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中文摘要
半導體代工製造網路是由 IC 設計公司或 IDM 公司、

代工晶圓廠、電訊測試、組裝廠及測試廠所組成，需求規
劃在整個製造網路的規劃中為一極關鍵的步驟，其規劃結
果為每一個網路中規劃活動的基礎且決定整個網路規劃
決策的品質。然而，需求資訊卻是在整個規劃過程中最不
可靠的資訊，尤其是經過供應鏈層層傳遞後，需求資訊時
常因此變得更不穩定，這種不確定的需求資訊為傷害製造
網路規劃決策品質的主要因素。在本研究的第一年，我們
已建構一完整的需求規劃組織架構，此架構包含下列四種
必要的基礎功能：(1)多元需求規劃策略(2)統計需求預測(3)
需求規劃與預測之複合與解析(4)製造網路間的需求協調
規劃。在本研究的第二年中，我們發展出提高需求規劃正
確性與效率之方法。將需求從不同的觀點來做策略規劃，
並從幾種不同的觀點中做必要的複合與解析，我們亦從更
多的考慮面發展出適合用於供應鏈規劃的統計需求預測
方法。
關鍵詞：需求規劃、需求預測、供應鏈規劃

Abstract
Semiconductor manufacturing network consists of IC 

design houses/IDM, foundry fabs, probing, assembly, and 
final test processes. Demand planning is the very first critical 
task for the planning of the entire manufacturing network. Its 
result serves as the basis of every planning activity and 
ultimately determines the quality of the planning decisions 
and thus the efficiency of operations in the network. 
Nevertheless, the demand information propagated through 
the network is the most uncertain information that plagues 
the planning quality. In the first year of this research, we 
have constructed a complete framework of demand planning. 
The framework consists of multidimensional demand 
planning, statistical demand forecast, demands 
aggregation/granularity, and synchronization of demand 
signals in the network. In the second year, multidimensional 
planning strategies are proposed to better handle the 
complicated supply-demand relationships in the network. 
Statistical forecast techniques with aggregation/granularity 
considerations are also developed accordiingly.
Keywords：demand planning, demand forecast, supply chain 
planning (SCP)

1. Introdution
Demand planning is the very first step of supply chain 

planning. Its results affect the quality of its subsequent 

planning activities. Yet, the demand signal is known to be the 
most unreliable information in supply chain planning. The
demand uncertainty is then propagated and further magnified 
(Lee et al., 1997) in the supply chain. That is, the further 
down the supply chain level, the worse the planning quality. 
To improve the quality of supply chain planning, demand
planning becomes one of greatest challenges facing modern 
manufacturers.

It is known that demand uncertainty can be effectively 
reduced through appropriate demand aggregation 
(Simchi-Levi et al., 2000) and forecasting. An On-Line 
Analytical Processing (OLAP) tool is thus useful for analysis 
of multi-perspective (multi-dimensional) demand aggregation 
and forecasting. Demand planners can use the tool to quickly 
roll up demands to an aggregated level for a total demand or 
drill down a total demand to detailed demands from different 
perspectives. For example, a semiconductor demand planner 
can roll up (or aggregate) the detailed demand to calculate 
the total demand for logic IC in North America and Europe 
during the first during the last two quarters of the year. The 
demand planner may find such an aggregated demand is less 
fluctuated and more suitable for demand forecasting and 
supply chain planning. The demand planner can also drill 
down (or disaggregate) the total demand to see, for example, 
the proportion of the North American market. There are three 
perspectives (dimensions) of demands: time, product type, 
and region. To better understand the natures of certain 
demands, users of OLAP tools can choose desired 
perspectives to perform the roll-up and/or drill-down 
analyses. Such analyses are also referred to as 
“slice-and-dice” analyses. However, the demand planners 
have to rely on their own understanding of the market or 
simply their intuitive, subjective judgment to perform the 
aggregation analysis. Following demand 
aggregation/disaggregation, demand forecasting is the next 
step of demand planning also noted as an important means to 
improve the accuracy of demand plans. However, the effect 
of statistical forecasting is obscure and planners are hesitant 
to use the pre-determined statistical models because the 
flawed models often incur more errors and cause poorer 
forecasts. 

This paper will use the bivariate vector autoregression 
(VAR(1)) time series model as a study vehicle to investigate 
the effects of aggregating two interrelated demands. 
Performance of corresponding forecasting approaches will be 
then derived and evaluated. The goal of this paper is to use 
certain statistical properties of the demands to develop 



principles that can assist the demand planners to determine 
whether demand aggregation and/or statistical forecasting are 
needed. This paper is organized into five sections. Following 
the introduction section, we first briefly describe the VAR(1) 
demand model and five demand planning approaches. The 
performance of the five approaches is then analytical derived 
in Section 3. Section 4 will use eight scenarios to evaluate 
and compare the performances among different approaches. 
Finally, principles and guidelines will be provided to 
practitioners for adopting appropriate aggregation/forecasting 
approaches.

2. VAR(1) Demand Model
In practice, most time-variant demands are observed to 

follow autoregression time-series models. Particularly, the 
first order autoregression, AR(1), model is widely applied in 
both practice and literature (Lee et al., 1997). Since the 
interrelation of demands is the focal point of our research, the 
first order bivariate vector autoregression, VAR(1), time 
series model is chosen as a study vehicle. Bivariate VAR(1) 

demands can be denoted as a vector: [ ]′= ttt XXX 21 ,  and 
the VAR(1) model can be expressed as:

ttt aXuX +Φ+= −1 (1)

where

[ ]′= 21 , xx uuu is the constant vector; 
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bivariate normal distribution: 
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In the VAR(1) model, � 11 and�� 22 represent the 
“auto-correlation elements” that dictate how much a demand 
depends on its own earlier demands; �12 and��21 represent 
the “inter-correlation elements” that determine how the two 
demands correlate to each other.

It can be seen that the bivariate VAR(1) can clearly 
describe the interrelation of two autoregressive time series:

(1) When both the two interrelation elements ofΦ ,� φ 12

and� φ21, equal to zero, the two time series are 
independent and can be in effect expressed as two 
separate AR(1) time series models with autoregression 
parameters φ11 and� φ22 , respectively;

(2) When only one of φ12 and φ21 is zero, the relation will be 
uni-directional. That is, if φ12=0 and φ21≠0, then X1t is a 
univariate AR(1) while X2t will be affected by X1t-1; 

(3) When both φ12 and φ21 are not zero, the two time series are 
interrelated; and

(4) When all the elements of Φ , φ11, φ12, φ21 and φ22, are 
statistically insignificant, the two time series will appear 
as two time-invariant data sequences.

The demand plans serve as basis of inventory planning 
and/or capacity planning. Safety stock and/or auxiliary 
capacity are prepared to minimize the effect of demand 
uncertainty. For instance, under the (s, S) inventory policy, 
the reorder point s is set based on a safety stock level that 
meets a predetermined service level (Caplin, 1985, and Silver 
et al., 1998):

LSTDzAVGLs ××+×=

where
AVG is the average unit time demand;
STD is the standard deviation of unit time demand;
L is the replenishment lead time; and

LSTDz ××  is the safety stock prepared to meet a 
desired service level under demand uncertainty.

It can be seen that the inventory cost under the (s, S) 
policy increases as the demand uncertainty, i.e. STD, grows. 
Similarly, the capacity cost rises owing to the preparation of 
auxiliary capacity for uncertain demand. However, demands 
are not aggregated without an additional planning cost. In the 
inventory problem, the replenishment lead-time is often 
prolonged because the inventory planned for the aggregated 
demand is stocked in a centralized warehouse and the 
transportation distance to the demand sources is thus 
extended. For the capacity planning problem, aggregating 
demands often means a higher product mix on the shop floor 
and causes possibly lower yield, more machine change-over 
time and higher machine breakdown rate.

3. Demand Planning Approaches
In this research, we investigate five possible demand 

planning approaches in response to the bivariate VAR(1) 
demands:

(1) Approach 1: The manufacturer lacks the technology of 
statistical forecasting. Demands are handled as simple 
time-invariant data sequences. The demand variability is 
measured by the standard deviation. The safety stock (or 
production capacity) is planned separately for each 
demand based on a multiple of its standard deviation.

(2) Approach 2:  The manufacturer aggregates the two 
demands together. The aggregated demand, denoted by Yt
(=X1t+X2t), is handled as a time-invariant data sequence. 
The safety stock (or production capacity) is planned for 
two demands together based on a multiple of Yt’s 
standard deviation.

(3) Approach 3: The manufacturer owns the statistical 
forecasting technology but lacks knowledge of 
multivariate time series. Demands are handled as two 
independent time series. AR(1) time series models are 
used as the statistical forecasting models. Statistical 
forecasting is carried out separately based on the 



estimated AR(1) time series model for each demand. The 
safety stock (or production capacity) is planned 
separately for each demand based on a multiple of its 
forecast standard error.     

(4) Approach 4: The manufacturer aggregates the two 
demands together. The aggregated demand is handled as 
an AR(1) time series. The safety stock (or production
capacity) is planned for two demands together based on a 
multiple of the Yt’s forecast standard error. 

(5) Approach 5: The manufacturer owns the technology of 
forecasting multivariate time series. Statistical 
forecasting is based on the VAR(1) model. Safety stock 
(and/or production capacity) is planned separately for 
each demand based on a multiple of its forecast standard 
error.

4. Performance Analysis of Demand Planning 
Approaches

To analyze the performance of Approaches 1 and 2, the 
variances of individual demands, denoted as �x1x1 and �x2x2
respectively for variances of demands X1t and X2t, and the 
covariance, �x1x2, has to be first derived under the VAR(1) 
time series model. Without loss of generality, we assume that 
the constants are zero, i.e. 0=u . Model (1) becomes:

ttt aXX +Φ= −1 . (2)

It is then straightforward to derive �x1x1, �x2x2 and �x1x2. 
Therefore, under Approach 1, the safety stock (or production 
capacity) will be prepared for each demand separately. The 
total safety stock will be then based on a multiple of �x1+�x2

(= 2211 xxxx σσ + ). Similarly, under Approach 2, the 

safety stock (or production capacity) will be prepared based 
on a multiple of the aggregated standard deviation, denoted 
by �y: 

212211 2 xxxxxxy σσσσ ++= (3)

To derive the forecast standard error under Approach 3, 
we first derive the following theorem.

Theorem 1:
If X1t and X2t follow VAR(1) model in (2), then X1t can be 

expressed as V1t+V2t where V1t and V2t are two AR(1) time 
series:
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Similarly, X2t can be expressed as W1t+W2t where W1t
W2t are two AR(1) time series:
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In above Equations, �1 and �2 are two eigenvalues of 
Φ  with corresponding eigenvectors: 
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The result of Theorem 1 simplifies the bivariate time 
series into two individual time series. In addition, each time 
series can be expressed as a sum of two AR(1) time series. 
Granger and Morris (1979) have proved that the sum of two 
ARMA time series will be also an ARMA time series. For 
demand planning practice, AR(1), with or without model 
identification, is usually used as the demand time series 
model. Theorem 2 is, thus, derived to estimate the forecast 
standard error when the sum of two AR(1) time series is 
estimated as an AR(1) time series. 

Theorem 2:
D1t and D2t are two stationary AR(1) time series:

ttDt DuD 111111 εϕ ++= −  and ),0(~ 2
1

...

1 εσε N
dii

t  and

ttDt DuD 212222 εϕ ++= −  and ),0(~ 2
2

...
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t . 
Let Dt be the sum of D1t and D2t, i.e. ttt DDD 21 += . 

Suppose that Dt is thought to be an AR(1) time series, i.e. 

ttaDt DuD εϕ ++= −1 , where ),0(~ 2
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t . Ifa and 2
εσ

are estimated using maximum likelihood estimators (MLE), 
then their expected values can be found to be:
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where
�D1 is the mean of time series D1t;
�D2 is the mean of time series D2t;
�D1D2(1) is the covariance of D1t and D2(t-1) for any t;
�D2D1(1) is the covariance of D2t and D1(t-1) for any t; and
�D2D1 is the covariance of D2t and D1t for any t.

Based on Theorem 1, the two demand time series X1t

and X2t can be expressed as ttt VVX 211 +=
and ttt WWX 212 += , respectively. Under Approach 3, the 



two time series are estimated as two separated AR(1) time 
series as follows:

11
111
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From Theorem 2, we can obtain the one-step-forecast 
mean squared errors as:
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Therefore, under Approach 3 the safety stock (or 
production capacity) will be prepared for each demand 
separately. The total safety stock will be then based on a 
multiple of the sum of forecast standard 

errors, )ˆ()ˆ( 22
21 x

t
x
t aa

EE σσ + .

To derive the forecast standard error of Approach 4, we 

first derive the form of the aggregated time series, which is 
the sum of two time series obeying a VAR(1) time series 
model. This can be easily done by the following Corollary. 

Corollary 1:
X1t and X2t follow the AR(1) model in (2). If Yt is the sum 

of X1t and X2t, then Yt can be expressed as U1t+U2t where U1t
and U2t are two AR(1) time series:
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Corollary 1 shows that the aggregated time series is 
again a sum of two AR(1) time series. To estimate the 
one-step-forecast standard error of Approach 4, the results of 
Theorem 2 can be again applied. Suppose the following 
AR(1) time series model is used to estimate the aggregated 
time series.

y
tt

y
at aYY += −1ϕ

Then, Theorem 2 tells us that the one-step-forecast mean 
squared error will be:
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and C=e11e22�e12e21. Thus, under Approach 4 the safety 
stock (or production capacity) will be prepared based on a 
multiple of the aggregated forecast standard error, 
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For Approach 5, the one-step-forecast standard error will 
be simply the standard deviations of white noises: 11σ

and 22σ , since the correct VAR(1) model will be used for 
the statistical forecast and only the white noises are 
unpredictable and will be let out by the forecast. The safety
stock (or production capacity) will be prepared for each 
demand separately. The total safety stock preparation will be 
then based on the sum of the two forecast standard errors, 

2211 σσ +

5. Evaluation Results and Summar ies
With the understanding of the aggregated time series in 

the previous section, five demand planning approaches can 
be now analytically evaluated and compared. Overall, we 
have the following observations based on evaluation and 
comparison results.
a. With aggregation and statistical forecasting capabilities, 

Approach 4 appears to be the best approach regardless of 
the scenarios. Approach 4’s effetiveness is also the most 
stable and less affected by changes of demand correlation 
and ratio of variation sizes.

b. The simple aggregation approach, Approach 2, performs 
quite as good as Approach 4 and outperforms Approach 5, 
the most sophisticated statistical forecasting approach, 
when the demand correlation is weak or negative. Its 
performance, however, worsens quickly as the demand 
correlation becomes positive and large and the two 
variation sizes become significantly different.

c. Approach 3, even with its statistical forecasting capability, 
appears to be the worst approach. It outperforms 
Approach 2 only in Scenario 1 when two demands are 
more positively correlated and the variations sizes are 
different.

Now, we summarize our observations and provide the 
following principles and guidelines for practitioners to adopt 
appropriate demand planning approaches under different 
situations.

(1) Demand correlation is negative (� < 0)
a. If aggregating demands only incurs a limited extra cost, 

Approach 2 appears to be the best choice since it 
requires only simple aggregation and does not need to 
build statistical model for forecasting.

b.If demand aggregation will incur a substantial extra 
cost, Approach 5 should be adopted. However, 
Approach 5 requires a correct multivariate statistical 
model for accurate forecasts. When the demand 
correlation is insignificant but individual demands 
have significant autocorrelations, Approach 3 is a 
good choice for making more than 10% cost 
reduction.

(2) Demand correlation is positive (� > 0)
a. If the correlation is low, 0<� <0.2, and the extra 

aggregation cost is minimum, Approach 2 is still a 
good choice given that no statistical model is required 
for this approach. 

b. If the correlation is high, �� >0.2, and the extra 
aggregation cost is limited, Approach 4 is more 
preferable. It should be noted that building a 
univariate time series model for an aggregated 
demand in Approach 4 is much more reliable and 
simpler than building the multivariate time series 
model in Approach 5.

c. If the extra aggregation cost is substantially large, 
Approach 5 has to be adopted. Again, Approach 3 
can be used instead when low demand correlation and 
high autocorrelation are observed.
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