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Abstract 
In semiconductor manufacturing, post- 

process metrology and statistical monitoring 
of quality data are critical to ensure a high 
yield and good quality products. Effective 
SPC charting can detect process excursions 
and provide early warning on possible 
process faults. Therefore, it is important to 
design SPC charts such that process shifts, 
small or large, can be detected early and 
accurately while the number of false alarms 
can be cut down to an acceptable level. 

Introduction 
The problem most often encountered by 

process engineers while doing SPC charting 
in semiconductor fabrication is the difficulty 
to group the data and compute the sample 
statistic to be charted. Due to the high cost 
of test wafers and metrology, only few 
sample wafers are taken fiom a lot or a 
process run. Sample readings are then taken 
from the sample wafers. For example, after 
oxidation five thickness readings will be 
taken from each of three sample wafers (Fig. 
l), which in turn are taken fiom a processing 
batch. 
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Fig. 1 Thickness sample readings 

With these sample thickness data, the 
most often seen practice is to group 5 
sample readings from a wafer to compute an 

average. The computed wafer averages are 
then plotted on the popular Zcontrol chart. 
This is not the only possibility of grouping 
the data. We could be more concerned about 
the batch-to-batch variation and decide to 
group all 15 readings together for computing 
batch averages and plotting a batch-to-batch 
control chart. We could be also concerned 
about the site-to-site variation and decide to 
group the readings from the same site (e.g. 
site 1) together. 5 sit-to-site (one for each) 
control charts can be then constructed to 
detect problems that only reveal themselves 
in the site-to-site relationships. There of 
course exist other possibilities. It all depends 
on what variation sources you are concerned 
with. 

In this paper, we first present an analysis 
of variance (ANOVA) that decomposes and 
discerns significant variation sources. Such 
analyses provide insights on what sources of 
variation should be watched more closely. 
Table 1 shows an ANOVA for the oxidation 
thickness. 

Table 1 : ANOVA for Oxidation 
Thickness 

r 
ANOVA 

s s m  F pr>E 
I 4 4 1 3 m  31.77 7.33 

983.43 4 9 1 9  113.43 0 . m  

ww, 8 669.57 87.70 19.31 0.QMU 

Total 6 7 4 m 4 2  

4 129877 24.56 74.87 QsLMIl 

616a0.36 4.34 

From the analysis of variance, it is found 
that all the main variation sources (batch-to- 



batch, wafer-to-wafer, and site-to-site) are 
quite significant. In addition, the interaction 
between wafers and positions is also 
discernible. Therefore, control charts should 
be coiistructed to monitor these variation 
sources. 

Contrd Charting 
Fig.2 shows the four batch-to-batch 

control chart that are most often seen in 
practice. One is an "overall" batch-to-batch 
chart in that each data point is the average of 
all 15 readings from the same batch. The 
other three 2-R charts are "zone" batch-to- 
batch charts. Since wafers 1, 2, 3 are taken, 
respectively, from top,. center, and bottom 
zones of a vertical oxidation fkmace, each 
data point on a "zone" batch-to-batch chart 
is an average or range of the 5 readings from 
each wafer. For example, in the "top-zone" 
control chart each data point represents the 
thickness average of wafer1 from one batch. :[ A I 

I 

I 

Fig. 2 Four most used batch-to-batch charts 
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ture all variation sources, it is not 
S to only rearrange and regroup the 
sample data. The difficulty is always that 
there exist too many control charts and thus 

e alarms and there simply lack 
1 charts to provide accurate 
oblems. In this paper, we 

propose an integrated, effective SPC 
approach that can detect excursions from all 
sorts of variation sources. The same 
thickness data from an oxidation process is 
used to illustrate the effectiveness of our 
proposed approach. From Fig. 2, the process 
seems running OK since all data points are 
within the control limits. What cannot be 
seen in Fig. 2 are a lot of hidden variation 
sources, that hid behind the sample averages 

In order to capture and describe all 
possible variation sources, we here propose 
the following model: 

where each thickness reading (Xjk) taken 
from batch i, waferj and position (site) k can 
be explained by four components: 
p: overall mean 
b,: batch effect (- N(0,a; ) )  
wJcl): wafer effect ( [ w , ( ~ J ~ ~ I - N ( c ~ ~ ,  L) 
j=1, ..., m) and 

I+ 1.. n). 
Here, we also assume bi pika * wj(13 are 
dependent of one another. Without loss of 
generality, 

[11* 

X ~ &  = + b~ -I- w j ( i )  + P j k ( i )  Y (1) 

&(i): position effect (bjk(r)]nxl-NO1/,~j)~ 

m z P w J  = o  y k f l , k = o  y j = l . . m .  
J = I  &=I 

In model (l), b, represents the deviation 
from the overall mean (,U) in the ith batch 
caused by batch-to-batch variation. The size 
of the batch-to-batch deviation is assumed to 
follow a normal distribution. w(9 represents 
the variation among wafers from the same 
batch and is an m x 1 vector following a 
multivariate normal distribution. Similarly, 
pir$ represents variations among positions on 

wafer j of batch i and is an n x 1 vector 
following a multivariate normal distribution. 
In the case of Fig. 1: m=3 9 n=5 and 
W(i)' 

n 

then proposed to monitor these difference 
variation components (to be described in 
detailed in the full  paper). These four control 
charts are: 
1.position (site) effect chart for wafer 1 (top 

zone) 
2.position effect chart for wafer 2 (center 

zone) 
3.position effect chart for wafer 3 (bottom 

zone) and 
4. wafer effect chart 

Fig. 3 shows these four T2 charts. It is 
seen that the control chart can effectively 
detect the problem batches 12, 13, and 29 
and identify their variation sources: wafer 
variation plus bottom-zone position 
variation for batch 12, wafer variation plus 
center-zone position variation for batch 13 
and bottom-zone position variation for batch 
29. In the mean time, it can be also observed 
that the in-control batches are all very well 
kept within the control limits. This 
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illustrates the control charts’ robustness 
against false alarms. 

In conclusion, the proposed SPC 
approach is shown to be very effective in 
detecting process excursions with multiple 
variation sources and is also robust by 
keeping the in-control data points well 
within the control limits. This technique is 
especially useful for semiconductor 
manufacturing. Post-process sample data, 
such as thickness, CD and alignment data, 
can be effectively monitored. The technique 

can also provide engineers useful 
information on the source of excursion. 
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Fig. 3 T2 control charts for multiple variation sources 
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