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Statistical process control charts are important tools for detecting process shifts. To ensure accurate, responsive fault detection, control
chart design is critical. In the literature, control charts are typically designed by minimizing the control chart’s responding time, i.e.,
average run length (ARL), to an anticipated shift size under a tolerable false alarm rate. However, process shifts, originating from
various variation sources, often come with different sizes and result in different degrees of quality impacts. In this paper, we propose a
new performance measure for EWMA and CUSUM control chart design to take into consideration the variable shift sizes and corre-
sponding quality impacts. Unlike economic designs of control charts that suffer from a complex cost structure and intensive numerical
computation, the proposed design methodology does not involve any cost estimation and the design procedure is as simple as looking
up tables. Given the Gaussian random shifts and quadratic quality loss function, we show that the proposed design has a significant
reduction in the quality impact as compared to conventional ARL-based designs. Guidelines and useful worksheets for practical
implementation of the proposed designs are then suggested to practitioners with different knowledge levels of the process excursions.

Keywords: Control chart design, EWMA chart, CUSUM chart, random shift, quadratic quality loss

1. Introduction

Statistical Process Control (SPC) charts are extensively
used to detect process excursions and thus prevent the pro-
duction of defective products. Among the many forms of
process excursions, process mean shifts are the primary fo-
cus of most control chart design. In particular, the con-
trol chart most used in practice, the Shewhart X chart, is
used to monitor the process trend and to detect process
shifts. Despite their lower levels of industrial use, Exponen-
tially Weighted Moving Average (EWMA) and CUmulative
SUM (CUSUM) charts have been shown in the literature
to be more effective than the Shewhart chart. As comput-
ing power increases and becomes easily accessible, EWMA
and CUSUM charts are gaining their share of practical
uses, especially in hi-tech industries where the tolerance
level for process deviations is becoming extremely tight.
For example, because of the dramatic advances in semicon-
ductor fabrication technology over the past two decades,
the integrated circuit feature size has shrunk from 1um to
below 0.09 um. With over 300 process steps and rapidly
tightening process tolerances, the SPC chart is a critical
means to achieve high yields in semiconductor manufactur-
ing. EWMA and CUSUM charts are thus becoming much
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better received by practitioners because of their superior
ability to detect small process shifts. In the literature, re-
searchers (see, for example, Lucas (1982) and Klein (1996))
propose combining EWMA /CUSUM and Shewhart con-
trol schemes to detect both large and small shifts. Although
not the focus of this paper, such charts should be of increas-
ing interest to practitioners.

Both EWMA and CUSUM charts have to be carefully
designed for effective use. Each chart has two parameters
to be properly set for certain types of process shifts. The lit-
erature on EWMA and CUSUM chart design is extensive
(Robinson and Ho, 1978; Woodall, 1986; Crowder, 1987a,
1987b; Lucas and Saccucci, 1990; Srivastava and Wu, 1997;
Lucas and Crosier, 2000) and usually involves the evalua-
tion of the control chart performance based on the Average
Run Length (ARL). When a process is in an in-control
state, the ARL to give a false alarm is denoted as ARLy.
ARL;, on the other hand, is the ARL for a control chart to
signal an out-of-control process. AR L characterizes a con-
trol chart’s reliability whereas ARL| measures the control
chart’s sensitivity to process excursions. AR L-based control
chart design has three steps:

1. determine a tolerable false alarm rate, i.c., a predeter-
mined ARL, value;
2. select the most likely process-shift size; and
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3. select a control chart design with the greatest detection
power; i.e., select the plan with the smallest ARL; value.

Most researchers have focused their attention on how to
find the smallest ARL, given a fixed ARL, and an antici-
pated shift size.

ARL-based control chart designs are optimized for spe-
cific process shifts. Given a shift size, a control chart can
be designed to maximize its detection power. This shift-
specific design, however, has limited applicability as pro-
cesses are typically subject to various deviation sizes. Sparks
(2000) and Capizzi and Masarotto (2003) addressed the
varying-size problem by predicting the future shift size on
which the control chart design is dynamically adjusted.
For processes where successive shifts follow a clear es-
timable pattern, these design methodologies are useful. But
for most processes where shifts occur arbitrarily with ran-
dom sizes, should a different control chart design be pro-
posed? This is the first question we attempt to answer in
this paper by proposing a random-shift control chart design
methodology.

Since different shift sizes incur different quality losses,
the design methodology should also take into consideration
the impact of the shift on the quality. Economic designs of
control charts have considered various quality costs under a
predefined stochastic model of shift process (see Lorenzen
and Vance (1986), Ho and Case (1994) and Keats et al.
(1997)). Multiple shift sizes have also been considered in
Knappenberger and Grandge (1969) and Duncan (1971)
while quadratic quality losses are discussed in Elsayed and
Chen (1994). Knowing the complex economic model’s limi-
tation, Montgomery et al. (1995) propose a simplified ARL-
based model that does not consider the stochastic process
of shift occurrence. While the body of “economic design”
literature is huge, the design’s practicality and applicability
are always in question. The design method is controversial
because of its limited practical use. Another concern about
economic design is the tradeoff between quality costs and
sampling costs. Many practitioners find it difficult to justify
reducing the sampling cost at the cost of the quality, which
can be as large as the cost of regaining a lost customer.
Difficulties in estimating the dynamic costs and modeling
the stochastic out-of-control process are also cited as major
obstacles to implementation. While Keats et al. (1997) have
proposed steps to overcome the difficulties, actual imple-
mentation is still rare.

In this paper, we propose a more plausible model con-
sidering random shift sizes and ensuing quality impacts
without getting into the complexity of cost estimation,
stochastic process modeling and numerical computation.
The proposed design procedure is a simple extension of the
conventional ARL-based designs. The control chart per-
formances under random shifts are evaluated in terms of
resulting quality impacts and are compared to the con-
ventional ARL-based designs. This paper is organized into
seven sections. Following the Introduction in this section,
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we first describe EWMA and CUSUM chart designs and
the random-shift model. In the third section, the quality
impact model of a control chart under random shifts is
established. The EWMA and CUSUM charts are then de-
signed to minimize the quality impact in Section 4 followed
by evaluation of the proposed control chart designs against
conventional designs. In Section 6, we first provide practi-
tioners with worksheets and useful guidelines to implement
the proposed control chart design and then compare the
EWMA and CUSUM chart performances to assist users in
selecting the least-quality-impact chart design. In the final
section, implementation issues with the proposed control
chart designs are discussed.

2. EWMA and CUSUM charts and random shifts

Unlike the Shewhart X chart where only one design is pos-
sible given a fixed ARL value, both EWMA and CUSUM
charts can have different designs under the same false
alarm level. Here, we briefly introduce the two control chart
schemes and their design parameters. Let X; be the ith qual-
ity observation to be statistically monitored by a control
chart. The observations X;, i = 1, 2, 3,..., are said to be
independent and identically distributed (iid) and follow a
normal distribution with mean u, and standard deviation
o, thatis
XS Ny 0D i=1,2.3,....

The EWMA scheme uses the rolling exponentially

weighted averages (Z;) as the test statistic:

Zi=AXi+(1-MZi_1, Zo= i,
O<i<li=12 ... (1)

The control limits are set at 7 & Lo, where T is the de-
sired process target and o is the standard deviation of the
test statistic Z;. For an in-control process, the process mean
(), and thus the test statistic mean (i), is equal to the
target (7). When the control statistic Z; is observed to ex-
ceed any of the control limits, the process is said to be out of
statistical control; i.e., the process mean is believed to be no
longer in accord with the target 7. By adjusting the weight
decreasing rate A (Roberts, 1959) and the control window
width (L), the EWMA chart can be designed to best detect
a certain shift size under a constant false alarm rate.

To be more sensitive to smaller shifts, the two-sided tab-
ular CUSUM test statistics (Page, 1961) is designed so
that small deviations can mount up to a larger identifiable
deviation:

C = max[0,X; — (T + koy) + C ]
C7 = max[0, X; — (T + koy) + C2 ],
Cr=Cr=0,i=123... ()

where k controls the accumulation span. If either C;" or
C; exceeds ho, the process is considered to be out of
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control. CUSUM chart design is to specify the values of
the parameters & and / for the desirable memory properties
and false alarm rates of the control scheme.

In this research, the EWMA and CUSUM charts are de-
signed to have ARLy = 500, or equivalently a false alarm
rate of 0.002. This in-control ARL is chosen for study be-
cause it is close to, but somewhat larger than, that of a
standard ShewhartXchart (ARLy = 370). Due to better
EWMA/CUSUM control sensitivity, a larger ARL, value
is often set without giving away too much detecting power.
For example, the most often seen CUSUM design is k =
0.5and & = 5 with ARLy = 465.

When a process shift occurs, the process mean is deviated
from the target 7' by a random amount S,ie., u, =7 + S.
The random shift size is assumed to follow a probability
density function g(-) with mean u,; and standard deviation
os. Examples in this paper are given assuming a normally
distributed shift size and, without loss of generality, a tar-
get at zero, i.e., T = 0. The process shift, once taking place,
remains constant till the control chart alarm goes off. In
the next section, we will introduce the control chart perfor-
mance measures by considering the quality impacts by the
process deviation during the lag to detection.

3. Quality impact induced by control charts

Different sizes of process deviations will have different im-
pacts on the product quality. The impacts of process ex-
cursions on the product quality are referred to as quality
impacts. Usually, the larger the shift size, the greater the
quality impact. A quality loss function describes the rela-
tionship between the shift size and the quality impact. Let
QL(X;) denote the quality impact incurred by the ith quality
observation X;. The most celebrated quality loss function
is a quadratic function (Taguchi):

QL(X) = w(X; — T)?,

where w is the quality loss per unit squared deviation of
the quality measure from the target. When the shift size in
the process mean is s, the quality loss is denoted as QL;,
ie, QL; = QL(X; | ux = T + s5,0y). The quality impact of
one observation with a mean shift s is then expressed by the
expected quality loss:

EQL,) = / QLMY (x | s = T+ 5, 0dx, (3)

where f(-) is the probability density function (pdf) of quality
observations with mean u, and standard deviation o. Tak-
ing the quadratic loss function as an example, the expected
quality impact becomes:

EQL,) = Ew(x; + T)* | uy = T + 5, 0] = w(s* + 02).
4

To evaluate a control chart’s performance, instead of the
average out-of-control run length, ARL;, we can further
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calculate the quality loss incurred during the out-of-control
period. Let RL;|; denote the run length for the control chart
to detect the process shift given o, and the shift size s. The
quality loss during the out-of-control period is then:

RL
QL= Y QL(X; | pux =T +5.04),
i=1

where QL,|; is a random sum of random variables QL.
Based on Wald’s equation, RL, is the stopping time of the
random sum and E(QL;) can be thus calculated as (see
Appendix A):

EQL,)) = ERRL1)E[QL(X; | ux = T + 5, 04)]
= ARLy;, x E(QL,). (5)

When the shift size is known to follow a distribution with
pdf g(-), the final expected quality impact without condi-
tioning on the shift size can then be calculated by the law
of total expectation:

o0

EQL)) = f E(QLy,)g(s)ds

_ / " ARLLEQL)g()ds.  (6)

Calculation of E(QL;) involves the estimation of ARL.
Two methodologies can be found in the literature. One is
Monte Carlo simulation and the other is numerical approxi-
mation. Markov chain (Lucas and Saccucci, 1990) and inte-
gral equation (Lorenzen and Vance, 1986; Crowder, 1987a,
1987b) solutions are two popular approaches to numerical
approximation. In this research, the integral equation ap-
proach is adopted to estimate ARL, since the size of the
mean shift is also a continuous random variable.

Page (1954) first formulated the integral equation for
CUSUM ARL evaluation by first-step analysis. Later, Goel
and Wu (1971) and Lucas (1976) used the same integral
equation but solved it with different numerical approaches.
Given the distribution of the quality observations,
Lorenzen and Vance (1986) evaluated the upper-sided
ARL, ARL™, and lower-sided ARL, ARL™, using the fol-
lowing integral equations, respectively:

ARL*(u) =14+ ARLT(0)F(K — u)
hoy
+ ARLY(x)f(x + K —w)dx, (7a)
0

ARL (u) = 1+ ARL™(0)[1 — F(K' + u)]
ho
+ ARL™ (x)f (K’ 4+ u — x)dx, (7b)
0

where K = u, + koy, K' = u, — ko, u is the value of the
initial quality observation and is usually set to be the target
T, and F(-) is the cumulative distribution function of the
quality observation distribution, respectively. By Kemp’s
reciprocal rule (Kemp, 1961), the final CUSUM ARL is
obtained by (ARL)"! = (ARL")~! + (ARL")~L.
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Similarly, Crowder (1987a, 1987b) derived the following
integral equation to evaluate the EWMA ARL given the
distribution of quality observations:

Loy x—(1=MNu

1
ARL() = 1 + —
W=1+7 A

ARL(x)f( )dx. (8)

—Loy,

The above integral equations are Fredholm integral equa-
tions of the second kind which we solved by numerical
recipes provided by Press et al. (1992). With the ARL, es-
timated by assuming iid normal distributions of the quality
observations, E(QL;) in Equation (6) can be further carried
out numerically to evaluate the control chart performance.

4. Control chart design under random shifts

With E(QL,;) as the performance measure, control charts
can be now designed to minimize the quality impact while
an acceptable ARL is maintained. While Equation (6) can
be solved with a general f(-) and g(-), this paper evaluates
control chart designs under the following settings:

ARLg = 500;

XN 1] e =0+ S);

S ~ N(ps, 02); and

a quadratic quality loss function in which w is set to one
without loss of generality.

PN =

In addition, evaluation will be conducted for u, over (0,
40 ) with a step size of 0.50, and for o over (0, 40 ) with
a step size of 0.10,.

4.1. EWMA control chart design under random shifts

Figure 1 shows all possible EWMA chart designs, (A, L), for
ARL, to be at least 500. This figure was first presented by
Crowder (1989) and is recreated here for numerical valida-
tion and for optimum EWMA chart design under random
shifts.

For each (uy, o), we compute E(QS;) for all possible
EWMA designs with ARLy = 500 and select the optimum
EWMA design with the lowest E(QS;). Table 1 shows the
optimum A* values for various combinations of (ug, o).
For a specified (us, o), the optimum A * value can be first
found in Table 1. With A*, the corresponding L* value can
then be obtained from Fig. 1 and thus the optimum EWMA
design (A*, L*) is determined.

Example 1: Suppose the process shift is known to cen-
ter around 7 + 20, and deviate over a small range with a
standard deviation oy = 0.50,. To design a EWMA chart
with the smallest quality impact, we first look up Table
1 with uy, =2 and o, = 0.5 to find Ax = 0.31. From Fig.
1, a corresponding L* = 3.04 is found such that ARLy =
500. <

Chen and Chen

Fig. 1. EWMA chart design with ARL, = 500.

The first row of Table 1 consists of the conventional
EWMA optimal designs for fixed shift sizes (o; = 0). The
optimal values of A here can be compared and found to be
identical to those reported by Lucas and Saccucci (1990).
The first column of Table 1 manifests the designs suggested
by this research for uncertain shifts occurring about the
target (uy = 0 and oy # 0).

A" and L*for ug =0

Figure 2 shows the trend of the optimal EWMA chart
designs over various o. This figure can be very useful in
practice since most shifts are likely to occur on both sides
of the target. It is observed that both A* and L* increase as
the variability of the shift size increases. This is because the
greater the shift spread, the higher the occurrence chance of
large shifts. In particular, we look at the optimal EWMA
designs for oy = o, 20, and 30, (highlighted with bold-
face in Table 1). For o; = oy, most shifts are small and
their distribution is exactly the same as the in-control qual-
ity observations’ distribution; i.e., about 90% of the shifts
occur within the range from —1.60 to 1.60,. A* of the opti-
mal EWMA chart is 0.02 in this case. When o, = 20, 1.€.,
over 30% of shifts are greater than 2o, A * increases to 0.06.
Only when oy = 30,, i.e., over 30% of shift sizes are greater
than 3o, does A* increase to 0.12. Figure 3 illustrates the
shift distributions with o, = 20, and 3o, and is intended to
give readers a feel about how the uncertain shifts spread as
compared to the in-control quality distribution. It is inter-
esting to note that these optimal designs for variable shifts
are equivalent to the optimal conventional designs for fixed
shift sizes equal to 0.250,0.60,, and o, respectively. That
is, the values of the optimal design parameters for detect-
ing uncertain shifts are smaller than one would expect when
thinking in a deterministic sense.

For cases with uy; # 0, uy = 1 is used as an example to
show how the optimal design changes as the shift vari-
ance changes. Figure 4 shows the values of A* and L* for
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Table 1. Optimum A* for EWMA chart design with ARLy = 500 under random shifts

s

o 0 025 05 075 1 125 1.5 175

2 225 25 275 3 325 35 375 4

0 0.02 0.05 0.09 013 0.19 024 03

0.1 001 0.01 0.04 008 0.13 018 024 03

02 001 o0.01 003 007 012 017 023 029
03 0.01 0.01 0.02 005 0.1 0.16 0.22 0.28
04 001 0.01 002 004 007 013 02 0.27
0.5 001 0.02 0.02 003 006 0.1 0.17 0.24
0.6 002 0.02 002 003 005 008 014 0.21
0.7 002 0.02 002 003 004 0.07 011 0.17
0.8 0.02 0.02 0.02 003 004 0.06 0.0 0.14
09 002 0.02 003 003 004 006 008 0.12
1 0.02 0.03 0.03 0.03 004 005 0.08 0.11
1.1 003 0.03 003 003 004 0.05 007 0.1

1.2 003 0.03 003 004 004 0.05 007 0.09
1.3 0.03 0.03 0.04 004 0.05 0.06 0.07 0.09
14 004 0.04 004 004 0.05 0.06 007 0.09
1.5 0.04 0.04 004 005 005 0.06 007 0.09
1.6 0.04 0.04 004 005 0.05 0.06 007 0.09
1.7 005 0.05 005 005 0.06 0.06 007 0.09
1.8 005 0.05 005 005 006 0.07 008 0.09
1.9 0.05 0.05 006 006 0.06 0.07 0.08 0.09
2 0.06 006 006 0.06 0.07 0.07 008 0.1

21 006 006 006 007 007 0.08 0.09 0.1

22 0.06 0.07 0.07 007 0.08 0.08 0.09 0.11
23 0.07 0.07 0.07 008 0.08 0.09 0.1 0.11
24 007 008 008 008 0.09 0.09 0.11 0.12
25 0.08 0.08 0.08 009 0.09 0.1 0.11  0.13
26 0.09 0.09 0.09 009 0.1 0.11  0.12 0.13
27 0.09 0.09 0.1 0.1 0.11 0.12 0.12 0.13
28 0.1 0.1 0.1 0.11 0.11 0.12 0.13 0.14
29 011 o0.11 o0.11 0.12 0.12 0.13 0.13 0.15
3 012 0.12 0.12 0.12 0.13 0.13 0.14 0.15
31 0.12 0.12 0.12 0.13 0.13 0.14 0.15 0.15
32 013 0.13 0.13 0.13 0.14 0.14 0.15 0.16
33 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.16
34 014 0.14 0.14 0.15 0.15 0.15 0.16 0.16
35 015 0.15 0.15 015 0.15 0.16 0.16 0.17
36 0.15 0.15 0.15 0.16 0.16 0.16 0.17 0.17
37 016 0.16 0.16 0.16 0.16 0.17 0.17 0.17
38 0.16 0.16 0.16 0.16 0.17 0.17 0.17 0.18
39 0.16 0.17 0.17 017 0.17 0.17 0.17 0.18
4 0.17 0.17 0.17 0.17 0.17 0.17 0.18 0.18

037 043 052 0.6 068 0.74 0.8 0.84 0.89
036 043 052 0.6 0.67 0.74 038 0.84 0.88
036 043 051 059 067 073 079 0.84 0.88
035 042 051 059 066 072 078 0.83 0.87
034 041 049 058 065 071 077 082 0.85
031 04 048 056 063 0.69 075 0.8 0.84
028 037 046 054 061 068 073 0.78 0.82
025 034 043 051 059 065 07 0.75 0.79
021 0.3 0.4 048 056 062 0.68 072 0.77
0.18 026 036 045 052 059 065 0.7 0.74
0.16 023 032 041 048 055 061 0.66 0.71
0.14 0.2 029 037 045 052 057 063 0.67
0.13 0.18 026 033 041 047 054 059 0.63
0.12 0.17 023 031 037 044 05 0.55 0.6

0.11 0.16 021 028 035 04 046 051 0.56
0.11 015 02 026 032 037 043 047 0.52
0.11 0.15 0.19 025 03 035 04 0.44 0.49
0.11 0.14 0.19 023 028 033 037 041 046
0.11 0.14 0.18 022 026 0.3 0.35 038 0.43
0.12 0.14 0.18 021 025 029 033 036 04

0.12 0.15 0.18 021 024 027 031 034 0.37
0.12 0.15 0.17 021 023 026 03 033 035
0.13 0.15 0.17 02 023 025 028 031 0.34
0.13 0.15 0.17 0.2 022 025 027 03 0.32
0.14 0.16 0.17 0.2 022 024 026 029 0.31
0.14 0.16 0.17 0.19 021 023 025 027 03

0.15 0.16 0.18 0.19 021 023 025 027 0.29
0.15 0.16 0.18 0.19 021 023 024 026 0.28
0.15 0.17 0.18 0.19 021 022 024 025 0.27
0.16 0.17 0.18 0.19 021 022 023 025 0.26
0.16 0.17 0.18 0.19 021 022 023 024 0.26
0.16 0.17 0.18 0.19 021 021 023 024 025
0.17 0.17 0.18 0.19 0.2 021 023 024 025
0.17 0.18 0.19 0.19 0.2 021 022 023 025
0.17 0.18 0.19 0.19 02 021 022 023 0.24
0.17 0.18 0.19 0.2 0.2 021 022 023 0.24
0.18 0.18 0.19 0.2 0.2 021 022 023 0.24
0.18 0.18 0.19 0.2 0.2 021 022 023 0.23
0.18 0.19 0.19 0.2 0.2 021 022 0.22 0.23
0.18 0.19 0.19 0.2 021 021 022 022 023
0.19 0.19 0.19 0.2 021 021 022 022 023

us = 1 and various o,. When o = 0, i.e., the shift size is
known definitely to be one o,, the EWMA chart design is
equivalent to the conventional design with A* = 0.13 and
L* = 2.88. When the shift size becomes uncertain, both A*
and L* first decrease since a half of the uncertain shifts oc-
cur around the target as shown in the shaded area of Fig. 5
with o, = o,. However, when the uncertainty continues to
increase, the optimal values of A* and L* pick up again due
to the widespread shifts over both sides of the target. It is in-
teresting to note that the values of A* and L* are not greater
than those in the conventional design until o, reaches 3 o,.

Again, the optimal values of EWMA chart parameters are
smaller than those suggested in conventional designs.

4.2. CUSUM chart design under random shifts

Similar to Fig. 1 for EWMA charts; Fig. 6 shows all possible
CUSUM chart designs, (k, &), for ARLj equal to 500. With
this figure, if an optimal value of k* is found for a random
shift, the optimal value of /#* can be found accordingly.
Again, for each (u;, oy) we compute E (QS;) for all
possible CUSUM designs with 4RLy = 500 and select the
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Fig. 2. Optimal EWMA chart design: A* and L* for u, = 0.
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Fig. 5. Half of uncertain shifts occurring around target.

optimum CUSUM design with the lowest E(QS;). Table
2 shows the optimum A* values for various combinations
of (us, o). For a specified (u,, o;), the optimum k* value
can be first found in Table 2. With the value of k* known,
the corresponding /#* value can then be obtained from
Fig. 6 and thus the optimum CUSUM design (k*, #*) is
determined.

Example 1 (continued): With u, =T + 20, and oy =
0.50,, the least-quality-impact CUSUM design can be
found by first looking up Table 2 for the optimum value
of k* = 0.89. From Fig. 6, the corresponding value of /* is
then found to be three. <

Similar to Table 1, the first row of Table 2 consists of the
conventional CUSUM optimal designs for fixed shift sizes
(o5 = 0). The optimal values here are comparable to the
values given by Lucas (1976). The first column of Table 2
shows the designs exclusively suggested by this research for
uncertain shifts occurring around the target (u, = 0 and
o5 # 0). Figure 7 shows the trend of the optimal CUSUM

3

e

T

25 1

\\~

T —

0 |
01234561728 91011121314151617 181920
h

Fig. 6. CUSUM chart design with ARLy = 500.
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parameters over various o. It can be observed that as the
shift uncertainty increases, k* increases and /4* decreases.
We also look at the optimal designs for oy = o, 20, and
30, (highlighted with boldface in Table 2). These optimal
designs are the same as the optimal designs for fixed shift
sizes equal to 0.37 o, 0.560, and 0.90,, respectively. Again,
the values of the optimal design parameters for variable
shifts are smaller than one would expect when thinking in a
deterministic sense. The optimal CUSUM parameters for
os = 20y and 3 o, are also shown in Fig. 3.

For u, = 1, the optimal CUSUM design parameters are
shown in Fig. 8. Similarly, when oy = 0, the CUSUM chart
design is equivalent to the conventional design where k* =
0.51 and #* = 5. When the shift size becomes uncertain,
k* first decreases for the same reasons as shown in Fig. 5.
The value of £* continues to decrease until the uncertainty
widely spreads over both sides of the target. Accordingly,
the value of A* first increases and then decreases as the
uncertainly continues to widen. The values of k* and A*
do not reach the levels of those in the conventional design
until o reaches 3.20 .. As in the EWMA cases, the optimal
values of CUSUM chart parameters are generally lower
than suggested in the literature.

5. Quality impact reduced by designs considering
random shifts

When the shifts are indeed random in size, we can evaluate
the quality impact reduction by the proposed design over
the conventional designs. The loss saving is calculated as
follows:

E'(QL)) — E*(QL))
E'(QLy)

where E'(QL)) is the quality impact induced by conven-
tional optimal chart designs assuming oy, = 0 and E*(QL;)
is the quality impact caused by the chart designs optimized
for a known o,. In Fig. 9(a) and Fig. 9(b), we calculate
and show the loss savings by the proposed EWMA and
CUSUM designs over the conventional designs, respec-
tively, for u, = 1 and various o.

For EWMA control charts, the saving can be up to 11.3%
and the maximum saving occurs at oy = 0.9. The saving for
CUSUM charts can be up to 13% for o, = 0.8. For both
control charts, the saving becomes quite insignificant (<1%)
when o is larger than 2.60 .. That is, the proposed designs
are not particularly preferred for shifts centering around
wus = 1 and uncertainly spreading over a very wide range.

Loss saving (%) = x 100%, (9)

6. Chart implementation and best designs
for random shifts

Without prior knowledge on how the shift varies, imple-
menting the proposed chart designs would be difficult. It is
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Table 2. Optimum k* for CUSUM chart design with ARLy = 500 under random shifts
s
o 0 025 05 075 1 125 15 175 2 225 25 275 3 325 35 375 4
0 0.12 025 037 051 061 076 08 097 1.18 1.31 1.31 147 1.66 1.66 187 2.1
0.1 006 011 022 037 048 061 0.76 089 097 118 131 131 147 166 166 187 2.1
02 0.08 0.1 0.18 032 045 0.61 0.7 089 097 106 1.18 1.31 147 166 166 187 1.87
0.3 0.09 0.11 0.15 025 041 054 0.7 082 097 106 1.18 131 147 166 1.66 1.87 1.87
04 0.1 0.12 0.15 022 033 048 066 082 097 106 1.18 131 147 147 166 187 1.87
05 0.12 0.12 0.15 0.2 0.28 041 0358 0.7 089 1.06 1.18 131 147 147 166 166 1.87
0.6 012 013 015 018 025 037 051 066 0.8 097 118 131 131 147 166 166 187
0.7 0.13 0.14 0.15 0.18 024 032 043 058 076 0.89 1.06 1.18 131 147 147 166 1.66
0.8 0.15 0.15 0.16 0.18 023 0.3 0.41 051 066 082 097 1.18 131 131 147 166 1.66
09 0.15 0.16 0.18 0.2 0.22 0.28 037 048 061 076 097 1.06 1.18 131 147 147 1.66
1 017 0.17 0.18 0.2 023 028 035 043 054 07 089 097 1.18 1.18 131 147 147
1.1 0.18 0.18 0.18 021 024 028 033 041 051 066 082 097 106 1.18 131 131 147
1.2 018 0.2 0.2 022 024 028 033 041 048 061 076 089 097 1.06 1.18 1.31 1.31
1.3 0.2 0.2 022 022 025 028 033 039 045 058 0.7 082 097 106 1.18 1.18 1.31
14 022 022 022 024 025 029 033 039 045 054 066 082 08 097 1.06 1.18 1.18
1.5 022 022 023 025 028 03 033 039 043 054 066 0.76 0.82 097 1.06 1.06 1.18
1.6 024 024 024 025 028 0.3 033 039 043 054 061 0.7 0.82 0.89 097 1.06 1.06
1.7 025 025 025 028 028 0.3 035 039 043 051 061 0.7 0.76 0.89 0.89 097 1.06
1.8 025 026 028 028 03 032 035 039 045 051 061 066 076 0.82 0.89 097 0.97
1.9 028 028 028 0.3 0.3 033 037 041 045 051 058 066 0.7 082 082 089 097
2 028 029 03 0.3 032 035 037 041 045 054 058 066 0.7 0.76 0.82 0.89 0.97
21 03 0.3 0.3 032 033 035 039 043 048 054 058 066 0.7 0.76 0.82 0.82 0.89
22 032 032 032 033 035 037 041 043 048 054 058 061 07 0.7 076 0.82 0.89
23 033 033 033 035 037 039 041 045 048 0.54 058 0.61 0.66 0.7 076  0.82 0.82
24 035 035 035 037 039 041 043 045 051 054 058 061 066 0.7 0.76 0.76  0.82
25 037 037 037 039 041 041 045 048 051 054 058 061 066 0.7 0.7 0.76  0.82
26 039 039 039 041 041 043 045 048 051 054 0.58 0.61 0.66 0.7 0.7 0.76  0.76
27 041 041 041 041 043 045 048 048 054 054 058 061 066 066 0.7 0.76  0.76
28 041 041 043 043 045 048 048 051 054 058 058 061 066 066 0.7 0.7 0.76
29 043 043 043 045 045 048 048 051 054 058 058 0.61 066 066 0.7 0.7 0.76
3 045 045 045 048 048 048 051 0.54 054 058 058 061 061 066 0.7 0.7 0.7
31 048 048 048 048 048 051 051 054 054 058 058 061 0.61 0.66 0.66 0.7 0.7
32 048 048 048 048 051 051 054 054 058 058 058 061 061 066 0.66 0.7 0.7
33 048 048 051 051 051 054 054 054 058 058 061 061 061 066 0.66 0.7 0.7
34 051 051 051 051 054 054 054 058 058 058 061 061 061 066 066 0.7 0.7
35 051 051 054 054 054 054 054 058 058 058 061 061 061 0.66 0.66 0.66 0.7
36 054 054 054 054 054 054 058 058 058 058 061 061 061 066 066 0.66 0.7
37 054 054 054 054 054 058 058 058 058 058 061 061 061 066 066 0.66 0.7
38 054 054 054 054 058 058 058 058 058 061 061 061 061 066 066 066 0.7
39 058 058 058 058 058 058 058 058 058 0.61 061 061 061 066 066 066 0.66
4 0.58 0.58 0.58 0.58 0.58 058 058 058 061 061 061 061 061 0.66 0.66 0.66 0.66
k*and h* for 1s=0
0.7 20
18
06 - . | e
05 = h 1 14
04 - 112
*4< 1 10 *..Q
03 r 138
02 - 16
44
0.1 I
0 —— e )
o

Fig. 7. Optimal CUSUM chart design: k* and /#* for u; = 0.
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Fig. 8. Optimal CUSUM chart design: k* and /#* for u; = 1.

suggested that users should start with designs for u, = 0.
By choosing the control chart designs with u; =0, it implies
that the variable shift size is thought to center around the
target process mean and the larger the shift size the smaller
the occurrence likelihood. This should be conceivable when
there is no better idea about the shift location. As for what
o should be set for choosing a design, we provide work-
sheets (Appendix B) to help users choose and implement
a suitable control chart. The worksheets contain the opti-
mum control chart designs for u, = 0 and various values
of o, and their corresponding quality impacts incurred by
shifts with a fixed size in the range from 0.250, to 4.00 o.
For each shift size, the quality impact is calculated as if the
shift is fixed at the location, i.e., oy, = 0. Also shown in the
table is the weight assigned to each shift size. For the de-
fault, all the weights are set equal (in fact equal to one).
Practitioners can place emphases on certain shift sizes by
increasing their weights. Then, we calculate the weighted
average quality impacts by the proposed control chart de-
signs and choose the design with the least average quality
impact.

It is interesting to observe that both EWMA and
CUSUM designs for oy = 30, (highlighted with boldface
in Tables A1 and A2, respectively) have the smallest average

Loss saving (%) for EWMA (« ,=1)

loss saving (%)
o w oS

quality impact when the shift sizes are deemed equally im-
portant, i.e., with equal weights, over the range of [0.250,
4.000,]. Consequently, the chart designs for u; = 0 and
oy = 30, which have been discussed in detail in Section 4,
are firstly recommended to naive practitioners. If either an
EWMA or a CUSUM chart has to be picked, the EWMA
chart with A* = 0.12 and L* = 2.86 appears to have the
smallest average quality impact and should be most prefer-
able. As more knowledge on the shift size is learned through
proper estimates of shift sizes (see, for example, Chen and
Elsayed (2000, 2002)), users can change their emphases on
certain shift sizes by adjusting the weights on the worksheets
accordingly to choose a more suitable chart design.

Example 2 When a quality engineer believes that the shift
size varies over a range centering on the target mean but is
particularly concerned about shift sizes not larger than 2o «,
the engineer can set the weights for shift sizes above 20, to
be zero on the worksheets. After using the worksheets to
calculate the weighted average of the quality impacts for
each design, it is found that both EWMA and CUSUM
chart designs for oy = 20, are the design having the smallest
average quality impact within its own class and the EWMA
design with A* = 0.06 L* = 2.67 has the smallest average

Loss saving (%) for CUSUM (« ;=1)

—_
wn

loss saving (%)
—_
(=)

8 3 8 3

Fig. 9. Loss savings for u, = 1: (a) EWMA charts; and (b) CUSUM charts.
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impact among all designs. If the quality engineer is instead
concerned about shifts with sizes not smaller than 2o ., then
the weights for shift sizes below 20, are set to zero to find
that the CUSUM chart design, k* = 0.57, h* = 4.5, for
o, = 40, has the smallest average quality impact among all
designs and should be chosen. <

Only when sufficient knowledge of the shift location (i)
and its spread (o) has been accumulated and ascertained,
may the users advance to design the control chart for the
anticipated p, and o using procedures provided in Section
4. With both the optimum EWMA and CUSUM chart de-
signs available, we are naturally led to ask which type of con-
trol chart, EWMA or CUSUM, is best for a given random-
shift situation. To naive practitioners without preference for
the type of control charts, the EWMA chart design would
be recommended by this research because of the EWMA
chart’s less average quality impacts shown in Tables A1 and
A2.

In the literature, the CUSUM procedure for detecting a
fixed shift has been shown by Lorden (1971), and further
by Moustakides (1986), to minimize the essential supre-
mum of conditional average delay time. It is shown that
this minimum value is actually equal to the ARL, for the
case of CUSUM charts. However, as pointed out by Sri-
vastava and Wu (1993), this equality does not hold in the
case of EWMA charts. Comparison of the ARL; perfor-
mance between CUSUM and EWMA charts is thus not
conclusive until more thorough comparisons done by Lu-
cas and Saccuci (1990) (L-S) and by Srivastava and Wu
(1997). In particular, the L-S comparison has concluded
that the EWMA charts perform relatively better in the case
of smaller fixed shifts.

To select a superior type of control charts given a ran-
dom shift (us, o), instead of a fixed shift, we compare the
quality impacts, rather than ARL;, made by respective op-
timal EWMA and CUSUM designs and select the design
with a lower quality impact in Table 3. The shaded cells
in Table 3 show the quality impacts by the CUSUM chart
designs while the rest of the table shows the quality im-
pacts by the EWMA chart designs. Examining the shaded
area in the table, we can conclude that only when the un-
certain shift is relatively large (u; > 1.50,) with a small
spread (oy < 1.90,), would the CUSUM chart designs be
preferred over the EWMA charts. This result is quite com-
parable to the L-S comparison where CUSUM charts are
shown to perform better than EWMA charts in the case of
larger shifts. In addition, our study further shows that the
uncertain large shift should also have a small spread for the
CUSUM chartsto perform better in terms of impacts on the
quality.

Table 3 is very useful for practitioners to pick the best
chart design. Given a random-shift situation (uy, o), the
practitioner can first look up Table 3 to see whether or not
the (g, oy) cell is shaded. If the cell is shaded, the CUSUM
chart design should be used and Table 2 and Fig. 6 are used
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to find the best CUSUM design. Otherwise, Table 1 and
Fig. 1 should be used to find the optimal EWMA design.

Example 3 After the process excursion is better understood
and u, and oy are estimated to be three and 1.5, respectively,
the engineer can look up Table 3 and observe that it falls in
the unshaded area. That is,a EWMA chart is preferred over
the CUSUM chart. The engineer can then turn to Table 1
to find A* = 0.32. L* = 3.02 is then obtained from Fig. 1.
<

7. Conclusions

This paper is the first in the literature to design EWMA and
CUSUM charts for uncertain shift sizes with different levels
of quality impacts. It is found that when shifts are uncertain
in size the optimal designs for both EWMA and CUSUM
charts should be more conservative, i.e., the optimal designs
for random shifts are comparable to conventional designs
for smaller deterministic shifts. For naive practitioners, the
EWMA chart design for uy =0and oy = 3,1.e, A* =0.12
and L* = 2.86, is recommended as a very good control chart
to start with. We also find that the CUSUM chart performs
better only when shifts are more certain and large. While
more advanced control charts, such as combined and adap-
tive control charts, are not studied here and only cases of
normally distributed shifts with 4 RLy = 500 are discussed
in this research, the proposed chart design procedure can be
easily extended by following the same procedure presented
in Sections 3 and 4 of this paper.
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Appendices
Appendix A

Definition of stopping time.: An integer-valued random vari-
able N is said to be a stopping time for the sequence
X1, Xa, ... if the event {N = n} is independent of X,
Xpia, ... foralln=1,2,...

Wald’s Equation: 1f X1, X3, ... are iid random variables
having finite expectations, and if N is a stopping time for
X1, X», ... such that E[N] < oo, then:

E| Y x| - Vi,
i=1

E(QLy,) = ARL, E[QL,].

Proof. Let random variables {X;}7°, be a sequence of qual-
ity observations where: {X,-};ﬁllgN(T +s5,02).

Given the known shift size s, let the event {RL;; = n}
correspond to an out-of-control event detected by a control
chart after having observed X, X5, ..., X,. Since the out-
of-control event is independent of the observations yet to
come, namely, X,,11, Xy42, ..., RLijs isa stopping time. The
quality loss given a shift size s is then calculated as

RL”X
QL= Y QL(X;|py=T+y5).

i=1
Since RL, is a stopping time, by Wald’s equation:

EQL,)) = ERL1\)E(QL(X; | px =T +5))
= ARL;,E(QL,).
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