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An often seen practice of preventive maintenance (PM) is to construct a
machine’s reliability model based on its historical failure records. The reliability
model is then used to determine the PM schedule by minimizing the machine’s
long-run operation cost or average machine downtime. Machines in many hi-tech
manufacturing sectors are using sophisticated sensor technologies to provide
sufficient immediate online data for real-time observation of equipment
condition. Not only is the historical data but also the real time condition now
available for scheduling a more effective PM policy. This research is to determine
an effective PM policy based on real-time observations of equipment condition.
We first use the multivariate process capability index to integrate the equipment’s
multiple parameters into an overall equipment health index. This health index
serves as the basis for real-time health prognosis under an aging Markovian
deterioration model. A dynamic PM schedule is then determined based on the
health prognosis.

Keywords: Real-time equipment monitoring; Equipment health prognosis;
Markov chain modeling; Condition-based maintenance

1. Introduction

With the improvement of manufacturing technology and the emergence of high-tech
industries, there are more and more factory productivity challenges. A major
challenge is the drastically increased investment and operation cost. Take the
semiconductor fabrication industry for example. The cost of a typical 25,000 wafers-
per-month 300mm fab is expected to exceed US$2.0–3.0 billion. The huge factory
investment triggers the urgent need to improve the operation effectiveness. Among
various types of costs, equipment cost usually takes up the largest portion of capital
investment. It is estimated that 75% of total investment will be attributed to
equipment investment in a typical 300mm fab. The utilization and effectiveness of
the equipment have become extremely important for industries with intensive capital
investment in equipment.

A number of Japanese industries are now implementing the concept of Total
Productive Maintenance (TPM) to drive the improvement of manufacturing
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efficiency (Takahasi and Osada 1990). The TPM paradigm has been shown to greatly
improve the maintenance procedure, and to reduce or eliminate setups, test
procedures and idle time. Similar objectives can be found in recent concerns on
Overall Equipment Effectiveness (OEE) of the plant (Leachman 1997). To sum up,
increasing the utilization and reducing the operation cost of equipment have become
the critical factors of enhancing the company competitiveness.

To improve the effectiveness and minimize the equipment downtime, an
appropriate maintenance policy is critical. On the one hand, a frequent preventive
maintenance (PM) schedule reduces the system’s unexpected breakdowns but also
increases the maintenance cost. On the other hand, a less frequent PM schedule has
less maintenance cost but increases the cost of unplanned breakdowns. How to
determine an adequate policy of preventive maintenance is therefore an important
issue of shop floor control.

A usual practice of PM policy in many industries is to replace parts or perform
maintenance when the equipment’s running time reaches a pre-determined time
length (Barlow and Hunter 1960, Blanks and Tordan 1986, Elsayed 1996). The
advantage of this strategy is easy to follow. Nevertheless, it depends only on the
equipment’s reliability model derived from historical performance instead of from
the real-time condition of the equipment. Recent developments on sensors, chemical
and physical nondestructive testing, and sophisticated measurement technologies
have made possible real-time observations of the system performance via many kinds
of on-line data (e.g. temperature, pressure, voltage, current, vibration, corrosion,
fluid, etc.). Makis and Jardine (1991, 1992) proposed a condition-based maintenance
(CBM) to incorporate the machine condition into the age-based reliability model.
Using Cox’s proportional hazards model (PHM) (e.g. Cox 1975, Cox and Oakes
1984, Kumar and Klefsjo 1994), CBM is based on a failure rate which is a function of
both the tool age and the tool conditions. The same research team led by Professor
Jardine has gone on to develop a decision-making software and apply CBM to
different types of components or machines in various industries (see Jardine et al.
1997, 2001, Banjevic et al. 2001, Lin et al. 2004). The state values of the tool
condition considered in CBM, however, are limited to those stochastically increasing
over time and those having nondecreasing effect on the hazard rate (section 3,
assumptions 2 and 4 in Makis and Jardine 1991).

There also exists a huge body of literature on optimal maintenance policies for
systems under Markovian or semi-Markovian deterioration. Good reviews in this
topic can be found in Barlow and Proschan (1965), McCall (1965), Sherif and Smith
(1981), Valdez-Flores and Feldman (1989) and Dekker (1996). Under the
deterioration models, some papers are concerned with optimal PM policies
(e.g. Kao 1973); some focus on optimal inspection schedules (e.g. Milioni and
Pliska 1988) and others consider simultaneous optimization of both inspection and
PM schedules (e.g. Yeh 1996). Nevertheless, the optimal inspection schedule would
not be a concern when modern sensor technologies are widely used especially in
high-tech manufacturing industries.

To characterize a machine’s health, various types of equipment data should be
accounted for. With the modern sensors built in the advanced processing equipment,
there are usually tens or even hundreds of data items collected. It is necessary to
integrate these data items and develop a single integrated index. Not only does the
index provide an easy reading for engineers to have a quick idea on the equipment’s
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overall performance, it also serves as a basis for determining an optimal PM policy.
Gertsbakh (1977) has proposed using Discriminant Analysis to find a linear
combination function of machine parameters that best distinguishes between a
‘good’ machine and a ‘failed’ one. Similar to Discriminant Analysis, a linear
combination function of parameters with the maximum contribution to the machine
condition can be found through Principal Component Analysis or Singular Value
Decomposition (e.g. Stamatis et al. 1992). In this paper, it is not our objective to
compare and find the best health index. Rather, we attempt to follow the modern
equipment monitoring approach (Chen et al. 1998) to evaluate the machine
condition by observing the distribution of the machine parameters’ readings and
comparing it against pre-defined machine specifications. A health evaluating method
is thus proposed based on the ideas of multivariate process capability indices.

With a single health index available, we then attempt to propose a tool health
prognosis method under an aging Markovian deterioration model of the equipment
health. In using only the Markov chain to characterize a deteriorating machine, it is
assumed that the transition probabilities are only state-dependent. That is, the
probability to make transition to a less healthy state does not increase with the age.
In the above-mentioned literature, the semi-Markovian model is often used to
capture the aging effect by incorporating a random sojourn time in each state
(see Kao 1973). Different from the semi-Markovian model, we introduce an aging
factor that discounts the probabilities of transitions to healthier states while
increasing the probabilities of transitions to less healthy states. We refer to this
Markovian deterioration with aging effect as aging Markovian deterioration. With
the equipment health prognosis, we can predict the behaviour of the equipment
condition. The PM schedule with respect to either downtime or cost minimization
can be then determined dynamically based on the predicted equipment health.
We refer to it as dynamic PM policy.

As shown in figure 1, the upper dotted-line rectangle includes steps to build the
offline models. Historical data are collected first. Some multivariate statistical
methods, e.g. principle component analysis, and time series analysis (Chen et al. 1998),
are applied to extract important data items in the data conversion/preprocessing step.
The health index is then computed using the pre-processed equipment data. After
computing the health index, we enter the second phase where an aging Markovian
deterioration model is identified and estimated based on historical observations of
equipment health data. By doing so, the long-run performance of the equipment is
established and possibly predicted. Finally, an effective PM policy is developed
accordingly. The lower dotted-line rectangle shows the online use of this proposed
PM policy. The details will be stated in the rest of this paper.

2. Evaluation of equipment condition and equipment health index

The advanced equipment and sensor technologies have provided more and more
immediate data to reveal a machine’s condition. However, such data have not been
effectively analysed and put to use in practice due to their enormous volume and the
lack of efficient analysis methods. If we can establish a mechanism to analyse these
real-time data, the equipment condition can be then observed and evaluated in a
more timely fashion. A ‘Health Index’ for the equipment is therefore proposed here.
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2.1 Evaluation of equipment condition with multivariate data

Usually, equipment provides several types of data. To integrate multiple correlated

data items into a single index, multivariate statistical methods are used in this

research. The health index must take into account the information contained in a set

of parameters, which are online observed from the machine. For example,

temperature, pressure, voltage, current, vibration, corrosion, fluid, etc., are typical

parameters collected from a machine. They are often cross-correlated. Hence, not

only the variation of individual variables but also the co-variation among variables

should be taken into consideration.
Figure 2 shows a typical real-time equipment monitoring scheme referred to as

‘Bull’s Eye’ scheme. Values of various machine data items are displayed

simultaneously on a monitoring board. The board consists of 3 concentric circular

regions with different colours: green for SAFE, yellow for WARNING, and red for

DANGEROUS. The distance between an observed data point and the board’s centre

represents the data item’s deviation from its preset target. The distribution of data

points provides an easy reading of the equipment’s current operating condition.

Data conversion
Data pre-processing

Historical data of
equipment condition

Sample data of
health index

Phase III: Dynamic PM model

Dynamic PM alarm

Real-time
equipment data

PM decision

Phase I: Computing health index

Phase II: Building prognosis model

Off-line model

On-line
application

Figure 1. Dynamic PM scheme.
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When the points are concentrated around the centre, it indicates a good overall

health. In contrast, when data points are scattered over a wide area, it indicates
a worrisome situation. Thus, the engineers can easily read the equipment status by

examining the distribution of the data points. Mathematical treatment to create such
a ‘Bull’s Eye’ monitoring scheme will not be reiterated in this paper and can be found
in O’Sullivan et al. (1996) and Chen et al. (1998).

Using the idea of ‘Bull’s Eye’ and different from Gertsbakh’s (1977) approach, an

overall equipment health index can be calculated by the distribution of the data
points. Using this idea, a quality measure known as multivariate process capability

indices (PCIs) can be utilized. Different from our objectives here, the multivariate
PCIs are created to measure a process’s performance by examining resulting

products’ quality characteristics. But the basic theory is also feasible for evaluating
equipment capability. Let’s recall the basic idea of multivariate process capability

indices as in equation (1) (Taam et al. 1991, Kotz and Johnson 1993).

Cp ¼
volume of specification region

volume of region containing 99:73% of observation variate
ð1Þ

The basic assumption of above multivariate PCI is that the observations of
machine parameters must follow multivariate normal distributions. This assumption

may not be appropriate for all situations. Fortunately, many studies on data
modeling, which removes the common cause or data pattern of equipment

parameters, have been proposed. Most of the machine parameters can therefore be
filtered with only white noise left (Chen et al. 1998). In fact, as long as the
distribution approximately concentrates on the central region, the idea of

multivariate PCI can be adopted. Based on equation (1), figure 3 shows a possible
relation between the specification region and the performance region for two

hypothetical quality characteristics X1 and X2. The desired X1 and X2 are to have
a target at [0, 0]T, covariance equal to 0, and both variances equal to 1. The actual

Figure 2. Equipment simultaneous monitoring scheme.

Real-time health prognosis 3355



performance, of which 99.73% is shown in the shaded elliptical region, shows

elliptical region with the covariance equals 0.6 and covers a much smaller area as

compared to the specification region.
Assume that there are � important machine parameters, X1,X2, . . . ,X�.

When the machine is running normally, the machine parameters will follow a

multivariate normal distribution with a mean vector equal to target settings T and

covariance matrix A. By replacing the product quality characteristics in the

multivariate PCI with machine parameters, we define a Machine Capability Index

(MCI) as follows

MCI ¼ volume of ðX� T ÞTA�1ðX� T Þ � K2

volume of ðX� �XÞTV0�10 ðX�
�XÞ � �2�, 0:9973

ð2Þ

where

K is used to adjust the size of the specification region;
X is the vector of sample observations of machine parameters;
�X is the mean vector of sample observation X;

V0 is the observed covariance matrix of X;
V00 ¼ V0 þ ð �X� T Þð �X� T ÞT; and

Figure 3. Performance region vs. specification region.
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�2�, 0:9973 is the 99.73th percentile of �2 distribution with � equal to the number of

machine parameters.

In figure 3, the specification region is formed by:

K ¼ 6, T ¼
0

0

� �
, and A ¼

1 0:8

0:8 1

� �

while the performance region is formed by:

�22, 0:9973 ¼ 11:83, �X ¼ T, and V00 ¼ V0 ¼
1 0:6

0:6 1

� �
:

With the above specifications and actual machine performance, the MCI in

equation (2) can now be calculated as:

MCI ¼
volume of ðX� T ÞTA�1ðX� T Þ � 62

volume of ðX� �XÞTV�10 ðX�
�XÞ � 11:83

¼
62=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA�1Þ

p
11:83=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðV�10 Þ

q

¼
62=

ffiffiffiffiffiffiffiffiffiffiffi
2:778
p

11:83=
ffiffiffiffiffiffiffiffiffiffiffi
1:563
p ¼ 2:28:

Figure 4 shows a machine’s performance region with its centre, i.e. �X, shifted

from [0, 0]T to [�3, 0]T.

Figure 4. An off-target performance region.
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In the case of figure 4, V00 is no longer the same as V0:

V00 ¼ V0 þ ð �X� T Þð �X� T ÞT ¼
1 0:6

0:6 1

� �
þ
�3

0

� �
�3 0
� �

¼
10 0:6

0:6 1

� �
:

The calculated MCI, thus, becomes much smaller:

MCI ¼
volume of ðX� T ÞT A�1ðX� T Þ � 62

volume of ðX� �XÞTV0�10 ðX�
�XÞ � 11:83

¼
62=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðA�1Þ

p
11:83=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðV0�10 Þ

q

¼
62=

ffiffiffiffiffiffiffiffiffiffiffi
2:778
p

11:83=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1037
p ¼ 0:588:

It should be noted that in equation (2) specification region defined by T, A and K
is assumed known in this paper. In reality, to estimate and obtain such a specification
region requires prior engineering knowledge and understanding of equipment
behaviour from continuous observations. Interested readers can refer to Taam et al.
(1991) and Chen and Tsai (2004) for the details of establishing an elliptical
engineering specification region.

2.2 A probable health index

One of our purposes for establishing the health index is to provide a numerical
indicator of the equipment’s condition. That is, we like to grade the machine’s
performance based on real-time evaluation of the machine condition. First, let’s
consider the properties of the multivariate PCI proposed earlier to evaluate the
machine condition. For a process to be in a working condition, the performance
region containing 99.73% of observations should fall inside the specification region.
Namely, a process with the PCI value less than 1 would be deemed incapable. For the
process capability to be acceptable, it is generally said that the PCI value should
reach at least 1.33. Moreover, PCI¼ 2 implies that the volume of the specification
region is twice as large as the volume of the performance region with the mean equal
to the target. That is, the specification region contains almost all possible
observations and with only a very slim chance that the equipment will perform
out-of-spec. In the univariate case, when PCI¼ 2 there would be only a chance of
0.002 in one million that the equipment breaks down, i.e. out of the specification
region (Kotz and Johnson 1993). Therefore, a process with PCI� 2 is said to be in an
excellent condition. From a barely working condition at PCI¼ 1 to an acceptable
condition at PCI¼ 1.33 and a superb condition above 2, the PCI scale, though
familiar to most engineers, is ranging from 0 to 1 and is not linearly reflecting the
equipment health.

To provide a more comprehensible view on the equipment condition, the MCI
proposed in the previous section can be translated into a score in a linear scale with a
closed range, such as [0, 100]. Here we propose a possible transformation function to
transform the MCI value in (0,1) to a score in (0,U) with 0 and U representing the
worst and the perfect machine conditions, respectively:

H ¼
1� e�ðMCI=dÞ

1þ e�ððMCI�aÞ=dÞ
�U: ð3Þ
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The shape of the mapping function in equation (2) can be determined by
adjusting the value of a and d based on the engineers’ own engineering judgment.
a and d are parameters used to adjust the shape of the mapping function. Generally
speaking, a affects the location and d affects the width and slope.

Here, we suggest a setting of (a, d)¼ (1.04, 0.32). Figure 5 shows the curve of this
mapping function with U¼ 100 representing a perfect machine condition. Table 1
lists the corresponding values of MCI and health index under this setting. A function
with this setting translates MCI¼ 1.33 to about H¼ 70 and MCI¼ 2 to about
H¼ 95.

It has to be noted that one may define one’s own transformation function to
translate the MCI value to any closed interval as long as engineers’ view of machine
condition can be faithfully reflected. Since PCI itself is already a familiar measure to
most engineers, using MCI directly as a health index without any transformation
is also plausible. Irrespective of the transformation methods, the health prognosis
models and dynamic PM policies proposed in the coming sections can be still
applied.
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Figure 5. Mapping function—(a, d)¼ (1.04, 0.32) for a (0, 100) score range.

Table 1. Data list of (2–8) with
setting (a, d )¼ (1.04, 0.32)

MCI Health index

0 0.00
0.5 12.34
1 44.82
1.2 60.78
1.33 70.11
1.5 80.06
2 95.07
3 99.77
4 99.99
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3. Equipment health prognosis model

In the previous section, we proposed a health index to evaluate the real-time
equipment conditions. With the proposed health index, a machine with a lower score
is more likely to fail than a machine with a higher score. For the purpose of
determining an appropriate PM schedule, the tendency towards failure needs to be
modeled. Here, we propose a failure prognosis model, which can help us to predict
the machine conditions for the time to come.

3.1 Equipment health prognosis under Markovian deterioration

In practice, the equipment health based on real-time parameters variability is subject
to many noises in the manufacturing environment. To make robust PM decisions
based on the health index, the health index should be further classified into a few
discrete states. For instance, the Bull’s eye scheme classifies the equipment health
into only three states (green, yellow and red). For three equipment states, a machine
with MCI above 2.0 (health score495), generally considered as ‘good’, can be
classified as ‘Green’ while the machine with MCI value below 1.0 (health score545)
is said to be in the ‘Red’ state (or failure state). The ‘Yellow’ state can be then defined
for MCI values in between 1.0 and 2.0. It is often an engineering call to determine the
number of equipment states. Although it is not the focus of this paper, the engineers
should be aware that the number of states affects the sensitivity and robustness of
PM decisions and the engineering judgment should be made to strike a balance.

Suppose now the health score has been classified into n discrete states: F,
1, 2, 3, . . . , n�1. Since the equipment health state can be evaluated at each sampling
time point, it can be viewed as a stochastic process: H¼ {Ht: t� 0}. If Ht¼ i, the
equipment is said to be in state i at time t. We assume here that when the process is in
state i, there is a fixed probability Pi,j that the health index will be in state j at the next
time point. We characterize such a stochastic process using a Markov chain model.
For a Markov chain, the conditional distribution of any future state Htþ1 given the
earlier states H0, H1, . . . ,Ht�1 becomes (Ross 2000)

PðHtþ1 ¼ jjHt ¼ i,Ht�1 ¼ it�1, . . . ,H1 ¼ i1,H0 ¼ i0Þ ¼ PðHtþ1 ¼ jjHt ¼ iÞ ¼ Pi, j

We first establish a condition-based prognosis model based on Markov chain
theories. Let � denote the matrix of one-step transition probabilities Pi,j:

F 1 2 . . . n� 1

� ¼

F

1

2

..

.

n� 1

PF,F PF, 1 PF, 2 . . . PF, n�1

P1,F P1, 1 P1, 2 . . .

..

. . .
. ..

.

. . . Pn�2, n�1

Pn�1,F Pn�1, 1 Pn�1, 2 . . . Pn�1, n�1

2
66666664

3
77777775

ð4Þ

where
Pn�1

j¼F Pi, j ¼ 1: Pi,j is the probability that H transits to state j given its current
state is at i. If a machine breaks down, H enters the failure state F and continues to
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stay in the failure state until it is repaired. The failure state is also known as an
absorbing state:

PF,F ¼ 1,PF,j ¼ 0, for j ¼ 1, 2, . . . , n� 1

The two-step transition probability can be obtained by taking the square of �.
For instance, the (i, j)th entry of �2 is the probability to be at state j after two periods
of time, given the current state at i. Recursively, we can calculate the probability for

the condition of the equipment to be at certain state after any number of time
periods.

To further interpret the matrix �, each row, say row i, of � represents a state

probability distribution given the current state at i. This conditional probability
distribution will likely form a bell shape. For example, in the beginning of operation,

H is most likely to be at a good-condition state, say state i, and remain at state i at
the next available time point. H is less likely to move to other states. Thus, Pi,i is

likely to be the highest probability among Pi,j’s (see figure 6).
For example, let the current equipment health state be 80. Then, at the next

time point the equipment health has the greatest possibility to stay at state 80.

When the health state does change, the probability to move to state 70 will be

greater than the probability to move to state 60. Likewise, the probability to
move to state 90 should be greater than that to move to state 100. This leads to a

bell-shape probability distribution as illustrated in figure 6. The above Markov-
chain model of the equipment health does not explicitly consider the equipment’s

age although equipment aging may be exhibited through the stochastic evolution
of the health state. However, with the constant �, when a machine arrives at a

state, the transition probability distribution to move to other states is always the

same no matter how old the machine has grown. That is, a machine could
stochastically arrive at the same state at different ages but the deterioration

‘tendency’ is exactly the same given the same health state. In the following
section, we will propose an aging Markovian model in which even starting with

F 1 2 3 4 …. n-1

V
al

ue
of

 P
i,

j

The highest value: Pi,i

Health state j

Figure 6. Bell shape of conditional state transition probability.
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the same health state the machine becomes more likely to enter into less healthy
states as it grows older.

3.2 Equipment health prognosis under aging Markovian deterioration

An important property of the above Markovian model is the bell-shape
probability distribution presented by entries in the same row of �. But as the
machine grows older the health tends to worsen due to deterioration of the
equipment; i.e. the probability for the machine to become healthier will decrease
while the probability of becoming less healthy will increase. Let a larger value of
the state correspond to a higher health score. We can then observe that each row
of matrix �, i.e. the conditional probability distribution, should act like a moving
wave as the equipment ages. Let’s observe the wave motion in figure 7.
Stochastically, a machine could visit the same state i at different ages, the
machine at a higher age should have higher probabilities to become less healthy
while the probabilities to become healthier should decrease. The moving-wave
effect is the result of the machine’s deterioration over its run time. The longer the
machine has been run, the worse the machine’s health ‘tendency’. We extend the
Markovian model to include this aging effect and call it an aging Markovian
deterioration model.

Suppose �t is the transition probability matrix at age t and Pi,j(t) be the entry of
�t representing the transition probability from state i to state j at t. Also, let
Pi,MðtÞ ¼maxjfPi,jðtÞ, j ¼ F, 1, 2, . . . , n� 1g, where M ¼ argmaxjfPi, jðtÞ, j ¼
F, 1, 2, . . . , n� 1g, represent the peak transition probability in the bell-shape
distribution. Denote the left-hand side and right-hand side cumulated probabilities
as PL

i ðtÞ ¼
PM�1

j¼F Pi, jðtÞ and PR
i ðtÞ ¼

Pn�1
j¼M Pi, jðtÞ, respectively. Then, PR

i ðtÞ ¼
1� PL

i ðtÞ since
Pn

j¼1 Pi, jðtÞ ¼ 1: As shown in figure 7, when the machine becomes
older, PL

i increases while PR
i decreases. That is, PL

i ðtÞ � PL
i ðtþ�Þ and

PR
i ðtÞ � PR

i ðtþ�Þ where � is the time interval between the health observation at t
and the next available observation. Assuming further that the increase

V
al

ue
 o

f 
P

i,j

Age increases

F 1 2 3 4 …… M  ….. n-1

Health state j

Figure 7. Wave-moving transition-probability distribution for an aging machine.
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(or decrease) in Pi,j(t) is proportional to the fraction Pi,j(t) takes in PL
i ðtÞ (or in PR

i ðtÞ),
we have

Pi, jðtþ�Þ � Pi, jðtÞ ¼
Pi, jðtÞ

PL
i ðtÞ

PL
i ðtþ�Þ � PL

i ðtÞ
� �

for j5M ð5aÞ

and

Pi, jðtÞ � Pi, jðtþ�Þ ¼
Pi, jðtÞ

PR
i ðtÞ

PR
i ðtÞ � PR

i ðtþ�Þ
� �

for j5M: ð5bÞ

We define an aging factor �2 (0, 1) as

PL
i ðtþ�Þ � PL

i ðtÞ

PL
i ðtÞ

¼
PR
i ðtÞ � PR

i ðtþ�Þ

PL
i ðtÞ

¼ � for 8i and 8t: ð6Þ

� represents the increase rate in PL
i ðtÞ for a machine becoming � older and remains

constant for all states over the entire lifetime of an aging machine. We can now
derive an age-dependent model to describe the wave-moving probability distribution
from equations (5a), (5b) and (6). Given the current age t, the transition probability
at the next available time tþ� is,

Pi, jðtþ�Þ ¼ Pi, jðtÞ þ
Pi, jðtÞ

PL
i ðtÞ
� PL

i ðtÞ � � ¼ Pi, jðtÞ � ð1þ �Þ for j5M ð7aÞ

and

Pi, jðtþ�Þ ¼ Pi, jðtÞ �
Pi, jðtÞ

PR
i ðtÞ
� PL

i ðtÞ � � ¼ Pi, jðtÞ � 1�
PL
i ðtÞ

PR
i ðtÞ

�

� �
for j �M: ð7bÞ

This function is derived from the principle that Pi,j should decrease for j�M and
increase for j5M. � can be viewed as an aging factor and also should be
estimated from historical equipment data. The above equations are developed to
describe the wave-moving phenomenon and ensure that �Pi,j remains 1. Starting
with the initial transition probability matrix at t¼ 0 (�0), the values of the entries
in �t evolve according to equations (7a) and (7b) as the machine age (t) grows.
The equipment heath prognosis can be thus established under this aging
Markovian deterioration.

3.3 Parameter estimation

Both the aging factor � and the initial transition probability matrix �0 need to be
estimated. We first find a � estimator for an aging machine given �. An MLE
(Maximum Likelihood Estimation) method is proposed here. The problem is to
find a good estimator �̂ given observed values of a random sample x1, x2, . . . , xn
(Hogg and Tanis 1996). Now we assume there are n independent failure events
that occurred at times ti, i¼ 1, 2, . . . , n. For each failure event, say the failure at ti,
there exists a stochastic process of the health index states through time ti, denoted
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by �SðtiÞ: Let the failure occur between the kith and (kiþ 1)th samples;

i.e. ki �� ti5(kiþ 1)� and � denotes the fixed time interval between two

consecutive health observations. Thus, the probability that �SðtiÞ takes a particular

path �sðtiÞ is

Pr T ¼ ti,SðtiÞ ¼ �sðtiÞj�̂
� 	

¼ Pr ki� � ti5ðki þ 1Þ�,S1 ¼ s
ðiÞ
1 , . . . ,Ski ¼ s

ðiÞ
ki
j�̂

� 	

¼ Pr S1 ¼ s
ðiÞ
1 , . . . ,Ski ¼ s

ðiÞ
ki
,Skiþ1 ¼ Fj�̂

� 	

¼ Pr s
ðiÞ
kiþ1
¼ Fjs

ðiÞ
ki
, �̂

� 	
�
Yki
m¼1

Pr sðiÞm js
ðiÞ
m�1, �̂

� 	

where S
ðiÞ
j , j¼ 1,2, . . ., ki, is the jth state in the particular path SðtiÞ leading to the

failure state F at ti. To rearrange it,

Pr½SðtiÞ ¼ �sðtiÞj�̂� ¼
Ykiþ1
m¼1

P
sðiÞ
m�1

, sðiÞm j�̂
ð8Þ

where P
s
ðiÞ
m�1

, s
ðiÞ
m j�̂

denotes the transition probability that state changes from s
ðiÞ
m�1 to sðiÞm

given that the aging factor � ¼ �̂:With n failure sample paths, the likelihood function

can be written as follows.

L ¼
Yn
i¼1

Prð �SðtiÞÞ ¼
Yn
i¼1

Ykiþ1
m¼1

P
s
ðiÞ
m�1

, s
ðiÞ
m j�̂

ð9Þ

and the log-likelihood function is:

logL ¼
Xn
i¼i

Xkiþ1
m¼1

logP
sðiÞ
m�1

, sðiÞm j�̂
ð10Þ

Hence, the estimator of � can be found by maximizing the log-likelihood

function. That is:

�̂� ¼ argmax
�̂
flogLg ¼ argmax

�̂

Xn
i¼i

Xkiþ1
m¼1

logP
s
ðiÞ
m�1

, s
ðiÞ
m j�̂

( )
: ð11Þ

Since �2 (0, 1), numerical methods to search over the range (0, 1) can be

employed to find the optimal �̂�: In figure 8, log L as a function of �̂ for �¼ 0.002,

0.008 and 0.01 are illustrated. Figure 8a shows the log-likelihood function for

0 � �̂ � 1, while figure 8b shows the function in a smaller interval: 0 � �̂ � 0:04:
From figure 8, it can be conjectured, although not rigorously proven, that the log-

likelihood function is a unimodal function of �̂ and thus �̂� can be found rather

effectively through numerical search.
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3.4 Example

A numerical example is used to illustrate the construction of the aging Markovian
prognosis model. Suppose H570 (or MCI51.33) is regarded as an absolutely
dangerous condition for the equipment. That is, when the health index has a score of
less than 70, the machine is deemed to be in a failure state. We now divide H¼[0, 100]
into 11 states as shown in table 2.

lo
g 

L

δ = 0.002

δ = 0.008

δ = 0.01

(a)

δ = 0.002

δ = 0.008

δ = 0.01

(b)

 0 ≤ d̂  ≤ 1

0 ≤ d̂  ≤ 0.04

L

Figure 8. log L vs. �̂:
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An initial transition probability matrix, �0 representing the stable equipment
health stochastic process, is assumed to be:

F 1 2 3 4 5 6 7 8 9 10

�0 ¼

F

1

2

3

4

5

6

7

8

9

10

1 0 0 0 0 0 0 0 0 0 0

0:05 0:35 0:23 0:17 0:1 0:05 0:031 0:01 0:005 0:003 0:001

0:01 0:1 0:35 0:2 0:14 0:1 0:05 0:032 0:01 0:005 0:003

0:005 0:01 0:105 0:35 0:2 0:14 0:09 0:05 0:035 0:01 0:005

0:003 0:005 0:01 0:092 0:35 0:2 0:14 0:1 0:05 0:04 0:01

0:001 0:003 0:005 0:01 0:091 0:35 0:2 0:14 0:1 0:07 0:03

5e� 4 0:001 0:003 0:005 0:01 0:0805 0:35 0:25 0:17 0:08 0:05

2e� 4 6e� 4 0:001 0:003 0:005 0:01 0:0802 0:47 0:25 0:1 0:08

1e� 4 3e� 4 6e� 4 0:001 0:003 0:005 0:01 0:08 0:6 0:2 0:1

8e� 5 1:2e� 4 3e� 4 5e� 4 0:001 0:003 0:005 0:01 0:08 0:6 0:3

2e� 5 8e� 5 1e� 4 3e� 4 5e� 4 0:001 0:003 0:005 0:01 0:08 0:9

2
6666666666666666666664

3
7777777777777777777775

Using this �0 and �¼ 0.005, we simulate 20 sample paths of health index scores, each
path is of size 90. Figure 9 illustrates the first 5 paths.

As we can see, the health scores are roughly decreasing over time. We use these 20
sample paths as sample data to estimate �. To estimate the performance of this MLE
estimate of the aging factor, we repeat the simulation and estimation five times to
obtain an average estimate �̂ ¼ 0:00504 with quadratic estimation loss¼ 1.064e�07
from the simulated data. In table 3, different values of � are used to simulate new
sample paths and the same estimation method is applied to obtain the maximum
likelihood estimation of �. It can be seen that with 20 sample paths and 90 sample
scores in each path, the estimate using MLE is quite robust for different values of �
(0.01–0.0005).

We now estimate the initial transition probabilities in �0. As shown below, there
are n� n entries in the matrix.

F 1 2 . . . n� 1

� ¼

F

1

2

..

.

n� 1

PF,F PF, 1 PF, 2 . . . PF, n�1

P1,F P1, 1 P1, 2 . . .

..

. . .
. ..

.

. . . Pn�2, n�1

Pn�1,F Pn�1, 1 Pn�1, 2 . . . Pn�1, n�1

2
66666664

3
77777775

Table 2. Health index and its corresponding states (example).

Health score State Health score State

570 Failure 85–87 6
70–72 1 88–90 7
73–75 2 91–93 8
76–78 3 94–96 9
79–81 4 97–100 10
82–84 5
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Intuitively, it is not hard to obtain the estimators. Denote ni,j as the number of
one-step transitions from i to j in available sample paths. The estimators of Pi,j are
given by:

P̂ij ¼
ni, j
ni

where ni ¼
P

j2S ni, j and is the total number of state i in sample paths. Ideally, �0

should be estimated using sample paths of machines before aging, i.e. machines with
the constant hazard rate during a stable-reliability period as in the well-known bath
tub reliability model. However, if aging starts early, sample paths available for
estimating the initial transition probabilities may be limited. Given an aging sample
path and �, we need to propose an estimate for �0. Let m(l), l¼ 1, . . ., ni, be the
machine ages at which the health states are i in an aging sample path. From
equation (7a), we can obtain the conditional expected number of transitions from
state i to state j for j5M:

Eðnumber of transitions i! jjsmð1Þ ¼ i, smð2Þ ¼ i, . . . , smðniÞ ¼ iÞ

¼
Xni
l¼1

Pijð0Þð1þ �Þ
mðlÞ for j5M:

Figure 9. Five sequences of health state sample path.

Table 3. Estimation performance for different �.

Actual � Average of 5 �̂
Sample mean squared

estimation errors

0.01 0.00946 3.54e�7
0.005 0.00504 1.06e�7
0.001 0.00108 1.06e�8
0.0005 0.00052 3.27e�9
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Therefore, the initial left-hand-side transition probabilities can be estimated by:

P̂ij ¼
ni, jPni

l¼1 ð1þ �Þ
mðlÞ

for j5M: ð12Þ

The left-hand side and right-hand side cumulated probabilities can then be
estimated by:

P̂L
i ð0Þ ¼

XM�1
j¼F

P̂i, j; P̂
L
i ðmÞ ¼ P̂L

i ð0Þð1þ �Þ
m; and P̂R

i ðmÞ ¼ 1� P̂L
i ðmÞ ð13Þ

From equation (7b), we can obtain the conditional expected number of transitions
from state i to state j for j�M:

Eðnumber of transitions i! jjsmð1Þ ¼ i, smð2Þ ¼ i, . . . , smðniÞ ¼ iÞ

¼
Xni
l¼1

Pijð0Þ
YmðlÞ
h¼1

1þ
PL
i ðhÞ

PR
i ðhÞ
� �

� �
for j �M

and thus we obtain the estimates for the initial right-hand side transition
probabilities:

P̂ij ¼
ni, jPni

l¼1

QmðlÞ
h¼1 1þ

P̂L
i
ðhÞ

P̂R
i
ðhÞ
� �

� � for j �M ð14Þ

With equations (11)–(14), we propose the following iterative procedure to
estimate � and Pij simultaneously:

Step 1. Give an initial guess of �̂:

Step 2. Use equations (12)–(14) to estimate P̂ij given the latest �̂:

Step 3. Use equation (11) to re-estimate �̂ givenP̂ij estimated in Step 2.

Step 4. Check if �̂ has converged to a predetermined accuracy. If yes, stop. If not,
go back to Step 2.

Since this paper’s focus is not on the estimation quality, the convergence of the
above iterative procedure is not proven and should be an interesting subject for
future study.

4. Dynamic preventive maintenance policy

The ultimate goal of this research is to develop a dynamic PM policy based on real-
time equipment data. The main tasks of establishing a dynamic PM scheme are
illustrated in figure 10. The first and second rectangles have been developed in
sections 2 and 3, respectively. Our next task focuses on the third rectangle, that is,
to develop an efficient dynamic PM policy. Here, we will introduce a dynamic
PM scheme based on the health index and equipment’s condition prognosis model.
Then, we will explain why it is an efficient method. How the dynamic PM
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methodology can be applied in practice will be also presented at the end of this
section.

4.1 Preventive maintenance optimization models

In this paper, we consider only full-scale PMs that completely renew the equipment
condition. Generally, when planning a preventive maintenance policy, the goal is to
achieve two aspects of production efficiency: minimum equipment maintenance cost
or minimum equipment downtime. Conventional PM models are all developed to
minimize the equipment maintenance cost or downtime. Nevertheless, these
conventional models (e.g. chapter 9 of Elsayed 1996) do not take into consideration
the real-time condition of the equipment. PM policies are determined only based on
the machine’s earlier failure records. Modern sensor technology has made real-time
equipment operation data available for monitoring and analysis. A more timely,
adaptive PM decision can be now made in real time according to the on-line collected
equipment data. This is why the word ‘dynamic’ is used, i.e. to perform the
maintenance dynamically based on the equipment’s current condition to minimize
the maintenance cost or the machine’s downtime ratio.

4.1.1 Cost minimization model. When minimizing the cost, we often take the long-
term average of total maintenance cost as the objective cost function to be
minimized. The main maintenance cost of the equipment comes from the preventive
maintenance and the breakdown repair. The cost of a failure repair is usually much

Equipment Condition Evaluation
(Health Index)

Real-time
equipment data

PM decision

Equipment Condition Prognosis

Dynamic PM Scheme

Figure 10. Overview of steps to make a dynamic PM decision.
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higher than that of performing a PM. Sufficient PMs can reduce the possibility of
equipment breakdown but increase the PM cost. Therefore, a trade-off exists
between the PM cost and the failure cost. A metric to evaluate the efficiency of a
PM policy is the expected maintenance cost per unit time.

Suppose the equipment data are acquired at scheduled sampling times �, 2�,
3�, . . .,m�, . . ., where � is a constant time interval. At these specific time points,
a PM decision (to perform a PM or do nothing) is made. Since the health state
transition probabilities are age-dependent, �mþ1 must be calculated from �m using
the aging Markovian model presented in section 3.2. Notice that our transition
probability matrix is time dependent and is therefore a nonstationary Markov chain.
That is, the equipment’s health has a tendency to worsen as it becomes older.

For a stationary Markov chain, the n-step transition probabilities �(n) can be
obtained from n powers of one-step transition probability matrix, i.e. �(n)

¼�n. But
in the aging Markovian prognosis model, the n-step transition probabilities are
different at different observation points. At any given period m, the n-step transition
probabilities are calculated by

�ðnÞm ¼ �m ��mþ1 � � ��mþn�1: ð15Þ

We can now determine the expected cost per unit time, denoted by � based on the
renewal theory. If we decide to perform a PM after k periods (i.e. PM at (mþ k) �)
as shown in figure 11, given a health index state s at the mth period, the expected cost
per unit time is.

Eð�ðm, kÞjsÞ ¼
expected cost per cycle

expected cycle time
¼

Cþ K � Prfk�4TðmÞjsg

E ½m�þminðk�,TðmÞÞjs�
ð16Þ

where C is the cost of performing a PM, K is the additional cost for a breakdown
repair, i.e. the cost of a breakdown repair is CþK. T(m) is the Time To Failure
(TTF) from the current time period m. Pr{k�4T(m)|s} is the probability that the
equipment breaks down before the PM at period k is performed given the current
state is s. A maintenance cycle is terminated by either the PM or the equipment
breakdown. Therefore, the numerator in equation (16) represents the expected cost
per cycle and the denominator E[min(k�,T(m))|s] denotes the expected cycle length.
Our objective is then to find an optimal k at any given period m that minimizes
E(�)m, k(s).

In order to calculate the expected cycle length, we again use the Markov chain
theory. Define the following two variables:

f
ðnÞ
ij ðmÞ : the probability that the equipment health goes from state i at period m

to state j for the first time at period mþ n

0 ∆ 2∆ …… mD (m +k)D

kD

PM to be performed

Time

Previous PM

Figure 11. Illustration of PM location on time axis.
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P
ðnÞ
ij ðmÞ : the probability that the equipment health state starts from i at period m

and becomes j at period mþ n

If F presents the state of machine failure and is therefore an absorbing state,

it can easily be found that

f
ðnÞ
iF ðmÞ ¼ P

ðnÞ
iF ðmÞ � P

ðn�1Þ
iF ðmÞ for n > 1

and

f
ð1Þ
iF ðmÞ ¼ P

ð1Þ
iF ðmÞ for n ¼ 1

where P
ðnÞ
iF ðmÞ is an entry in �ðnÞm : From the above definitions, we can immediately

obtain:

Prfk�4TðmÞjsg ¼ P
ðkÞ
sF ðmÞ:

Suppose we plan a PM after k periods given the current state s at period m.
E[min(k�,T(m))|s] represents the expected cycle length. The cycle length is k� if the

cycle is ended by a PM and is T(m) if the cycle is ended by an equipment breakdown.

The probability that the equipment is down after k periods is P
ðkÞ
sF ðmÞ, which can be

obtained from �ðkÞm : We can derive:

E ½m�þminðk�,TðmÞÞjs�

¼ m�þ k� � PrfTðmÞ4k�jsg

þ� � Prfequipment fails for the first time after 1 periodjsg þ � � �

þ k� � Prfequipment fails for the first time after k periodjsg

¼ m�þ k� � ð1� P
ðkÞ
sF ðmÞÞ þ� � f

ð1Þ
sF ðmÞ þ 2� � f

ð2Þ
sF ðmÞ þ � � � þ k� � f

ðkÞ
sF ðmÞ

¼ m�þ k�ð1� P
ðkÞ
sF ðmÞÞ þ�P

ð1Þ
sF ðmÞ þ 2�ðP

ð2Þ
sF ðmÞ � P

ð1Þ
sF ðmÞÞ þ � � � þ k�ðP

ðkÞ
sF ðmÞ

� P
ðk�1Þ
sF ðmÞÞ

¼ m�þ k���
Xk�1
l¼1

P
ðlÞ
sFðmÞ for k41

and

E ½m�þminðk�,TðmÞÞjs� ¼ ðmþ 1Þ� for k ¼ 1: ð17Þ

Here, we impose that the decisions (PM, breakdown repair, or do nothing) are made
and the equipment failures are observable only at discrete time points

�, 2�, 3�, . . . ,m�, . . . .
We have determined both the numerator and denominator in equation (16).

Given the current state s at time m�, if a PM is planned after k periods, the expected

cost per unit time now becomes:

Eð�ðm, kÞjsÞ ¼
Cþ K � P

ðkÞ
sF ðmÞ

m�þ k��� �
Pk�1

l¼1 P
ðlÞ
sFðmÞ

for k � 1 ð18Þ
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where let P
ð0Þ
sF ðmÞ ¼ 0: Equation (18) is then the objective cost function to be

used to determine the optimal PM policy. It should be noted that a cost
function, commonly used in machining economics problems (see, for example,
Kaspi and Shabtay 2003), calculating the expected cost per manufactured item,
instead of the expected cost per unit time, could also be formulated as the
objective function. In the formulation of the expected cost per item, the
maintenance cost becomes the manufacturing overhead in addition to the unit
manufacturing cost. It can be easily shown that minimizing the expected cost per
item is equivalent to minimizing equation (18) when the product quality cost is
not considered and the processing time per item and the manufacturing cost per
item are both constant.

4.1.2 Downtime minimization model. Cost estimation may be an issue for the cost
minimization model. Downtime minimization model then serves as an alternative for
obtaining the dynamic PM policy. There are two types of equipment downtime:
downtime for performing PM and downtime for breakdown repair. The downtime
for breakdown repair is usually much longer than that of performing a PM. Similar
to the cost minimization, we should determine an optimal PM schedule by
minimizing the long-term average downtime fraction. Let � denote the fraction of
equipment downtime.

Eð�Þ ¼
Total expected downtime per cycle

Expected cycle length
ð19Þ

Equation (19) expresses the expected downtime fraction. Assume R is the
downtime when performing a PM and D is the additional idle time needed for a
breakdown repair (i.e. the total downtime due to the machine’s breakdown is RþD).
Similar to equation (18), the numerator in (19) can easily be found to be
RþD � P

ðkÞ
sF ðmÞ: The expected cycle length is, however, different from the cost

model in section 4.1.1. In a cost minimization model, the downtime due to PM or
breakdown repair is usually neglected.

As shown in figure 12, the PM and breakdown repair downtimes should be now
taken into consideration in the expected cycle length. Suppose we are at time period
m with the health state equal to s and a PM is planned to perform after k periods.

PMPM PMPM Failure repair

a cycle a cycle

downtime uptime

Time

Figure 12. The cycle length for downtime minimization model.
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The expected cycle length is therefore:

E ½m�þminðk�þ R,TðmÞ þ RþDÞjs�

¼ m�þ ðk�þ RÞ � PrfTðmÞ þ RþD4k�þ Rjsg

þ ð�þ RþDÞ � Prfequipment fails for the first time after 1 periodjsg þ � � �

þ ðk�þ RþDÞ � Prfequipment fails for the first time after k periodjsg

¼ ðk�þ RÞ � ð1� P
ðkÞ
sF ðmÞÞ þ ð�þ RþDÞ � f

ð1Þ
sF ðmÞ þ 2� � f

ð2Þ
sF ðmÞ

þ � � � þ ðk�þ RþDÞ � f
ðkÞ
sF ðmÞ

¼ ðk�þ RÞð1� P
ðkÞ
sF ðmÞÞ þ ð�þ RþDÞP

ð1Þ
sF ðmÞ

þ ð2�þ RþDÞðP
ð2Þ
sF ðmÞ � P

ð1Þ
sF ðmÞÞ þ � � � þ ðk�þ RþDÞðP

ðkÞ
sF ðmÞ � P

ðk�1Þ
sF ðmÞÞ

¼ Rþ k���
Xk�1
l¼1

P
ðlÞ
sFðmÞ þDP

ðkÞ
sF ðmÞ for k > 1

and

E ½m�þminðk�þR,TðmÞ þRþDÞjs� ¼ ðmþ 1Þ�þRþDPsFðmÞ for k¼ 1 ð20Þ

Therefore, given the current state s and the current age m�, the expected
downtime fraction is shown in equation (21) if a PM is planned after k periods.

Eð�ðm, kÞjsÞ ¼
RþD � P

ðkÞ
sF ðmÞ

m�þ Rþ�ðk�
Pk�1

l¼0 P
ðlÞ
s,FðmÞÞ þD � P

ðkÞ
s,FðmÞ

for k � 1 ð21Þ

In addition, the machine’s expected utilization rate can be expressed as
1�E [�(m, k)|s].

4.2 Optimal PM decisions

The score of the health index reflects the condition of the equipment’s health. In
order to determine when the machine needs a PM given a real-time score of the
health index, we should find a threshold for the health index scores. When the
observed score exceeds this threshold, a decision is made to perform a PM at the next
available time.

Suppose that

. the current time, i.e. the machine age, is m�

. the current state is s (i.e. the health index is corresponding to state s);

. a planned PM is schedule to perform after k periods of time (i.e. PM at time
(mþ k) �).

The expected cost per unit time is E[�(m, k)|s] and the expected downtime fraction is
E[(m, k)|s], which are calculated from equations (18) and (19), respectively.

Given the time point m� and the health index state s, there exists k*(s,m) that
minimizes E [�(m, k)|s] or E [�(m, k)|s].

Eð�ðm, k�ÞjsÞ ¼ min
k

Eð�ðm, kÞjsÞ
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or

Eð�ðm, k�ÞjsÞ ¼ min
k

Eð�ðm, kÞjsÞ ð22Þ

Since we want to minimize the expected cost per unit time, a minimum cost PM
decision is therefore: if the minimum cost appears at k*(s,m)41, it implies that to plan
a PM at k*(s,m)41 will attain a lower average cost. Then, we should not perform a
PM at next decision making time. If the minimum cost appears at k*(s,m)¼ 1, we
should perform a PM right away. This rule will be used to construct a dynamic PM
policy.

If the state space is of size 11 and the state space is S¼ {F, s1, s2, . . . , s10}, there
will be ten k* values, k*(s1,m), k*(s2,m), . . . , k*(s10,m), at time m� for each S except

t=1

Calculate E[m(m,k)|s] or
E[r(m,k)|s]

t=t+1

No

PM alarm boundary

Step 1. Found
k*(t,si) for all si’s

Step 2. Calculate
s*(t) = max{si : k*(si ,t)=1}

k*(t,si)

s*(t)

Is the time horizon through t
long enough?

Yes

Step 3. Form the boundary:
s*(1),s*(2),s*(3),…, s*(t),…

Figure 13. Steps of generating the PM alarm boundary.
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for the failure state F. Suppose a larger value of S indicates a healthier equipment
condition, k*(si,m) is then a nondecreasing function of si. Let

s�ðmÞ ¼ maxfsi: k
�ðsi,mÞ ¼ 1g ð23Þ

That is, s*(m) denotes the healthiest equipment state among the equipment states
that satisfy k*(s1,m)¼ 1at time m�. Then, s*(m) is the threshold for performing the
PM. When a health index is calculated at time m�, the score is first converted to
a state value (e.g. table 2). The state value is then compared to the threshold state
s*(m). If the observed state value is lower than s*(m) at time m�, the decision will
be to perform the PM right away.

The above decision is made at time m�. Given any time point t, there exists a
threshold state s*(t). A sequence of threshold states s*(t), t¼ 1, 2, 3, . . . , can be then
calculated at time points �, 2�, . . . , t�, . . . and forms a PM alarm boundary.
Figure 13 shows the steps in a flow chart.

The PM alarm boundary is actually the least tolerable value of the equipment
health. That is, any observed health state lower than this boundary will be regarded
as an alarming situation where a PM is urgently needed.

Figure 14 shows a typical PM alarm boundary in dotted line and a sample path of
actual health state observations in solid line. As can be seen, dynamic PM decisions
can be easily made by monitoring the trend of the actual health index observations.
Once the trend goes below the alarm boundary, a PM should be performed.

4.3 Example

In this section, we use an example to explain how to calculate the alarm boundary
from the equipment condition prognosis model. The prognosis model with an aging
factor �¼ 0.025 presented in the example of section 3 is used. Take the downtime
minimization model for example. We can calculate the expected downtime fraction
for different sets of values of k, m, and s using equation (21).

Table 4 lists the expected values of downtime fractions (%) (R¼ 10 and D¼ 100)
for t¼ 51 and 52. For t¼ 51 in table 4, the minimum expected downtime calculated

H
ea

lth
 I

nd
ex

Equipment’s Run Time (hr.)

Alarm Boundary
20

40

60

80

100

50 100 400350300250200150

Trend of Health
Index

PM!

Figure 14. A typical PM alarm boundary and a sample path of health index.
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by equation (22) is underlined for each state si. As can be seen, the minimum

expected downtime with k*¼ 1 appears in state 1, 2, 3, and 4. State 4 has a largest

health state value so that the threshold at time t¼ 51 is set at state 4 by equation (23).

Other threshold states at different time points can be obtained in the same way. The

minimum downtime corresponding to the threshold states are highlighted in table 4.
Figure 15 presents the PM alarm boundary formed by the threshold states over

the time horizon from 0 to 150, where the states have been translated back to the

corresponding value of health index (refer to table 2).
We can find that the PM alarm boundary in figure 15 increases along with

equipment’s run time. This increasing boundary results from the increasing

probability for the equipment’s condition to become worse. When the failure

probability grows up with time, the expected downtime fraction due to failure repair

will increase. Therefore, the increasing rate of the PM alarm boundary is greatly

affected by the relation between PM downtime and the failure repair downtime. That

is, the boundary will increase rapidly if the failure repair downtime is much more

than the PM down time (i.e. D is large compared to R). On the other hand, the
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Figure 16. Comparison of PM alarm boundaries with different R and D (example).

Figure 15. PM alarm boundary (example).
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boundary will grow slowly with time if the additional downtime due to failure repair
is relatively small. Figure 16 shows the PM alarm boundaries with different values of
(R,D). The dotted line represents the boundary with a large D and the solid line
represents the boundary with a relatively small D. As shown, a smaller D will result
in a lower boundary.

5. Concluding remarks

In this paper, we have demonstrated a procedure to evaluate and prognosticate the
equipment health. Although the proposed health index is rather ad hoc and more
rigorous comparisons and discussions are needed, it serves as a starting point for
utilizing the vast equipment sensor data to gain information on the equipment
health. This paper has also presented a novel condition-based PM policy. To
distinguish our approach from the conventional condition-based maintenance
(CBM) and PM policies under Markovian or semi-Markovian deterioration model
in the literature, we have named our approach a dynamic PM policy under aging
Markovian deterioration. In CBM, the time-based maintenance, with the failure rate
directly impacted by a hazard rate function, is extended to incorporate the
equipment condition as a factor precipitating the hazard rate. The dynamic PM
policy, in contrast, is rooted in a stochastic health model and the age is modeled as a
factor hastening the equipment health deterioration. To ensure the applicability of
the proposed approach, model estimation is also developed and the procedure is
demonstrated through examples. In addition, the PM policies considered in this
paper are only full-scale PM policies. Optimization models for other types of PM
policies, such as minimum repairs, can be studied in the future research.
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