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THE LOAD SHARING CONTRIBUTION OF 
SPINAL FACET JOINT DURING IMPACT 

LOADING – A PORCINE BIOMECHANICAL 
MODEL  
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Guan-Liang Chang2, Cheng-Hsien Chung1 

1Institute of Biomedical Engineering, National Taiwan 
University, Taipei, Taiwan 

2Institute of Biomedical Engineering, National Cheng 
Kung University, Tainan, Taiwan 

ABSTRACT 
 
The components that share the loading of motion segment include the 
facet joint and disc.  Nachemson [1] reported the facet joint share 18% 
of vertical loading in a motion segment; while many other researchers 
reported the load sharing percentage of facet joint ranges from 1% to 
57% [2,3]. The current study developed a unique apparatus using an in 
vitro porcine spine model to quantify the alteration of loading in the 
facet joint under impact compressive loading at different loading 
conditions.  A drop tower type impact apparatus was used to produce 
the impact energy for the motion segment.  A 6-D load cell was placed 
under the specimen to detect the force and moment responses. The 
pressure sensor was inserted into the facet joint to find the contact 
force. The pointed axial compressive forces were applied at 8 locations 
from anterior to posterior of upper vertebrae to mimic different impact 
loading conditions.  The impact energy was fixed at 1.2 J. We found 
that; when the loading was applied anteriorly, the facet joint sustained 
very small percentages of the loading; while the location of the loading 
moved posteriorly, the facet joint sharing percentages increased.  The 
largest sharing percentages of facet joint reached 30% in the current 
study. 

MATERIALS AND METHODS 
 

Three fresh-frozen porcine spinal motion segment (L2/L3) was 
used in the experiment.  The specimens were dissected preserving the 
osteoligamentous structure. A “drop-tower type” impact testing 
apparatus was modified for the testing (Figure 1).  The impactor was 
guided by two rods to give a vertical motion. The energy was 
transmitted to the specimen through the impounder.  The shock 
absorber was placed on the top of the impounder to control the impact 
contact period.  The stiffness of shock absorbers is 180 kN/m when the 
loading speed is 1.4 m/sec.  The shock absorber is able to give, 
approximately, the contact time of impact at levels of 40 mini-seconds 
when testing a standard rubber bar specimen (Stiffness = 1000 kN/m, 
Length = 110 mm) at 12 kg impact mass and 50 mm impact height.  
The fixed frame, which is fixed to the guiding rode, is used to align the 
vertical movement of impounder.  The specimen was mounted 
vertically below the impounder with a uni-axial load cell (Kistler 
9021A, Kistler Instrumente, Winterthur, Switzerland) and above the 
six-axial force load cell (AMTI MC6-6-4000, Advanced Mechanical 
Technology, Inc., Watertown, MA, USA). An LVDT (ACT500A, 

RDP Electronics Ltd., Health Town, Wolverhampton, UK) was 
applied on the impounder to check the deformation of specimen.  The 
specimen was loaded at eight points from anterior to posterior.  Each 
loading point is 10 mm apart.  The trajectory of the vertical loading of 
point 1 is along the anterior wall of vertebrae, while that of point 3 and 
point 4 enter the central of vertebrae.  The loading trajectory of point 5 
is along the posterior wall, and that of point 7 and 8 goes through the 
facet joint (Figure 2).  The impact height is 10 mm, and the impact 
weight is 12 kg; hence the impact energy is 1.2 J. The pressure sensors 
(FlexiForce Sensors, Model#A101, Tekscan Inc.) were inserted into 
the both facet joints to find the joint contact force. Signals of facet 
joint contact force, input force, three dimensional reaction forces and 
moments from the six-axial force load cell were all recorded at 10 kHz 
sampling frequency.  The signals were than low pass filtered at 500 Hz 
frequency using Butterworth filtering algorithm.  
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Figure 1. The schematic plot of testing apparatus. The 
vibrator was guided by two rods to give a vertical motion. 
The energy of the vibration was produced with the two 
eccentric rotors.  The specimen was mounted vertically 
below the impounder and above the six-axial force load cell. 
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Figure 2. Schematic plot of loading locations of spine joint 

RESULTS 
 
 The typical loading history of axial force, bending moment and 
total joint contact pressure of selected points at point 1 (anterior), point 
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4 (central), and point 7 (posterior) of specimen #2 were plotted in 
Figure 3.  The impact contact time is controlled within 40 mini-
seconds, and the peak loading is around 600 N (Figure 3A).  The 
bending moment varies largely with respect to the loading point.  The 
moment was in flexion when the load was applied at the anterior of 
vertebral body, and was in extension when the load was applied  
posteriorly (Figure 3B).  The facet joint force was small when the 
loading was applied anteriorly, but responded promptly with the axial 
force when the loading was applied posteriorly (Figure 3C).  The axial 
resultant force remained constant w.r.t. the variation of loading 
locations.  The facet joint contact force increased, but the flexion 
moment decreased when the loading locations moved posteriorly 
(Figure 4). When the loading was applied anteriorly, the facet joint 
sustained very small percentages of the loading; while the location of 
the loading moved posteriorly, the facet joint sharing percentage 
increased.  The largest sharing percentages of facet joint reached 30% 
(Figure 5). 
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Figure 3. The (A) axial force, (B) bending moment and (C) 
total facet joint contact force of specimen loaded at 
location 1 (anterior), 4 (central), & 7 (posterior) 
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Figure 4. The peak axial and facet joint force, and the 
flexion bending moment with respect to the location of 
loading point.  
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Figure 5. The sharing percentages of facet joint over the 
axial resultant force.  

DISCUSSION 
 
 We successfully developed an apparatus that is able to detect the 
three dimension dynamic forces, moments and facet joint contact force 
responses of testing specimens during impact loading.  We showed 
that the value of maximum moment and facet joint contact force 
responses of spine joint was determined not only by the magnitude of 
axial loading but also the loading locations.  The load sharing of fact 
joint of current study ranges from 0 to 30%, which is close to the 
prediction of Nachemson’s results [1].  However, our results give a 
more detail inspection on the effect of loading condition.  The 
limitation of current study is the geometric inconsistency of porcine 
spine from human spine.  The anatomic variation of porcine spine with 
respect to human one will be studied, and the relationship of facet joint 
geometry and loading condition need to be verified in the future.  
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STRAIN ENERGY DENSITY DISTRIBUTION OF VERTEBRAL BODY OF TWO 
MOTION SEGMENT MODEL UNDER COMBINED COMPRESSION AND SAGITTAL 
BENDING MOMENT – AN IN VITRO PORCINE SPINE BIOMECHANICAL STUDY 
 
Jaw-Lin Wang, Ph.D. and Yuan-Chuan Tsai, B.S., Been-Der Yang, Ph.D. 
Institute of Biomedical Engineering, College of Medicine and College of Engineering,  
National Taiwan University 
 
ABSTRACT 

The purpose of current study is to find the strain energy density (SED) distribution of vertebral body during 
different compression loading combined with sagittal bending moment.  The combined flexion and extension, which is 
generated by applying an eccentric pointed loading on the motion segment, is to mimic different postures of trunk and 
loading on the spine column.  Two strain gage rosettes were applied at the anterior site and posterior site of vertebral 
body.  The total SED, deviatoric SED and dilatation SED were obtained from the measurement of two rosettes.  Three 
major phenomena are observed in the current study; first, the anterior site of vertebra is at higher risk comparing to the 
posterior site of vertebra when the motion segment is in compression combined with extreme flexion and extension.  
Second, the SED is minimal when the loading is applied along the trajectories of spinal cannel and facet joint.  Third, 
the major contribution of SED is from the deviatoric SED.  The distribution of SED within the vertebral body during 
different loading condition can serve as the baseline of treatment in preventing the vertebral body from the risk of 
compression fracture.   
Key Words: Strain Energy Density, Vertebral Body, Spine Biomechanics 
 
1.  INTRODUCTION 
 

The principle of traditional spinal fixation 
instruments is to provide strong fixation and stability of 
two adjacent moving vertebral bodies. That is to restore 
the posture and stiffness before trauma or injury occurs.  
It is hence essential to find normal posture and stiffness of 
intact motion segment. The well-recognized method of 
evaluating the spine function is to apply the pure moment 
on the motion segment, and then measure the relative 
rotation of two vertebras. The larger relative rotation 
indicates the less stability, and vice versa (Abumi et al. 
1989; Panjabi 1988; Panjabi et al. 1988; Wilke et al. 1998).  
Although this evaluation method is straightforward, it 
only provides the global biomechanical behavior of 
motion segment. The resolution of traditional stability test 
cannot differentiate the outcome of the newly developed 
technique, for instance, the percutaneous vertebroplasty 
(PV) treatment. The PV treatment is used to recover the 
strength of vertebra.  The local biomechanical behavior, 
e.g. bone strain, stress and strain energy density (SED), 
needs to be observed to find the subtle changes with 
respect to the treatment.  It is therefore important to find 
the micro mechanics of vertebra such as strain, stress and 
SED of normal condition as the baseline for the study of 
PV treatment. 

The strain gage implantation on the surface of bone 
was widely used for the study of in vivo loading and bone 
growth and adaptation (Burr et al. 1985; Burr et al. 1989a; 
Burr et al. 1989b; Lanyon and Rubin 1984; Rubin and 
Lanyon 1984). The strain gage rosettes can also be used 
to measure the strain field and calculate SED.  An in 
vivo measuring of human tibia showed that the SED 
reached 0.5 kJ/m3 and 5.5 kJ/m3 during walking and 
jogging, respectively (Mikic and Carter 1995).  In 

addition, he found, during a gait cycle, the majority 
contribution of SED at heel-off stage came from the shear 
SED.  A maximum of 54 kJ/m3 SED was found on the 
equine third metacarpal midshaft throughout the stance 
and swing phase (Gross et al. 1992).  Nevertheless, the 
application of strain gage on spine biomechanics is 
limited to the measurement of strain of the vertebral body 
(Frei et al. 2002; Frei et al. 2001; Hongo et al. 1999; Shah 
et al. 1978) and the contact force of the facet joint 
(Buttermann et al. 1991; Buttermann et al. 1992) only.  
The strain measurement of vertebral body was used to 
find the stress concentration of vertebral body during 
impact burst fracture (Hongo et al. 1999).  Hongo et al. 
attached 11 gages on the surface cortical bone, and 
applied the axial compressive loading on the top of 
vertebral body.  They found the posterior site of the 
vertebra was the most critical site for burst fracture 
injury.   

The aim of current study is to find the distribution 
of SED of vertebra during different compression loading 
combined with sagittal bending moment.  The motion 
segment is pointed compressive loaded to mimic the 
motion segment at different postures or rehabilitation 
strategies. For example, when the pointed load is applied 
along the trajectory of anterior wall of vertebral body, it 
mimics the combined flexion loading together with the 
compressive loading.  When the load is applied along 
the trajectory of posterior process, it mimics the 
combined extension together with the compressive 
loading.  In this study, we are interested in compression 
fracture injury; hence, the total SED, together with the 
deviatoric and volumetric SED at anterior and posterior 
site are measured.  It is hoped we can find the subtle 
changes in the vertebra during different loading condition.  
The founding of the current study can serve as the 
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baseline for the future studies in finding the ultimate 
treatment of the augmentation of vertebral body, such as 
the PV. 
 
2. METHODS AND MATERIALS 
 
 Eight fresh-frozen porcine spinal motion segments 
(T12/L1/L2) were used in the experiment.  The 
specimens were dissected preserving the 
osteoligamentous structure.  A “drop-tower type” 
impact testing apparatus was modified for the testing 
(Figure 1).  The impactor was guided by two rods to 
give a vertical motion. The energy was transmitted to the 
specimen through the impounder.  The shock absorber 
was placed on the top of the impounder to control the 
loading contact period.  The stiffness of the shock 
absorber is 180 kN/m when the loading speed is 1.4 
m/sec.  The shock absorber is able to give, 
approximately, the contact time at levels of 40 
mini-seconds when testing a standard rubber bar 
specimen (Stiffness = 1000 kN/m, Length = 110 mm) at 
12 kg impact mass and 50 mm impact height.  The 
fixed frame, which is fixed to the guiding rode, is used to 
align the vertical movement of the impounder.  The 
specimen was mounted vertically below the impounder 
and above the six-axial force load cell (AMTI 
MC6-6-4000, Advanced Mechanical Technology, Inc., 
Watertown, MA, USA).    

The specimen was loaded at eight points of location 
from anterior to posterior.  Each loading point is 10 mm 
apart.  The trajectory of the vertical loading of point 1 is 
along the anterior wall of vertebral body, while that of 
point 2 enters the central of vertebral body.  The loading 
trajectory of point 3 is along the posterior wall, and that 
of point 4 and 5 go through the spinal cannel and facet 
joint.  The trajectory of point 6, 7 and 8 go through the 
posterior process (Table 1 & Figure 2).  The loading 
height is 10 mm, and the weight is 12 kg; hence the input 
energy is 1.2 J.  Two 3-axial strain gage rosettes 
(Kyowa KFG-1-120-D17-11N50C2, Kyowa Electronics 
Instruments Co., Ltd., Tokyo, Japan) were applied on the 
anterior and posterior site of vertebral body (Figure 3).  
Signals of two strain gage rosettes, resultant axial forces 
and flexion moments were recorded at 10 kHz sampling 
frequency.  The signals were then low pass filtered at 
500 Hz frequency using Butterworth filtering algorithm. 

The two principal strains at anterior and posterior 
site of vertebral body can be calculated from the 
measurement of two strain gage rosettes.  The total, 
dilatation and deviatoric SED can be obtained from the 
two principal strains and stresses using the following 
equations.  
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where E=11.032 GPa, ν= 0.3 for cortical bone (Cao et 
al. 2001).  The stiffness of cortical bone is assumed to 
be isometric. 
 
3. RESULTS 
 

The typical loading history of axial force and 
bending moment of point 1 (anterior of vertebral body), 
point 4 (spinal cannel), and point 7 (posterior process) of 
specimen #11 are plotted in Figure 4.  The contact time 
of loading is controlled within 50 mini-seconds.  The 
peak force reaches around 500 N for this specimen.  No 
significant pattern and magnitude variation of the axial 
force is found from the changing of loading points 
(Figure 4A).   The pattern of bending moment is, 
however, changes with the location of loading points.  
The moment is in flexion when the load is applied at the 
anterior of vertebral body, and is in extension when the 
load is applied at the posterior process of motion 
segment (Figure 4B).  The maximum magnitude of 
axial force and bending moment of each loading with 
respect to the location of loading points is plotted in 
Figure 5.  The variation of magnitude of axial force is 
about constant for all points of loading location.  The 
bending moment is in flexion when the load is applied 
along the trajectory of anterior and center of vertebra. 
The bending moment is about zero when the load is 
applied along the trajectory of posterior of vertebra.  
The extension moment increases as the loading point 
moves toward the spinal cannel and facet joint.  
However; the bending moment slightly decreases if the 
loading moves further to the posterior site of posterior 
process.  

The total, deviatoric and dilatation SED at both 
anterior and posterior site is highest when the load is 
applied at anterior wall of vertebral body (point 1) and 
the very last location of posterior process (point 8), that 
is the extreme loading condition of axial loading 
combined with flexion and extension.  The SEDs 
decrease when the loading point gradually approaches 
the center of motion segment.  All the SEDs are 
smallest when the loading is applied along the spinal 
canal (point 4) and facet joint (point 5).  This may 
indicate that the vertebra is at least risk when the loading 
is applied at the center of the motion segment, i.e. the 
trajectory of the spinal canal and facet joint, but not the 
center of vertebra.  During the extreme loading 
condition; i.e. the loading point 1, 2, 7, 8; the SEDs at 
anterior site of vertebra are higher than that of at 
posterior site, which may indicate that, the anterior site 
of vertebra encounters more risk than the posterior site 
when the motion segment is at extreme flexion and 
extension.   The highest total SED is at the order of 10 
kJ/m3, and the lowest total SED is at the order of 1 kJ/m3 
when the input energy of the specimen is 1.2 J (Figure 
6). 

 Around 90% of the total SED is contributed by 
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the deviatoric SED.  At the anterior site of vertebral 
body, the contribution of deviatoric SED to the total SED 
is uniformly and slightly above 90% for SED for all 
points of loading location.  At the posterior site of 
vertebral body, the contribution of deviatoric SED, 
nevertheless, is smaller when the load is applied at 
anterior wall of vertebra, i.e. around 85%, but gradually 
increases when the load is applied at posterior process, 
i.e. well above 95% (Figure 7).   
 
4. DISCUSSION 
 

To our knowledge, this is the first time that the 
SED distribution of vertebra with respect to the loading 
condition was measured.  Our results are in the scale of 
single digit of kJ/m3, which is consistent to the in vivo 
SED of human tibia cortex during walking.   The input 
energy of our experiment is only 1.2 J, which is 
considerably smaller than the in vivo condition.  
However, since the cross section area and height of 
specimen is estimated at 2000 mm2 and 100 mm, and the 
total volume is in the range of 2*10-4 m3.  Assuming the 
average SED within the vertebra to be 5 kJ/m3. This 
gives the stored energy within the specimen to be 1 J, 
which is consistent to scale of input energy.  The 
estimation, therefore, warranted our data. 
   Three major phenomena are observed in the current 
study; first, the anterior site of vertebra is at higher risk 
comparing to the posterior site of vertebra when the 
motion segment is in compression combined with 
extreme flexion and extension.  Second, the SED is 
minimal when the loading is applied along the 
trajectories of spinal cannel and facet joint.  Third, the 
major contribution of SED is from the deviatoric SED.  
The first phenomenon is consistent with the pathological 
observation of vertebra compression fracture, i.e. the 
collapse of anterior vertebral body.  The second 
phenomenon may indicate that the straight posture, 
which the gravity line of loading trajectory pass through 
the center of motion segment, is best in minimizing the 
risk for the vertebral body from the compression fracture.  
The third phenomenon may imply that the collapse of 
anterior wall of vertebra could be analogue to the ductile 
fracture observed in engineering material. 

It should be noted that; although we used the impact 
testing apparatus to conduct the experiment, the current 
simulation is not for simulation of the burst fracture of 
vertebra, another common vertebra deformity observed 
during accidental injury.   The major difference of 
simulation of the two fractures is the configuration of 
loading condition.  The current loading condition is 
axial point load on the top of vertebra.  The motion 
segment is freely to rotate in the sagittal plane.  During 
the burst fracture, that the occurrence of injury is so fast, 
the rotation of motion segment in sagittal plane is limited.  
Hence the simulation of burst fracture is, in general, 
distributed loaded with the constrained rotation in the 
sagittal plane (Oda and Panjabi 2001; Oda et al. 2001; 
Panjabi et al. 2001b; Panjabi et al. 2000).  The current 
protocol is designed to simulate the effect of posture, 

rehabilitation strategies and daily physiological 
activities. 

The source of in-vitro experiments comes from 
human and animal. The advantage of using the animal 
model is the consistence of specimen condition that often 
leads to small variation of experiments.  It is widely used 
for instrumentation performance (Allan et al. 1990; Nasca 
et al. 1990; Panjabi 1998; Rikhraj et al. 1999). The calf 
(Allan et al. 1990; Davies et al. 1984; Wilke et al. 1997; 
Wilke et al. 1996), swine (Allan et al. 1990; Davies et al. 
1984) and sheep (Davies et al. 1984; Wilke et al. 1997) 
are generally used for in-vitro spine biomechanical testing.  
The advantage of using the human specimen is that the 
results reflect the human spine behaviors.  However, the 
research with human specimen generally uses few 
specimens, and the condition of the specimens varies a lot 
due to the lack of control on subject’s age, gender … etc.  
The large variation of the human specimen is not good for 
the statistical analysis; however, it is good to interpret the 
results, which show the spectrum of mechanical behavior 
of human specimens (Panjabi 1998).  The biomechanical 
difference of animal from the human specimens includes 
the material properties and structural morphology. 

In this study, we used porcine spine model.  We 
tested the bone quality of porcine vertebral body using 
dual-energy x-ray absorptiometry (Dexa) scanning.  
The bone mineral density (BMD) of 92 kg and 120 kg 
porcine spine ranges from 1.107 to 1.165 g/cm2 (Mitchell 
et al. 2001), where the average value of Chinese female 
from 20 to 50 years of age surveyed at National Taiwan 
University Hospital range from 1.102 to 1.012 g/cm2.   
Our results from porcine vertebra may represent the 
results of healthy adult before the aging taking effect.  
Comparing to other experimental animals such as calf, 
sheep, rabbit, rat, … etc, the morphology of porcine 
lumbar spine is the one analogous most to the human 
spine in terms of morphology (McLain et al. 2002). The 
most significant morphological difference is the structure 
of the anterior facet joint (analogous to the superior facet 
joint in human spine), which is a ”hook” like process 
(Figure 8) in comparison to the straight process in human 
spine. Although this geometric difference may put the 
facet joint in higher load sharing especially at lateral 
shear loading, the loading condition of our testing is in 
axial compression only.  It is hence we believe that the 
effect of the morphological difference in such loading 
condition can be minimal.  

We do not consider the effect of muscle recruitment 
in this study.  Some researchers tried to find the spinal 
physiological loading by putting the load cell into the 
internal fixation instrumentation (Graichen et al. 1996; 
Rohlmann et al. 1994; Rohlmann et al. 1998; Rohlmann 
et al. 2000); however, the data is still not physiological.  
Recently, the follower load, which is provided by the 
tensioned cable along the axis of spinal column, is 
designed to mimic the stability effect of the muscle 
(Cripton et al. 2000; Miura et al. 2002; Panjabi et al. 
2001a; Patwardhan et al. 2000; Patwardhan et al. 1999; 
Patwardhan et al. 2001; Rohlmann et al. 2001).  In our 
current study, we focused on the effect of the axial 
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compressive loading and combined flexion and extension.  
The effects of other directions of forces and moments are 
minimal.  

The spine testing apparatus can be categorized into 
the functional (stability) testing apparatus and the 
traumatic testing apparatus. The purpose of functional 
testing apparatus is to mimic the physiological loading 
condition of the human body. The static loading 
magnitude of the in-vitro testing of lumbar spine is well 
recognized, e.g. 7.5 to 10 Nm for flexion moment 
(Panjabi 1988; Panjabi et al. 1988; Wilke et al. 1998), 
and 800 N to 2 kN for axial loading (Nachemson 1981).   
The purpose of trauma testing apparatus is to mimic 
various trauma conditions resulting from accidental, 
occupational or sports injury, e.g. the burst fracture of 
thoracolumbar spine (Oda and Panjabi 2001; Oda et al. 
2001; Panjabi et al. 2001b), whiplash injury of cervical 
spine (Panjabi et al. 1998a; Panjabi et al. 1998b; Panjabi 
et al. 2004), and the repetitive injury of lumbar spine (Au 
et al. 2001; Yoganandan et al. 1994).  Hence the loading 
magnitude of traumatic testing is in higher order than the 
physiological loading.  We used the vertical pointed 
loading to generate the complex axial loading combined 
with sagittal bending moment using the impact testing 
apparatus developed at our laboratory.  In the current 
test, the highest magnitude of the axial loading is at 600 
N, 20 Nm flexion and 25 Nm extension, which are 
within the range of physiological testing, but not the 
traumatic testing.  This magnitude fits the purpose of 
simulating motion segment at different postures and 
rehabilitation strategies. 
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Table 1.  The anatomic landmark of point of loading 
locations 
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Figure 1. Continuous Impact Testing Apparatus (CITA). 
The impactor is guided by two rods to give a vertical 
motion.  The specimen is mounted vertically below the 
impounder and above the six-axial force load cell. 
 

 
Figure 2. Locations of loading point on the motion 
segment  
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Figure 3. Locations of strain gage rosettes on the 
vertebral body 
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(B)  

Figure 4. Typical loading histories of (A) axial force and 
(B) bending moment of specimen loaded at point 1 
(anterior of vertebral body), point 4 (spinal cannel), and 
point 7 (posterior process). 
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Figure 5. Peak axial force and the flexion bending 
moment with respect to the location of loading point 
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(C) 
Figure 6. (A) Total SED, (B) Deviatoric SED, (C) 
Dilatation SED of vertebral body at anterior and 
posterior site with respect to the location of loading point 
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Figure 7. Ratio of deviatoric SED over total SED of 
vertebral body at anterior and posterior site with respect 

to the location of loading point 
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