requires only simple aggregation and does not need to
build statistical model for forecasting.

b.If demand aggregation will incur a substantial extra
cost, Approach 5 should be adopted. However,
Approach 5 requires a correct multivariate statistical
model for accurate forecasts. When the demand
correlation is insignificant but individua demands
have significant autocorrelations, Approach 3 is a
good choice for making more than 10% cost
reduction.

(2) Demand correlation is positive (7> 0)

a. If the corrdation is low, 0</7 <0.2, and the extra

aggregation cost is minimum, Approach 2 is ill a
good choice given that no statistical model is required
for this approach.

b. If the correation is high, 77 >0.2, and the extra
aggregation cost is limited, Approach 4 is more
preferable. It should be noted that building a
univariate time series model for an aggregated
demand in Approach 4 is much more reliable and
simpler than building the multivariate time series
model in Approach 5.

c. If the extra aggregation cost is substantialy large,
Approach 5 has to be adopted. Again, Approach 3
can be used instead when low demand correlation and
high autocorrelation are observed.
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