
行政院國家科學委員會專題研究計畫  成果報告 

 

 

子計畫一:半導體需求資料探擷與知識發掘應用於產能配置

最佳化之研究(3/3) 

 

 
計畫類別：整合型計畫 

計畫編號： NSC93-2213-E-002-005- 

執行期間： 93 年 08 月 01 日至 94 年 07 月 31 日 

執行單位：國立臺灣大學工業工程學研究所 

 

 

 

 

計畫主持人：陳正剛 

 

 

 

 

 

報告類型：完整報告 

 

處理方式：本計畫可公開查詢 

 

 
 

 

中 華 民 國 94 年 10 月 5 日

 



                            

 1

行政院國家科學委員會多年期專題研究計畫期中報告 
半導體供應往路決策促成技術研究子計畫三 

半導體需求資料探擷與知識發掘應用於產能配置最佳化之研究（3/3） 
Semiconductor Demand Data Mining and Knowledge Discovery for Optimization of Capacity Allocation 

計畫編號：NSC 90-2218-E-002-046 
執行期限：93 年 8 月 1 日至 94 年 7 月 31 日 

主持人：陳正剛  
(e-mail: achen@ntu.edu.tw) 

執行機構及單位名稱：國立台灣大學工業工程學研究所 
 

中文摘要 
在需求供給的網路中，需求的不確定性不但會被散

播更會在網路中被放大而導致整條供應鏈營運品質低

落的連鎖效應。半導體製造網路為最複雜的需求供給網

路之一，因此深受不確定需求資料之苦。在上一年度的

研究中，我們根據第一年所發掘的知識，探究產能需求

群組對於設備整體效能(OEE)的影響，並建構數學模型

來描述產能需求配置的影響。第三年的計劃將著重於產

能配置的最佳化，研究目標是尋求一以需求群組為基之

最佳產能配置，使設備整體效能達到最佳以降低設備產

能的需求，並將探討不同的組合最佳化演算法、如貪婪

演算法、基因演算法等，最後提出有效的最佳化方法並

以半導體的賓際需求及製造資料來驗證。 

關鍵詞：需求規劃、產能配置、設備整體效能 
Abstract 

The demand signal is the most unreliable source of 
information that plagues the operation effectiveness in a 
demand-supply network. Moreover, the demand uncertainty 
is not only propagated but also magnified over the network 
and causes a chain effect on the planning quality of the entire 
supply chain. Semiconductor manufacturing network is one 
of the most complicated demand-supply networks and thus 
suffers greatly from the untrustworthy demand information. 
In the second year of this project, the effect on the overall 
equipment effectiveness (OEE) has been explored. The 
effects of demand grouping for equipment capacity allocation 
are then modeled mathematically. The model is aimed to help 
practitioners comprehend how demand plans work together 
with capacity allocation to affect the OEE. The third year of 
this project will focus on optimization of capacity allocation. 
The goal is to find optimum capacity allocation for demand 
groups to minimize the required equipment capacity or 
equivalently maximize the OEE subject to uncertain demand 
signals. Various combinatorial optimization algorithms, such 
as Greedy Algorithm, Genetic Algorithms, etc., will be 
investigated. Effective optimization methodologies are then 
suggested and tested using actual semiconductor demand and 
manufacturing data. 
 
Keywords：Demand Planning, Capacity Allocation, Overall 
Equipment Effectiveness (OEE)  
 
1. Introdution 

The objective of this year’s research is to develop 
demand grouping strategies for capacity allocation such that 

the overall equipment effectiveness (OEE) is maximized and 
thus the capacity required to meet the demand can be 
minimized. 

Overall equipment efficiency is used extensively to 
quantify the effect of flexibility on equipment efficiency in a 
manufacturing system. Leachman [2] proposed definitions 
and mathematical formulas for computing overall efficiency 
and data collection strategies. The OEE model includes four 
components [1]: 
 
OEE=Availability × Operating Efficiency × Rate Efficiency 
× Rate of Quality 

 
The definitions of these components are [3]: 
(1) Availability: Up time / Total time 
(2) Operating Efficiency: Actual processing time /Theoretical 

processing time 
(3) Rate Efficiency: Run time / Up time 
(4)Rate Of Quality: (Total units processed − Total defect 
units) / Total units processed 
 

The capacity requirement for a type of machine can be 
then expressed as follows: 

 

EfficiencyEquipment  Overall
Time Processing  DemandtRequiremenCapacity ×

=  

 
As can be seen, OEE is a factor inflating required 

equipment capacity. In this year’s research, The goal is to 
find optimum capacity allocation for demand groups to 
minimize the required equipment capacity or equivalently 
maximize the OEE subject to uncertain demand signals. 
 
2. Demand grouping for tool capacity allocation 

According to the static capacity models, the capacity 
demand can be obtained by product demands and processing 
time:  

Capacity demand at time period t = τ×= tt dq  
where dt is the product demand at time period t, t=1,…,T and 
τ is the processing time required to by one product unit. The 
capacity requirement is then determined by the average 
capacity demand and the Overall Equipment Efficiency 
(OEE): 

The capacity requirement=
oT

q
Cr

T

t
t

×

∑
= =1  
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Where qt is the capacity demand at time period t, t=1,…,T, 
and o is the overall equipment efficiency 

The number of tools must be integer. After capacity 
requirement is calculated, the tool requirement can be 
estimated by the capacity requirement. The tool requirement 
is calculated as follows: 
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where Cpm is the capacity provide by one tool at one time 
period 

The objective is to find the best way of grouping among 
these five possible options. To answer this question, we first 
develop a matrix form to express these different grouping 
types. We build a matrix with columns representing the 
products and rows representing the groups. Since in this 
example, there are 3 products, that can be grouped into 3 
groups at most, we build a 3×3 matrix as follows: 
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To ensure the 1-to-1 mapping between the assignment 
matrix and the actual assignment, we let the group number to 
be and only be the smallest product number in the group. In 
other words, when product 1, 2 & 3 are all grouped together, 
the smallest product number is 1, and so is the group number. 
The steps to encode grouping type into a machine group 
matrix are: 
1. Assign numbers to products 
2. Choose the smallest product number in each machine 

group as the machine group   number. 
3. Build an n×n machin- group matrix M. 
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subject to the following constraints: 

(2)            0    when  ijfor   0  and  1

(1)                                                                       1

1

1

∑ ≠<==

∑ =

=

=
n

j
ijijii

n

i
ij

xxx

x
 

 

Constraint (1) is ensure that each product can be only 
assigned to one machine group. Constraint (2) avoids illegal 

matrices. ∑ ≠
=

n

j
ijx

1
0  means there are products in machine 

group i so that i should be the smallest product number in 
this machine group; i.e. 1=iix  and 0=ijx  for j < i. We 
then define a capacity-demand-group matrix D:  

 1product  of demandcapacity  is  and

0 is matrix in   0
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Recall that M is the machine-group matrix defined 
earlier. If machine group matrix is 
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3. Minimizing Tool Requirement by Maximizing OEE 

The overall equipment efficiency (OEE) measures four 
components of equipment performance: 
Overall Equipment Efficiency

Up Time Product Time Theoretical Processing TimeYield
Total Time Up Time Actual Processing Time

Availability RateEfficiency RateOfQuality OperatingEfficiency

Availability Ut

= × × ×

= × × ×

= × ilization Yield Efficiency× ×

 

The OEE will be influenced by machine allocations to 
product groups. In this section we try to model the impacts of 
product grouping for machine allocation on the OEE. 

The first objective of our research is to minimize the 
average capacity requirement to meet the demand. The 
capacity requirement can be calculated as follows: 

Average capacity requirement for machine group i  

= iCr =
EfficiencyEquipment  Overall
demandcapacity  Average

i

i

o
q

= ,  

where iq is the average capacity demand of machine group i, 
and oi is the overall equipment efficiency of machine group i 

And the average tool requirement for machine group i can 
be calculated by the following formula: 
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where Cpm is the capacity of one tool per time period and qit 
is the capacity demand of machine group i in time period t. 
Then the quantity of average tool requirement is 

ATR= ∑
i

iTr                              (3) 

Since the capacity demand will fluctuate according to 
product demand fluctuation, the tool requirement will surely 
also fluctuate as well. When a fixed quantity of tools is 
prepared, the number of tools may be insufficient or 
oversupplied due to the demand fluctuation. Here, we use the 
sum of squared errors (SSE) to measure the tool requirement 
variability. By product grouping, our second attempt is to 
minimize the tool undersupply and oversupply errors. 

Actual tool requirement of group i in each time period 
can be calculated as: 

Cpm
oq ii /

, 

where Cpm is the capacity of one tool per time period. And 
the quantity of tool requirement of machine group i.  
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So the squared errors of tool preparation in machine 
group i will be 
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And we set the sum of squared errors of tool requirement 
as the second objective: 
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3.1 Greedy Algorithms for Tool Capacity Allocation 

The idea of the Greedy algorithm for minimizing average 
tool requirement (ATR) is presented in the following steps: 
1. Compute the ATR of all product demand separated. 
2. Compute the ATR of all possible grouping types in which 

only a pair of product demands is grouped. 
3. If a lower ATR can be found many of the grouping types in 

Step 2, choose the grouping type with the lowest ATR and 
aggregate the pair of product demands in this chosen 
grouping type. Treat the aggregated product demand as a 
single product demand. If no ATR reduction can be found, 
stop the process and a solution is reached. 

4. Go to Step 2 
 
The idea of the Greedy algorithm for the sum of squared 

errors (SSE) is presented in the following steps: 
1. Compute the SSE of all product demand separated. 
2. Compute the SSE of all possible grouping types in which 

only a pair of product demands is grouped 
3. If a lower SSE can be found many of the grouping types in 

Step 2, choose the grouping type with the lowest SSE and 
aggregate the pair of product demands in this chosen 
grouping type. Treat the aggregated product demand as a 

single product demand. If no SSE reduction can be found, 
stop the process and a solution is reached. 

4. Go to Step 2 
 

Figure 1 shows the flow chart will illustrating the above 
procedure, the objective value is ATR or SSE depends on 
which is used as objective functions. 

 
Figure 1 Flow of the Greedy algorithm 

 
3.2 Genetic Algorithms for Tool Capacity Allocation 

 

 
Figure 2 Flow of the Genetic algorithm 

 
This section will illustrate how the Genetic algorithm 

(GA) will be applied. We will always throw away the worst 
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chromosomes ("only the fittest survive") to encourage the 
best solutions generated and keep the population improving 
as a whole. In the Greedy algorithm, we must compute many 
possible solutions in each stage and then select the best one, 
Genetic algorithm is anticipated to be more efficient to obtain 
a relatively good solution. But it also can’t guarantee to find 
the optimum solution. The procedure of GA is shown in 
Figure 2. The details of each step are now described below. 

The two objective functions (3) and (4) will be taken as 
the two fitness functions in the Genetic algorithm: one is the 
average tool requirement (ATR) and the other is Sum of 
Squared Errors of Tool Requirement (SSE). In order to 
solve the problem by the Genetic Algorithm, the solutions of 
the problem have to be encoded as chromosomes first. Now, 
the machine group matrix developed in the second year of 
this project and also briefly described earlier can be 
regarded as one chromosome because it represents 
one of the solutions (i.e. grouping type) to the product 
grouping problem.  

The crossover operator is an n-point operator that 
randomly selects two chromosomes from the population 
called parents, and then joins together the 
“non-corresponding” parts of each parent to obtain the 
offspring. The simplest crossover is one-point crossover; the 
following example will explain how the one-point crossover 
operates. Chromosomes A and B are randomly selected from 
the population as parents, and column j is randomly chosen 
to be the breakpoint; i.e. the parent chromosomes will be 
broken between column j and j+1 and form the front and 
back segment: 
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chromosome B= 
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By crossing over, two offspring will be obtained. We 

combine the front segment of chromosome A and the back 
segment of chromosome B to be the front and back segments 
of one child chromosome, and combine the front segment of 
chromosome B and back segment of chromosome A to be the 
front and back segments of the other child chromosome. So 
the two children chromosomes are as following: 

chromosome 1= 
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chromosome 2= 
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After crossing over, chromosomes are broken between 

columns, all the columns will still contains one entry equal to 
1 and others equal to zero. That means every product is still 
allocated to only one machine group. Both the children 
inherit segments of both parents’ genetic information, so that 
children may possibly combine the good segments from the 
parents to obtain a better quality chromosome. 

Since there is no reason why the center of the 
chromosome should be preferred over its ends, a two-point 
crossover is even more appealing. And in many literatures, 
two-point crossover we usually consider performs better than 
others. Also, from the results of our tests, the two-points 
crossover indeed performs better than the one-point and 
three-point crossover. 

On the basis of above descriptions, the two-points 
crossover will be applied in this study. The operation of the 
two-point crossover is similar to that of one-point crossover. 
Chromosomes A and B are randomly selected from the 
population as parents and column i and j are randomly 
chosen to be the breakpoints and split the chromosomes into 
three segment: 

chromosome A = 
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chromosome B = 
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Since the parent chromosomes joins together the 

“non-corresponding” parts of each parent to obtain the 
offspring in the crossover operation, one of the children is 
formed by the first segment of chromosome A, the second 
segment of chromosome B, and the third segment of 
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chromosome A; the other child chromosome is formed by the 
first segment of chromosome B, the second segment of 
chromosome A, and the third segment of chromosome B: 

chromosome 1 = 
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chromosome 2 = 
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For the mutation operation of GA, we will randomly 

choose chromosomes from the population to perform 
mutation operation. The mutation operation corresponds to 
randomly select some products and allocate them to other 
randomly chosen machine groups. For example, the 
following chromosome is chosen to operate mutation; 
product j is grouped into machine group 1 originally (i.e. 

11, =ja ; 0,, ,2, =njj aa L ). 
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If the mutation operation shifts the product j form 
machine group 1 to machine group n, then the chromosome 
becomes: 
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One goal of encoding grouping problem into products 
group matrix is to avoid illegal machine group matrices 
(chromosomes). But after crossover and mutation operation, 
the chromosomes might become illegally. For example, 
operating crossover: 

chromosomes A=

















100
000
011

and B =

















000
110
001

 

results in: 
 

chromosome 1 =
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But chromosome 1 is an illegal machine group matrix 
since the machine group 2’s smallest product number is not 2 
but 3.  A legal matrix should be: 

chromosome 3 =




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. 

So, chromosome 1 must be modified to chromosome 3. 
The steps of machine group modification are: 
1. Current row is the first row. 
2. If the current row is a zero row or the first nonzero entry in 

the current row is iix , go to step 4. If the first nonzero 

entry in the current row is ijx  and ji ≠ , go to step 3. 
3. Exchange row i and row j, go to step 2. 
4. If the current row is the last row, then STOP. Otherwise 

check the next row; that is let the next row be the current 
row, and go to step 2. 
 
According to the two-point crossover rules, products in 

the same group might be separated after crossover. Two 
neighboring products with numbers in the center of the 
product number serials will have more chance to be separated 
after crossover, and two neighboring products with numbers 
in the two ends of the product number serials will more likely 
to remain in the same machine group after crossover. 

From the results of our 1st-year research and basic 
statistical inference, it is known that the more complementary 
the demand correlation of two demand sources (ρ→−1), the 
lower the variance of the aggregated demand. The idea of the 
assignment method is to increase the opportunity for two 
products with positive correlation to be separated and to 
avoid two products with negative correlation from being 
separated. So two products with more complementary 
correlation (ρ→−1) will be assigned numbers in the two ends 
of the product number serials, and two products with less 
complementary correlation (ρ→1) will be assigned numbers 
in the center of the product number serials. 

If there are n products, computing correlations of all 
product pairs first. Then, assign the two products with the 
most complementary correlation number 1 and number 2; 
assign those with the second complementary correlation 
number n and number n-1; those with the third 
complementary correlation number 3 and number 4; those 
with the forth smallest correlation number n-2 and number 
n-3, and so on. Figure 3 illustrates the efficient product 
number assignment. 
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 Product #  1  2  3  4            n-3 n-2 n-1 n

ρ1 < ρ2 < ρ3 < ρ4 <..... 
ρ1 ρ2 ρ3 ρ4 ... 

... 

 
Figure 3 Product number assignment for efficient  

 
4. Case Study: Semiconductor Demand Data 

A set of real demand data is used for verification and 
evaluation of the two proposed algorithms, GA algorithm and 
Greedy algorithm. There are 300 product demand records 
and 65 critical machines in the data. The data also recorded 
the processing time of the machines each product has to be 
processed by. One of the 65 machines is analyzed. There are 
60 products having to process on this machine, and we 
obtained the capacity demand of these 60 products by their 
demand and processing time on this machine. The 
backgrounds of the 60 products’ capacity demand data are 
listed as follows: 
1. Time horizon: 69 weeks 
2. Capacity demand: in minutes. 
3. Products are represented in numbers; each unique 

number represents a specific product. 
 

The Bell number of 60 products is B(n)=9.769×1059, that 
means the total number of possible combinations for 60 
products is equal to 9.769×1059, which is enormous for 
finding an optimal combination.. 

Before applying these algorithms, the products should be 
assigned serial numbers, the products number assignment 
method was presented in the Section 3.5.6, the idea of this 
method is assigning two products with more complementary 
correlation (ρ→−1) numbers in the two ends of the product 
number serials, and assigning two products with less 
complementary correlation (ρ→1) numbers in the center of 
the number serials. Since there are 60 different products, we 
will assign number 1~60 to these products. For example, 
product 265 and product 149 are the most complementary 
pair among the 60 products with correlation coefficient of 
their demands equal to −0.35613. Thus, number 1 and 
number 2 are assigned to the two products. Similarly, product 
145 and product 213 are the second most complementary pair 
with the demand correlation equal to −0.33030 and, therefore, 
the two products are assigned number 59 and number 60, 
respectively.  

In addition to the two objective function, ATR and SEE, 
three other performance measures, STR, SV and CumpuTime, 
will be used to evaluate the results of proposed algorithms: 

1. Average tool requirement (ATR) 
2. Sum of squared errors of tool requirement (SSE) 
3. Standard error of tool requirement (STR) 
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4. CV of tool requirement (CV) 
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5. Computation Time: CompuTime 
 
In the literature, two-points crossover is usually 

considered better than others. After some tests, we find that 
the population size doesn’t have significant effect on the 
performance of GA. In this research, we set a population size 
to 4 and the number of breakpoints to 2. This setting 
performs better, though not significantly, than other setting in 
our empirical tests. The number of generation is the terminate 
function in the algorithm; the searching process will stop 
after the pre-determined number of generations is reached. 
The probability of crossover is set to 0.9 and the probability 
of mutation is set to 0.2. 

Since we have no OEE data to analyze how the yield 
group matrix and efficiency group matrix should be, in this 
research the yield group matrix and efficiency group 
matrix are randomly generated. And the values of OEE 
model parameters are chosen empirically. Two models of 
OEE parameters settings will be tested to investigate the 
impacts of OEE on grouping results. In the OEE model 1, the 
equipment is assumed to be relatively inefficient with OEE 
around 0.45~0.55 while in the OEE model 2, the OEE is 
assumed to be high (0.6~0.7). 

  
OEE Model Parameters settings: 
※ OEE model 1: 
1.Utilization Model: 

(1) Utilization upper bound (U): 0.9 
(2) Utilization lower bound (L): 0.8 
(3) Utilization enhancing factor (r): 0.36788 

2.Yield Model 
(1) Yield decreasing factor (q): 0.95 
(2) Yield heterogeneity penalty factor (p): 0.98 

3.Efficiency Model: Changeover time (t): 500 
 OEE model 2:※  

1.Utilization Model: 
(1) Utilization upper bound (U): 0.99 
(2) Utilization lower bound (L): 0.92 
(3) Utilization enhancing factor (r): 0.36788 

2.Yield Model 
(1) Yield decreasing factor (q): 0.98 
(2) Yield heterogeneity penalty factor (p): 0.999 

3.Efficiency Model: Changeover time (t): 200 
 
The range of OEE in OEE model 1 is about 0.45~0.55. The 
range of OEE in OEE model 2 is about 0.6~0.7. 

To evaluate the performance of the two proposed 
algorithms, we use two types of grouping as the benchmarks: 
one is grouping all products together, i.e., all products are 
allocated to the same machine groups, and the other is 
one-product-one-group, i.e., different products are allocated 
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to different machine groups. 
Results under the two OEE models will be first 

summarized in Tables 1 and 2. The performance of the 

algorithms under different OEE models then will be 
discussed. 

 
Table 1 Comparison of the performance of the algorithms in OEE model 1 

Algorithms 
All 

Grouped 
All 

Separated
ATR- 

Greedy
SSE- 

Greedy
ATR- 
GA 

SSE- 
GA 

SSE 19626626 7135013 5980323 5937320 6384412 5992714

STR 541 326 299 298 309 299 

ATR 670 533 444 448 462 467 

CV 0.808 0.612 0.673 0.664 0.668 0.640 

CompuTime 1 second 3 seconds 2177 Mins 3056 Mins 97 Mins 138 Mins
 

Table 1 Comparison of the performance of the algorithms in OEE model 2 

Algorithms 
All 

Grouped 
All 

Separated
ATR- 

Greedy
SSE- 

Greedy
ATR- 
GA 

SSE- 
GA 

SSE 7481124 5395973 604172 4695190 5331871 4708410

STR 334 284 300 265 282 265 

ATR 414 471 395 396 409 417 

CV 0.807 0.603 0.760 0.668 0.690 0.636 

CompuTime 2 second 3 seconds 2086 Mins 3183 Mins 113 Mins 175 Mins
 

In summary, when OEE is higher, it should take SSE as 
an objective function; when OEE is lower, it should take ATR 
as the objective function. For the short-term planning that 
require responsive solutions, Genetic algorithms will be 
applied more efficiency; for the long-term planning that 
emphasize more on the quality than on the speed, Greedy 
algorithms can provide better solutions. 
 
5. Conclusions 

Grouping for machine capacity allocation is a complex 
combinatorial problem. This research formulated the problem 
and developed the Greedy and Genetic algorithms to provide 
the strategies of product demands grouping. Appropriate 
demand grouping can significantly reduce the average 
quantity and variability of the tool requirement by improving 
the OEE and reducing the demand uncertainty. The 
conclusions of this research are summarized as follows.  

We used two objective functions in this research. The first 
is the quantity of average tool requirement (ATR), the second 
is the sum of squared errors (SSE) of tool requirement to 
measure the quantity and the variability of the tool 
requirement respectively. 
1. When the OEE is low, both objective functions minimize 

the average tool requirement and the sum of squared errors 
similarly. The Greedy algorithms provide better results 
than the Genetic algorithms by both the ATR and the SSE.  

2. When the OEE is high, both objective functions minimize 
the average tool requirement, but only the objective 
functions, SSE, can significantly reduce the sum of squared 
errors of tool requirement. The Greedy algorithms also 

provide better results than the Genetic algorithms by both 
the ATR and the SSE.  

Comparing the computing efficiency of the two 
algorithms, though the Greedy algorithms provide better 
grouping results, it takes about 20 times as much computing 
time as the GA does. The Genetic algorithms provide good 
grouping results in a much shorter time.  
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