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As a semiconductor supply chain becomes widespread and the competition
pressure is very fierce, the detrimental effects of increasing varieties and variations
are magnified in the supply chain. But many important issues, such as different
service priorities, adaptability, controllability and scalability of performance
metrics, have not been addressed in the literature. Conventional modelling
techniques of supply chain operations are no longer effective for supply chain
configuration. Therefore, a proposed empirical model was first built to catch up
the relationship between supply-chain configuration and metrics under the
influence of the variability sources. Next, an optimal supply chain configuration
model is formulated as a polynomial goal programming model to accommodate
different goal objectives. Finally, an efficient solution methodology is further
developed to find out the optimal supply chain configuration. Our results
show that our proposed approach can easily be adapted to the practices in
semiconductor supply chain, and the solution methodology developed in this
paper is truly promising.

Keywords: Semiconductor supply chain configuration; Polynomial goal
programming model; Heuristics

1. Motivations and objectives

Semiconductor fabrication itself is a very complicated manufacturing process. Its
global, cross-company supply chain operations (figure 1) are even more complicated
and dynamic such that usual planning and scheduling solutions sometimes have
become impossible to employ. Many semiconductor companies in Taiwan tried to
implement the most sophisticated advanced planning and scheduling (APS) solutions
provided by notable supply chain planning (SCP) vendors, but the results of
implementation are less satisfactory.

As reported by Maiorana and Iuliano (1997), manufacturing variability is a
critical factor with great impact on work-in-process (WIP) level, cycle time, and
throughput. We use coefficient of variation (CV) as a measure of the manufacturing
variability. Figure 2 shows that Q-curves describe the relationship between cycle time
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and throughput under different levels of CV. Q-curves in figure 2 are observed based
on a queueing system that can be used to mimic a semiconductor supply chain.
Under constant system variability CV1, manufacturing planners usually pursue
a higher throughput and move point A to point B in figure 2. A higher throughput
cannot be achieved without paying a price. As shown in figure 2, the cycle time is
rising exponentially as the throughput increases. Based on the Little’s law, it also
leads to an exponentially increased WIP level and causes a lot of material handling
problems both on the shop floor and in the supply chain. In fact, it is not impossible
to achieve a higher throughout while keeping or even shortening the cycle time.
The solution is to keep the operational variability low, i.e. moving from point B to
point C to lower the coefficient of variation from CV1 to CV2.

Hopp and Spearman (2000) had reported several causes of variability including
physical dimensions, process times, machine failure/repair times, quality measures,
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temperatures, material hardness, setup times and so on. There are two major sources
existing: process time variability and flow variability. Reducing variability is a
subject intensively discussed and investigated in the fields of stochastic control and
quality engineering. It has been long recognized in the discipline of statistical process
control (SPC) that unnecessary manual interferences will only result in bigger process
variability. Contrary to many engineering approaches demanding variability
elimination, the philosophy of statistical control is to tolerate, while closely monitor,
a certain level of variability. In addition to off-line system design to minimize the
variability, on-line monitoring of variability also helps to seek out causes resulting in
unusually large variability and hence the opportunity to further improve the system
performance. Recently, such a philosophy has been adopted by production control
researchers (Chen et al. 2000) and practitioners (Croft and Hand 2003, Devlin et al.
2003, Segal and Kalir 2003) alike. In (Chen et al. 2000), both statistical optimization
and control techniques have been proposed and applied to semiconductor
manufacturing systems.

On the other hand, there are several supply chain researchers focusing more
on developing a better plan under a complicated and dynamic environment in
semiconductor industry. Padillo et al. (1995) presented a strategic decision support
system (DSS), which has been conceptualized and designed by SEMATECH to assist
the large semiconductor manufacturer in managing its extensive supply chain
network. This DSS is intended to be used for evaluating future factory concepts and
to assist business planners in strategic decision about product allocation and major
resource planning.

Toktay and Uzsoy (1998) addressed a capacity allocation problem for a
semiconductor wafer fabrication facility. They formulated the problem as a
maximum flow problem on bipartite network with integer side constraints and
developing efficient heuristics which obtain near-optimal solutions in negligible
computation time based on the objectives of maximizing throughput and minimizing
deviation from predetermined production goals. Rupp and Ristic (2000) presented a
distributed planning methodology for semiconductor manufacturing supply chains.
The developed system is based on an approach that leaves as much responsibility and
expertise for optimization as possible to the local planning systems while a global
coordinating entity ensures best performance and efficiency of the whole supply
chain. They used the Factory Planner (FP), one module of the X-CITTIC system as a
tool of implementation that can optimize both local and global order flow through
the Virtual Enterprise concept.

Frederix (2001) developed a methodology, more flexible and efficient than the
traditional time-bucket-based techniques and dynamic dispatching heuristics, to plan
the extended semiconductor enterprise and schedule work at the different production
entities. The methodology uses stepwise search procedures to improve plans and
make-or-buy decision processes to solve resources constraints. Hung and
Cheng (2002) proposed a hybrid capacity modelling for an alternative machine
types production planning problem, and justified their model that would build a
more accurate model at the expense of a small loss in speed.

Christie and Wu (2002) presented a multistage stochastic programming model
for strategic capacity planning at a major US semiconductor manufacturer.
Their model’s objective is to minimize the gaps between products’ demands and
the capacity allocated to the technology specific for each product. They constructed
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two scenario-analysis independent versus arbitrary, and showed that independent
model allows a varying degree of scenario aggregation without significant prior
information, while the arbitrary model allows planners to play out specific
scenarios given prior information. Karabuk and Wu (2002) examined the main
issues of a decentralized coordination scheme in a setting observed at a major US
semiconductor manufacturer: marketing managers reserve capacity based on
product demands, while attempting to maximize profit; manufacturer managers
allocate capacity to competing marketing managers so as to minimize operating cost
while ensuring efficient resource utilization. They formulated the local marketing
and manufacturing decision problem as a separate stochastic program, then
formulated a centralized stochastic programming model to maximize the firm
overall demands. Jo Min (1995) constructed and analysed an economically efficient
way of pricing and allocating semiconductor chips of which production technology is
characterized by persistent quality variations and of which production capacity is
exceeded by potential demand. In his model, specification levels and allocation
priorities of competing orders from customers are systematically determined for a
single profit maximizing producer. He formulated the producer’s profit maximiza-
tion problem as a nonlinear programming program and investigated the optimality
of the proposed allocation rule. Harker (2004) presented an integrated model of
incentive problems arising in forecasting and capacity allocation. He proposed a
game theoretic model and designed a mechanism (a bonus scheme for all managers
and an allocation rule to allocate realized capacity to the product managers)
that elicits truthful reporting by all managers. He also showed that large classes
of allocation rules, including the current allocation practice of the firm, are
manipulable. Helal and Jones (2004) proposed hybrid simulation environment to
provide the practical framework to achieve the needed integration. They also studied
the impact of the top decisions in developing a production schedule as well as in
rescheduling the production facility as needed.

Although many researchers have worked on the topics related to semiconductor
supply chain, most of the studies still focus on discussion of internal dispatching
rules, resource allocation, and real-time production scheduling in a centralized or
distributed supply chain with a single objective (for minimizing cost or maximizing
throughput or profit). However, many important issues in the semiconductor supply
chain, such as different service priorities, adaptability to process varieties and
engineering changes, controllability and scalability of performance metrics, have not
been addressed in the literature. Conventional modelling techniques of supply chain
operations are no longer effective for supply chain configuration, performance
diagnoses and improvement. Thus, the objective of this research is to focus on the
strategic decisions related to allocate orders to different routes at different service
priorities and control points given the fixed product mix and capacity mix by
considering different performance measures simultaneously.

In order to catch the relationship between the supply chain configuration and
performance matrices, an empirical supply chain model is developed first to describe
how the supply chain configuration affects the chosen performance metrics and their
variability. With such models, an optimal supply chain configuration can be
formulated for different types of products, priorities, routes, and control points. With
this configuration, a possible monitoring mechanism can be developed in the future to
quickly find out the adjustment solution once any configuration change is detected.
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This paper is organized as follows: initially, the research motivation and objectives are
provided; next, an empirical supply chain model using both simulation and response
surface method is constructed; after the empirical supply chain model is developed, an
optimal supply chain configuration goal programming model intending to determine
the best allocation mechanism in the supply chain is constructed, and a heuristic of
solving a polynomial nonlinear goal programming is provided based on the
characteristics of the goal programming model; an example consistent with the
practices in Taiwan semiconductor industry is also provided to illustrate our
approach and validate our model; finally, brief conclusions and future related
researches are presented.

2. An empirical model for semiconductor supply chain

There are several performance metrics which can be identified for the needs of
semiconductor supply chain. These includes cycle time, level of WIP, product
throughput, delivery performance, capacity utilization, yield rates, and so on.
However, from the entire supply chain point of view, the most valuable performance
metrics are cycle time, WIP, product throughput and delivery performance because
other measures such as capacity utilization and yield rates are more likely internal
performance driven. Therefore, we choose the mean and variability (standard
deviation) of cycle time, WIP, and demand fulfillment rate as the metrics to evaluate
the supply chain performance in semiconductor manufacturing.

Because lots of factors in semiconductor manufacturing may affect the supply
chain performance metrics, it is thus necessary to consider these factors before the
supply chain model is built up. These factors include: demand and product mix,
number of tiers in the supply chain, number of facilities in each tier, production
capability of each facility, cycle time of each product at each facility, production
capacity of each facility, dispatching rules setting for each control point, and the
length of planning horizon. For instance, choosing different routes and control
points or setting different priority for customer demands will have great impact on
the performance metrics such as cycle time and on-time delivery. Therefore, in this
study, we intend to explode the impacts of allocation variables on the performance
metrics in semiconductor supply chain. These allocation decision variables
investigated in this study are defined as follows: �kq the percentage of product k
assigned to priority group (q); �kr the percentage of product k assigned to supply
chain route (r), and �ri the percentage of route r assigned to supply chain control
point (i). Since these variables are measured in percentages, it can be easily
implemented as customer demands fluctuate over the planning horizon. The
relationship among these allocation decision variables is shown in figure 3. Besides,
we assume that the priority mix is independent of the supply chain route mix without
loss of generality.

In order to describe the interrelationships between chosen performance metrics
and these supply chain allocation decision variables in semiconductor manufactur-
ing, an empirical supply chain simulation model is developed initially. In this
simulation model, major input parameters includes the presetting value of allocation
variables (priority mix percentage, route mix percentage, control point mix
percentage), demand arrival time interval and quantity, total demand, product mix
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and dummy time, simulation horizon and replications, number of facilities in each
tier, production capability of each facility, cycle time of each product at
each priority, production capacity of each tier and facility, dispatching rules of
each control point and releasing policy in Fabrication tier facilities. The supply chain
constraints are priority mix constraints, route mixed constraints, control points’
constraints and capacity constraints. (These constraints will be discussed further in
the next section). Finally, the performance metrics could be the means and standard
deviations of cycle time, WIP, and demand fulfillment rate. The supply chain
simulation model can be illustrated in figure 4. Before simulations are run, some
basic setting, demand setting, capacity setting, due date setting and cycle time

Figure 3. Supply chain allocation decision variables.
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estimation are predetermined based on empirical data collected from the
semiconductor industry in Taiwan. Next, the D-optimal approach of experimental
design is adopted (Atkinson and Donev 1992), and the corresponding performance
metrics for each run were collected and recorded. After that, a response surface
function of each customer priority group is generated from the results of these runs
to indicate the interrelationships between each performance metric and these supply
chain allocation decision variables. Of course, once the product mix changes
significantly, the corresponding response surface functions need to be regenerated to
accommodate the changes.

3. An optimal configuration model

Once the response surface functions of each set of performance metrics and supply
chain allocation variables for different customer priority groups are found, an
optimal configuration model in a semiconductor manufacturing is ready to be
constructed. Before the model is presented, related indices and variables are defined:

Indices

i threads (service control points), i¼ 1, . . . , I
j performance metrics, j¼ 1, . . . , J
k type of products, k¼ 1, . . . ,K
q service priority, q¼ 1, . . . ,Q
r service routes, r¼ 1, . . . ,R
t tiers of supply chain, t¼ 1, . . . ,T
� factory in each tier, �¼ 1, . . . ,C

Parameters

Et utilization rate of tier t in semiconductor supply chain,
C t capacity ratio at factory  of tier t in semiconductor supply

chain,
pk the percentage of product k in product mix,

PT t average production cycle time of single product at factory  of
tier t in semiconductor supply chain,

PTk t average production cycle time of product k at factory  of tier t
in semiconductor supply chain,

�q the maximum percentage of products produced at the
priority q,

�r the maximum percentage of products produced at production
route r,

yjk the performance metric j of product k at the priority q,
E(yjkq) the mean of the performance metric j of product k at the

priority q which is determined by the response surface method.
That is, E(yjkq) is the function of �kq, �kr, and �ri,

SD(yjkq) the standard deviation of the performance metric j of product k
at the qth priority which is determined by the response surface
method. That is, SD(yjkq) is the function of �kq, �kr, and �ri,
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WE(yjkq)/WSD(yjkq) the weights of the jth performance metric (mean or standard
deviation) of product k at the priority q.

Decision variables

�kq the percentage of product k assigned to be produced at the priority q,
�kr the percentage of product k assigned to be produced at the route r,
�ri the percentage of route r assigned to be controlled by different control point i.

Since this model must consider several performance metrics simultaneously, the
weights of performance metrics for different products at different priorities must be
determined before a goal programming model is employed. In general, the weights of
performance matrices can be determined by using multi-criteria decision approaches
such as AHP (Analytical Hierarchical Process) (Saaty 1988) or simply given by
subjective weights which are made jointly by the supply chain planners who are
responsible for allocating customers’ order in supply chain. In order to reflect
different levels of importance of the customer demands, the weights for different
service priorities should be different, too. The generalized mathematical formulation
of goal programming model is listed as follows:

Minimize

Z ¼
X

q

X

j, k

ðWEðyjkqÞ � EðyjkqÞ þ ðWSDðyjkqÞ � SDðyjkqÞÞ ð1Þ

where

EðyjkqÞ ¼ fjkqð�kq, �kr, �riÞ ð2Þ

SDðyjkqÞ ¼ gjkqð�kq, �kr, �riÞ ð3Þ

Subject to
X

k

pk ¼ 1 ð4Þ

X

k

pk � �kq � �q 8q ð5Þ

X

q

�kq ¼ 1 8k ð6Þ

X

k

pk � �rk � �r 8r ð7Þ

X

r

�rk ¼ 1 8k ð8Þ

X

i

�ri ¼ 1 8r ð9Þ

Et

X

r:�2r

X

k

ðpk�rkÞ
PTk�t

PT�t
� C�t 8�, t ð10Þ
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The objective function in (1) is to minimize the weighted mean value and the
variation of the performance metrics. (Note: if the mean (e.g. for throughput) is to be
maximized while minimizing its standard deviation, the sign in front of mean should
be changed to be negative.) The mean value and standard deviation of performance
metrics are expressed as the function of decision variables �kq, �kr, �ri in (2) and (3).

The meanings of seven sets of constraints from (4) to (10) are explained as
follows:

1. Constraint sets in (4) are product mix constraints; i.e. the sum of proportion
of all the products must add up to 1. These proportions are inputted from the
practices.

2. Constraint sets in (5) are the priority mix constraints; i.e. the total proportion
of demands to be produced at the priority level q must not exceed a
predetermined upper limit based on the pre-setting policy in practice.

3. Constraint sets in (6) are also related to the priority mix; i.e. the proportion of
a product assigned to be produced at different priority levels should be added
up to 1.

4. Constraint sets in (7) are route mix constraints; i.e. the total proportion
of demands to be produced at the specific route must not exceed a
predetermined upper limit based on the pre-setting policy in practice.

5. Constraint sets in (8) also related to the route mix; i.e. the proportion of a
product assigned to be produced at different routes should be added up to 1.

6. Constraint sets in (9) are the constraints related to control points; i.e. the
proportion of a product assigned to be controlled by different control points
should be added up to 1.

7. Constraint sets in (10) are the capacity constraints of facility  in supply chain
tier t. The constraint sets are derived from the following inequalities:

X

r:�2r

X

k

ðpk�rkÞDtPTk�t �
C�tPT�tDt

Et
8�, t ð11Þ

where Dt is the average total demand during a planning horizon. Since the model
considers that all the customer demands must be manufactured through all the tiers
of semiconductor supply chain, Dt must be the same for all the tiers. Thus, the
meaning of (11) is that the total production time at factory � of tier t needed under
the optimal configuration must be less than total available capacity at factory � of
tier t by considering the current utilization rate at tier t. Because both sides of the
inequality have Dt, Dt can be canceled out. Finally, we multiply both sides of
the inequality by Et to obtain the inequality of (10).

Once the model is formulated, it can be solved by applying different
methodologies. We will recommend a solution methodology in the next section.
The solution of our optimal configuration model can be straightforwardly adapted
to the real decisions. When a new order of product k arrives, a service priority of that
order may be pre-assigned by the supply chain planner initially. But the status of the
new order needs to be further confirmed due to the current availability at that
priority, i.e. the new order may keep the same original priority or lower its priority
level depending on the availability at that priority by comparing the optimal
percentage of product k assigned at that priority with current percentage of product
k already assigned at that priority. Once the priority level of that order is assigned,
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current percentage of different routes and control points combinations at that
particular service priority level based on the existing scheduled orders will be
reexamined, and the combination with maximum difference between the optimal
percentage and the current percentage will be assigned to that order. Of course, the
current percentage needs to be updated if an order is completed and removed from
the production list.

4. The solution methodology

The solution methodology becomes very difficult to develop when a large variety of
products and routes are involved in semiconductor supply chain and the response
surface function has a nonlinear property. In order to reduce the complexity of
solution methodology, we develop an approximation method to solve a polynomial
goal programming model. This method is named as semi-definite quadratic
approximation method (SQAM) (Arjan et al. 1996, Auslender and Coutat 1996).
The details of our algorithm are shown in figure 5, and explained as follows:

Step 1: Build up the model: an optimal configuration model is built up based on
response surface functions at each priority group and constraint sets defined in
section 3.

Step 2: Test semi-definite quadratic property: if the objective function has a
quadratic form, the semi-definite quadratic property needs to be tested on that
objective function by examining whether the quadratic form is semi-definite, i.e. all
the eigenvalues of quadratic matrix must be no less than 0. If the objective function is
a semi-definite quadratic function, then go to step 8. Otherwise, go to step 3.

Step 3: Approximate objective function toward a semi-definite quadratic function:
the objective function will be approximated toward semi-definite quadratic function
by applying the least square method to all range of decision variables.

Step 4: Check the errors within the tolerance limits. The errors of the least square
method in step 3 are computed and compared to the allowable tolerance limits
predetermined by decision maker. If the errors are within the allowable tolerance
limits, then go to step 8.

Step 5: Determine the number of hyper-planes to cut through the feasible region:
appropriate cut points or hyper-planes are searched for cutting through the feasible
range of decision variables to form several disjoint regions. In this paper, we first set
the second-order partial derivatives of objective function with respect to each
decision variable to be zero to determine the inflation function of each decision
variable. Since the inflation function of one decision variable is the function of other
decision variables, the inflation points of one decision variable will be changed if the
hyper-plane jointly determined by other inflation functions changes. In order to
determine the hyper-planes to cut through the feasible region, we use the results from
step 3 by choosing the global optimal obtained at step 3 to be a reference point.
To determine the cut-through hyper-plane of the ith decision variable, we input all
the values of decision variables at the reference point except the value of the ith
decision variable into the inflation function of the ith decision variable to determine
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the reflection points of the ith decision variable. These reflection points of the ith
decision variable will cut the entire solution space into several disjoint solution space.
By performing the procedure repeatedly for each decision variable, we may cut the
entire solution space into huge numbers of disjoint solution spaces. To avoid huge
computational efforts, we only consider the reflection points of important decision
variables to cut through the solution space to tradeoff the computation time with
solution quality. The rules of choosing important decision variables are stated as
follows: the first priority of choosing one decision variable is to choose the one that
has more reflection points. If there are two variables that have the same number of
reflection points, we choose the one which has the minimum sum of distance between
reflection points and the centre of its feasible region. In this paper, we set the
maximum number of important decision variables to be a finite number, U.
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Figure 5. Semi-definite quadratic approximation method (SQAM).
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Step 6: Approximate the objective function toward semi-definite quadratic
function of decision variables in each disjoint region. For each disjoint region,
the objective function is approximated toward semi-definite quadratic function by
applying the least square method to each disjoint feasible region.

Step 7: Check stopping conditions: if the approximation is good enough to meet
the terminated conditions, then go to step 8. Otherwise, go to step 9. These
terminated conditions include: the errors are within a predefined tolerance range,
the maximal number of regions is obtained, and no other hyper-plans can be found
to cut through the regions.

Step 8: Solve a quadratic semi-definite model in each disjoint region by adding
the constraints (4) to (10) in the goal programming formulation, and find out the
optimal solution by applying Wolfe-dual method (Wolfe 1959, Rusin 1971) and stop.
Since only limited cuts are generated which is constrained by U, the algorithm will
terminate in a finite number of iterations.

Step 9: Search for other hyper-planes to cut through each feasible disjoint region:
if the approximation fails to meet the terminated condition, other appropriate cut
points or hyper-planes need to be searched for cutting through the feasible range of
decision variables to form more sub-regions.

5. An example

In order to demonstrate our methodology, an example based on industrial practices
in Taiwan semiconductor industry is illustrated. By collecting the data from research
papers and personal interviews from the semiconductor industry, we are able to build
up a simulation model. The production environmental setting in our simulation is
described as follows:

1. There are four tiers in our simulation model including FAB, Circuit Probe
(CP), Assembly and Final test. Also, six FAB plants exist in the first tier,
two Circuit Probe plants exist in the second tier two assembly plants exist
in the third tier, and two final test facilities are available in the fourth tier.
The capacity in each facility of tiers 1, 3, and 4 is listed in table 1. The capacity

Table 1. The capacity at each facility of each tier.

FAB Capacity Assem. Capacity FT Capacity

FAB1 1468K Assem1 3265 FT1 3200
FAB2 1376K Assem2 3200 FT2 3265
FAB3 922K Total 6465 Total 6465
FAB4 1133K � Capacity in 200m wafers per year

� Fab 1: TSMC 5, 6, or 8
� Fab 2: UMC 8C, 8D, 8E, or 8F
� Fab 3: TSMC 2
� Fab 4: TSMC 3, 4, or 7
� Fab 5: UMC 6A, or 8AB
� Fab 6: WaferTech, VIS or SSMC

FAB5 1202K
FAB6 689K
Total 6465K
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in the second tier, CP, is assumed to be infinite since it is not a bottleneck
stage in the practice of Taiwan semiconductor industry.

2. Three major product groups are produced in supply chain network: product
A has the simplest production process, product B has more complex
production process, and product C can only be produced at some facilities
with certain technology capability. There are capacity contentions between
three different products at the factory level. The ratio of these three types of
products produced in our supply chain network is close to 2:1.7:1. Besides,
there are three priorities for each product: regular, hot lot and super hot lot.
Based on different priorities from the practice of Taiwan semiconductor
industry, the customers’ required delivery duration are very different; for
example, the required delivery duration for super hot lot is set to be 1.3 times
the raw process time of each product; the required delivery duration for hot
lot is set to be 2.1 times the raw process time of each product; and the required
delivery duration for regular lot is set to be 3 times the raw process time of
each product in our simulation model. The details of possible routes for each
product and the definitions of each route are shown in figure 6 and table 2,
respectively.

3. Since, in most of the cases, the control point is located at FAB tier in
Taiwan’s semiconductor supply chain, thus, we do not include the control
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6

1

2

1

2

1

2

1

2

1

2

1

2

Fab tier CP tier ASS. tier FT tierRoute 1

Route 2
Route 3

Route 4

Route 5

Route 6

Route 7

Route 8

Route 9

1

2

3

4

5

6

Figure 6. Semiconductor supply chain routes.

Table 2. Product mix versus route mix.

Product Route no.

A 145 789
B 2467
C 34
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point level related decision variables and parameters in our example. Also, the
dispatching rule used at each of the facilities in the example is FCFS (First
come first serve).

4. The results of the current studies shows that the product cycle time is related
to the product types, equipments used in different facilities, service priorities
and capacity utilization at each facility. In order to simulate the effect of cycle
time of single product in a complex network while other products sharing the
same facility, we first estimate the average product cycle time of each product
at each facility with different service priorities under different capacity
utilization rates by assuming that each product has an assigned percentage of
the capacity. Once the average product cycle times are estimated, we are able
to obtain the real product cycle times by taking these values into our
simulation model to simulate the joint effect of different products sharing the
same facility. For a single product, the production cycle time is assumed to be
infinite if capacity utilization rate at one facility approaches 100% and the
production cycle time is raw processing time if capacity utilization rate is 0%.
By following these assumptions, the product cycle time for each product
at each plant in different priorities can be estimated based on different
utilization rates for each product at each plant in different priorities. Many
researchers have done lots of studies on how to estimate the product cycle
time in the Fab by applying queueing model. In this example, an M/M/1
model for each facility in semiconductor supply chain is assumed based on
some researchers’ studies on Fab product cycle time (Raddon and Grigsby
1997, Wood 1997, Chung and Huang 2002). The general function of cycle
time with capacity utilization rate based on M/M/1 model can be
approximated as a � e(b/(2�x)), where a and b are constants, and x is capacity
utilization rate. Our simulation model is based on 80% capacity utilization
rate which is average utilization rate at the Taiwan semiconductor industry in
the past several years, and the parameters a and b are estimated from the data
collected from the personal interview at the industry by using a model fitting
package, Best-fit. The expected cycle times and raw process time for each
product at each plant of different priorities in FAB, Assembly, and Final test
are listed in tables 3, 4, and 5, respectively. The expected cycle time in CP is
assumed to be equal to raw process time since we assume that there is infinite
capacity in each facility at the stage of CP.

In this simulation example, we choose X-factor and standard deviation of cycle
time as our performance metrics. And the factors of experimental design are the
decision variables �kq and �kr. We design five levels for each factor, but total levels in
this experimental design have only 15 levels because the sum of decision variables �kq
and �kr must add up to 1. These level settings are shown in table 6. Next, a
D-Optimal method is adopted such that 180 simulation runs are generated. Finally,
each run is performed 20 replicates, and the duration of each replicate lasts for
90 days.

By performing the response surface method, we are able to obtain the response
surface functions at different priority levels. For instance, the resulting response
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surface functions at priority 1 group are shown below.

X-factor1 ¼ 3:04028�0:76932��18�5:32407��11��18�1:70306��22

þ2:55627��11��22�3:21206��24þ2:0617��11��24

þ3:35593��22��24þ6:45807��224�6:01907��26

þ2:64128��11��26þ2:43013��18��26þ3:95107��22��26

þ3:59718��24��26þ6:27775��226�2:08025��24��33

þ0:95507��233�0:89682��22��12�2:73278��22��21

�2:94563��24��21þ4:33951��11��31þ2:20954��22��31

þ2:26427��26��31�3:90953��33��31þ3:88601��11��32

�0:69994��33��32�3:96577��11��11�1:57582��22��14

�1:4345��15�6:01892��11��15þ4:19858��26��15

þ6:76398��21��15

CT-STD1 ¼ 10:76424�30:39664��18þ20:91593��17��18þ44:38031��218
�7:04376��22þ3:75327��11��22�19:49143��17��22

�14:41669��24�19:90259��17��24þ17:13541��22��24

þ19:52764��224�16:44176��26�20:93092��17��26

þ15:80926��22��26þ16:97536��24��26þ23:21307��226
þ5:01638��22��22�6:09423��31þ9:03262��22��31

þ9:70458��24��31þ7:29345��12��31�16:26179��11

þ18:03107��17��11þ27:58228��18��11�5:73555��12��11

þ28:52365��17��14þ29:47225��18��14�5:43344��22��14

þ23:20821��11��14�55:31215��214�17:66627��15

þ17:71866��17��15þ22:28432��18��15þ11:24435��26��15

�5:38951��22��15þ32:58414��11��15þ25:65426��14��15

Before the polynomial goal programming model can be formulated, the response

surface functions of X-factor and standard deviation of cycle time at each priority

are validated by R2 value shown in table 7. Since all the R2 of response surface

function are greater than 0.75, we believe that our simulation model can really catch

up the characteristics of the data.
After that, the objective function of a polynomial goal programming model is

formed by adding up the product of response surface function for each performance

measure at each priority and the pre-assigned weight corresponding to each priority

group. In this paper, we assume that subjective weights for priorities 1, 2, and 3 are 15,

5, and 1, respectively. Once the model is formulated, our proposed semi-definite

quadratic approximation method is used to solve the problem. The results of

polynomial goal programming are obtained. The optimal results for priority mix

allocation and for route mix of product 1, 2, and 3 are shown in tables 8, 9, 10, and 11.
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Thus, Product 1 should be produced 5% at the first priority (super hot lot), 25%
at the second priority (hot lot), and 70% at the third priority (normal); Product 2
should be produced 5% at the first priority (super hot lot), 10% at the second
priority (hot lot), and 85% at the third priority (normal); Product 3 should be
produced 15% at the first priority (super hot lot), 10% at the second priority (hot
lot), and 75% at the third priority (normal) Also, although there are six alternative
routes available to produce product 1, all six routes 1, 4, 5, 7, 8, and 9 are chosen to
use and the proportion of production at these routes are 10, 10, 20, 16.46, 20 and

Table 3. Estimated cycle time with raw process time (RPT) for products, plants and
priorities in FAB.

Product Product 1 Product 2 Product 3

FAB Priority CTExpect RPT CTExpect RPT CTExpect RPT

FAB1 Priority 1 65145.79 43545.6 72207.19 55065.6 81200.68 65491.2
(Min) Priority 2 74119.98 43545.6 86415.72 55065.6 97630.54 65491.2

Priority 3 88554.68 43545.6 101967.7 55065.6 108735.7 65491.2

FAB2 Priority 1 67332.99 46569.6 75223.14 55209.6 84255.93 66974.4
Priority 2 77308.54 46569.6 85297.14 55209.6 99159.08 66974.4
Priority 3 92718.25 46569.6 101261.4 55209.6 111180.8 66974.4

FAB3 Priority 1 69076.43 45576 77143.15 57096 Not Not
Priority 2 75997.7 45576 88053.38 57096 Not Not
Priority 3 91623.63 45576 103922.3 57096 Not Not

FAB4 Priority 1 64217.57 40000.4 77806.07 55886.4 Not Not
Priority 2 72970.5 40000.4 86780.05 55886.4 Not Not
Priority 3 86251.17 40000.4 104554.1 55886.4 Not Not

FAB5 Priority 1 68337.91 45748.8 Not Not Not Not
Priority 2 76444.73 45748.8 Not Not Not Not
Priority 3 90985.53 45748.8 Not Not Not Not

FAB6 Priority 1 71811.93 43027.2 Not Not Not Not
Priority 2 73571.61 43027.2 Not Not Not Not
Priority 3 89618.61 43027.2 Not Not Not not

Table 4. Estimated cycle time with raw process time for products, plants and priorities in
assembly.

Product Product 1 Product 2 Product 3

Fab Priority CTExpect RPT CTExpect RPT CTExpect RPT

Asse 1 Priority 1 11529.42 8523.07 12016.27 9001.94 12423.72 9403.24
(Min) Priority 2 13382.98 8523.07 13971.16 9001.94 14387.28 9403.24

Priority 3 15578.61 8523.07 15697.45 9001.94 17025.96 9403.24

Asse 2 Priority 1 11567.02 8560.02 12162.65 9146.06 12569.84 9547.2
Priority 2 12979.55 8560.02 13584.52 9146.06 13997.58 9547.2
Priority 3 15200.21 8560.02 15823.9 9146.06 16248.83 9547.2
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Table 5. Estimated cycle time with raw process time for products, plants and priorities
in final test.

Product Product 1 Product 2 Product 3

Fab Priority CTExpect RPT CTExpect RPT CTExpect RPT

FT1 Priority 1 18126.78 15051.3 19459.48 16376.1 19583.39 16499.34
(Min) Priority 2 20075.95 15051.3 21420.23 16376.1 21545.15 16499.34

Priority 3 24223.82 15051.3 25604.66 16376.1 25732.75 16499.34

FT2 Priority 1 11593.87 11593.87 19450.56 16713.24 19286.78 16550.16
Priority 2 20197.47 15170.94 21761.9 16713.24 21596.65 16550.16
Priority 3 24036.97 15170.94 25639.42 16713.24 25470.4 16550.16

Table 6. The levels of experimental design in the example.

Lv.1 Lv.2 Lv.3 Lv.4 Lv.5

�kq
�11 0.05 0.075 0.1 0.125 0.15
�12 0.1 0.15 0.2 0.225 0.25
�13 – – – – –
�21 0.05 0.075 0.1 0.125 0.15
�22 0.1 0.15 0.2 0.225 0.25
�23 – – – – –
�31 0.05 0.075 0.1 0.125 0.15
�32 0.1 0.15 0.2 0.225 0.25
�33 – – – – –

���
�11 0.1 0.13 0.167 0.18 0.2
�14 0.1 0.13 0.167 0.18 0.2
�15 0.1 0.13 0.166 0.18 0.2
�17 0.1 0.13 0.167 0.18 0.2
�18 0.1 0.13 0.166 0.18 0.2
�19 – – – – –
�22 0.1 0.175 0.25 0.275 0.3
�24 0.1 0.175 0.25 0.275 0.3
�26 0.1 0.175 0.25 0.175 0.3
�27 – – – – –
�33 0.4 0.45 0.5 0.55 0.6
�34 – – – – –

Table 7. R2 of each response surface function.

R2 X-factor
Standard deviation

of cycle time

Priority 1 0.8641 0.9562
Priority 2 0.7534 0.7828
Priority 3 0.9206 0.9175
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23.54%, respectively. Product 2 should be manufactured 26.95% by route 2, 21.51%
by route 4, 17.87% by route 6 and 33.67% by route 7. Product 3 should be produced
49.78% by route 3 and 50.22% by route 4. Our optimal solution is compared with
the results from Lingo. The results show that our method has a lower objective
function value in this example.

In this example, it takes average 1.5min for each run (20 replicates) and 4.5 h
for total 180 runs to generate the response surface model, and takes 40min to solve
the model. The computational results are reported from running on a PC with
Intel Pentium M processor 1.5GHz and 768Ram.

Finally, in order to validate our results, we compare the pre-180 runs of
simulation results, goal programming results, and the simulation result by
implementing our best configuration. These results of validation of X-factor and
cycle-time variability are shown in tables 12 and 13, respectively. From the results,
it can be found that average X-factor of priority 1, 2, and 3 by applying our optimal
configuration model are 1.4033, 1.6198, and 2.0961, compared to the results that
average X-factor of priority 1, 2, and 3 from our original simulation model are
1.5897, 1.8307, and 2.1226. Also, a 95% confidence interval for the X-factor at each
different priority is constructed to show the statistical significance of our approach.
From the results of table 12, it shows that our goal programming results and

Table 8. An optimal priority mix allocation.

Product 1 Product 2 Product 3

Priority 1 0.05 0.05 0.15
Priority 2 0.25 0.1 0.1
Priority 3 0.7 0.85 0.75

Table 9. An optimal route mix allocation of product 1.

Route 1 Route 4 Route 5 Route 7 Route 8 Route 9

0.1 0.1 0.2 0.16463 0.2 0.23537

Table 10. An optimal route mix allocation of product 2.

Route 2 Route 4 Route 6 Route 7

0.269471 0.215127 0.178696 0.336706

Table 11. An optimal route mix allocation of product 3.

Route 3 Route 4

0.497767 0.502233
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simulation validation results for all three priorities are significantly better than

pre-optimization cases. Therefore, our approach has greatly improved the
performance of supply chain for all three priority groups. The same results are

found for validation of cycle-time variability in table 13. The above result is also
validated by the simulation result by implementing our best configuration.

6. Conclusions and remarks

In summary, in this research we first build up an empirical model to describe the

relationship between supply-chain configuration and metrics under the influence
of the variability sources. Next, an optimal supply chain configuration model is
formulated as a polynomial goal programming model to accommodate different goal

objectives. Finally, an effective solution methodology is developed further to find out
the most robust supply chain configuration. Our simulation results show that our

proposed model and methodology are really promising. In the future, more
intensive experimental tests are needed to justify the effectiveness and the efficiency

Table 13. Validation of cycle time variability.

Cycle time STD (month) Priority 1 Priority 2 Priority 3

180 Runs of simulation
experiments

Min 0.485356 0.815753 1.245471
Lower bound of confidence

interval (95%)
1.00998 1.37429 1.77755

Average 1.09511 1.43061 1.8152
Upper bound of confidence

interval (95%)
1.18024 1.48694 1.85285

Max 3.531987 2.48982 2.604576
Goal programming
results

0.1928 0.4684 1.6018

Simulation validation
of goal programming

0.2383 0.4429 1.7613

Table 12. Validation of X-factor.

X-factor Priority 1 Priority 2 Priority 3

180 Runs of
simulation experiments

Min 1.403319 1.47294 1.703227
Lower bound of
confidence interval (95%)

1.56803 1.81195 2.10761

Average 1.5897 1.8307 2.12257
Upper bound of
confidence interval (95%)

1.61137 1.84945 2.13754

Max 2.195282 2.193816 2.338799
Goal programming results 1.4034 1.6198 2.0961
Simulation validation
of goal programming

1.3873 1.6251 1.9941
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of our algorithm. Also, a possible monitoring mechanism can be further developed to
quickly find out the adjustment solution once an abnormal situation is detected.
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