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ABSTRACT: We analyze the segregation of strongly charged chains of N monomers of size a in the
presence of multivalent salts with valence z as a function of the concentration of monomers φ in the
solutions. The multivalent ions of opposite charge condense along the monomers and induce monomer
attractions that lead to the formation of dense finite size aggregates (micelles) of chains and multivalent
ions when their valence z > 1. We compute the number density of chains in aggregates with p ) 1, 2, 3,
4, ... chains by equating the chemical potential of all the p-aggregated chains and of the free and condensed
ions in the aggregates. At low concentration of multivalent salts m, we observe monomolecular (p ) 1)
precipitated chains when φ < φ*, where φ* = mz. When φ increases above φ*, the chains redissolve in the
solution and adopt stretched conformations. As m increases above a critical value m**, the number density
of aggregates with p > 1 chains increases such that there are more aggregates with p* > 1 chains when
φ** < φ < φ*. If we only include the surface free energy in the analysis, we find p* ) ∞. However, if we
include the chain entropy of confining p chains in a region R(p) ) (pN)1/3a in the free energy, p* can be
finite and greater than or equal to one. This situation arises when the chains are constrained to stretched
conformations, such as in metastable toroidal and in spherical coil aggregates observed in long double-
stranded DNA in multivalent ions.

I. Introduction

Linear polyelectrolytes are typically water-soluble
at low ionic strength monovalent salt solutions due
to a net repulsion between the charged monomers. In
the presence of multivalent ions or molecules of high
valence of opposite charge, however, the chains precipi-
tate into highly compact structures. These precipitates
have been observed experimentally1-5 and by computer
simulations.6-11 The electrostatic attractions due to
the condensed multivalent ions are responsible for the
precipitation of synthetic polyelectrolytes, such as poly-
(styrenesulfonate) in the presence of La3+ or Th4+ ions12

and of poly(acrylic acid)s in the presence of divalent
and higher valence salts5 as well as for the precipitation
of DNA in the presence of polyamines4,13 or of cobalt
hexamine.1

Counterion-mediated attractions have been predicted
by various models.8,9,12,14-23 Ion bridging type models
which assume a local interaction between the monomers
via condensed multivalent ions along the chains have
been extensively used to explain the multivalent-
induced precipitation of chains.4,12,15,19 Gonzalez-Mozu-
elos and Olvera de la Cruz14 showed that nonlocal type
interactions due to electrostatic correlations among
condensed counterions and monomers also lead to the
precipitation of the chains when the valence of the
counterions z is sufficiently large and/or when the
charge density along the chains is very high. They
showed that these correlations collapse the chains into
a dense state. In flexible chains a sphere of monomers
neutralized by the hydrated counterions is expected, and

in semiflexible chains, such as double-stranded DNA,
the dense state is a toroid or a spherical coil depending
on the length of the DNA (very long chains form
spherical coil aggregates).24 Many liquid theories,12-16,19,20

which include correlations in Poisson-Boltzmann mean-
field type approaches,25,26 also predict the precipitation
of the chains. However, liquid theories, either virial
models that include short-range correlations or Debye-
Huckel type models that include the contribution from
charge fluctuations, though reasonable for dilute solu-
tions in monovalent ions,27 cannot be used to describe
the resulting dense precipitate of positive and negative
charges observed in the presence of multivalent ions.
Since the cohesive energy in a neutral precipitate of
charges is much larger than the thermal energy kBT
when the ions are multivalent, the cohesive energy is
computed by using solid-state physics models, as first
suggested by Rouzina and Bloomfield.17 The cohesive
energy of an ionic solid is proportional to the Coulomb
energy of the neutral minimum cluster (unit cell).28

Therefore, it is inversely proportional to the distance
between charges, which is determined by the size of the
multivalent counterions and the charge density along
the polyelectrolytes.17 Indeed, the precipitation induced
by counterion-mediated attractions is mostly effective
by small counterions,29 in agreement with the models
that lead to strongly correlated multivalent ions be-
tween two aligned charged plates17,30 and between two
aligned rods.18 The dense state in flexible and semiflex-
ible chains resembles an ionic glass structure due to the
disorder.10,11,21,22

In chains of long degree of polymerization N with each
monomer carrying a charge, the precipitation of dilute
polyelectrolytes in multivalent salt solutions has been
studied using a two-state model.21 One state consists
of a stretched (rodlike or coillike depending on the
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concentration of monovalent salts) conformation and the
other of a dense precipitate with one chain. As discussed
above, the dense conformation does not have freely
fluctuating ions, and therefore the electrostatic interac-
tions inside the precipitate are not screened in the
Debye-Huckel screening sense. Instead, the cohesive
energy of the precipitate is estimated assuming it is an
ionic solid of a finite radius.21 That is, it is proportional
to the Coulomb electrostatic energy (monopole term) of
a minimum neutral cluster of z monomers compensated
by a counterion of valence z (the minimization yields
nearly zero monovalent ions inside the precipitate
because they have more entropy outside the aggregates
where they do contribute to screening and have less
cohesive energy in the precipitated state than the
multivalent ions).21 In ionic crystals the electrostatic
interactions with further neighbors are absorbed in the
proportionality constant in the cohesive energy, the
Madelung constant, which is of the order of one in
monovalent ionic solids.31 If the amount of monovalent
salt present in the system is low, the transition pre-
dicted with this two-state model occurs when the ratio
of polyelectrolyte concentration to multivalent salt
concentration is about z,21 in agreement with the
experimental results.4

The two-state model gives upon minimization aggre-
gates of precipitated chains with p* ) 1 or p* ) ∞, where
p* is the most probable number of chains per aggregate,
depending on the value of the surface energy when the
entropy of the chains is neglected.21 For good solvent
conditions the precipitates are monomolecular, and for
poor solvent conditions they are infinite aggregates. If
only the electrostatic surface energy is included, the
situation resembles a poor solvent condition where
macroscopic segregation is expected regardless of the
specific model used for the counterion-mediated attrac-
tions.22,32 However, monomolecular and multimolecular
aggregates of finite size have been observed in double-
stranded (semiflexible) long DNA dilute solutions in the
presence of multivalent salts.1,3,4,24,33,34 Finite size bundles
have also been observed in short DNA fragments,4,33

which are rigid rods. In rigid rods, both analysis35 and
modeling36 suggest that the bundles do not grow to an
infinite aggregate size due to kinetic effects.

In this paper we address the possibility of metastable
polydisperse aggregates of charged chains and con-
densed ions by extending the two-state model to a
thermodynamic model that allows for a distribution of
clusters of various size p ) 1, 2, 3, 4, ...; that is, the
precipitated system consists of dense aggregates of
nearly neutralized chains by condensed counterions that
have different number of aggregated chains p ) 1, 2, 3,
4, .... The number density of aggregates with p chains
per aggregate (np) is obtained by equating the chemical
potential of the chains in the different aggregates and
the chemical potential of the condensed ions in the
aggregates and the free counterions. We compute the
free energy of the aggregates with p ) 1, 2, 3, 4, ...
chains by using the ionic solid model described above.
Therefore, the aggregated chains do not obey random
walk statistics as expected in melts with only van der
Waals interactions, because the cohesive energy per
monomer in the aggregates of monomers and multiva-
lent ions is much larger than kBT. We find that the
entropy reduction of the chains aggregated into dense
micelles is essential to find polydisperse aggregates of
intermediate sizes. Though this polydisperse state of

aggregates may not be the lowest energy state of the
system, the disorder due to chain flexibility and en-
tanglements can lead to local (not global) equilibrium
conformations that may be observed experimentally.
Similar kinetic effects are observed in crystallization
processes in long multichain systems. Though the lowest
energy state is a macroscopic crystal of highly elongated
chains, micelles or crystalline clusters of about 10 nm
form. Here we also expect a perfect ionic crystal
neutralized completely by the counterions to have lowest
energy. However, kinetics and disorder make this
possibility physically impossible to observe experimen-
tally. Motivated by this fact, we explore the possibility
that an entropic reason leads to the observation of finite
size aggregates.

Borue and Erukhimovich37 discussed the possibility
of segregation at intermediate length scales for flexible
weakly charged polyelectrolytes at low ionic strength
solutions in a bad solvent by using the random phase
approximation (RPA). RPA is a liquid state theory for
macromolecules equivalent to the Debye-Huckel theory;
that is, charge fluctuations are included in the free
energy functional by linearizing the correlation and
including only long-range electrostatic interactions.
They predicted a microphase structure due to the
competition of the bad solvent effects that lead to
macroscopic phase separation and the entropy of mixing
of the counterions that opposes strongly macroscopic
phase separation of the long polyelectrolytes and the
bad solvent. Multivalent condensed counterions act as
an extremely bad solvent to the chains given that they
generate effective attractions between the charged
monomers. Instead of a microphase structure, however,
we expect finite size aggregates of strongly perturbed
chains given that the attractions mediated by the
multivalent ions are much larger than the thermal
energy kBT, invalidating the use of RPA, which assumes
Gaussian chain statistics. These attractions lead to
strong short-range correlations, which have been ig-
nored in RPA. In this paper we implement the model of
strongly correlated finite size condensed ions17,18,21,22 in
a micelle approach of charged systems39,40 incorporating
highly perturbed conformations.

It is known that double-stranded DNA wraps around
itself circumferentially in the presence of multivalent
particles and that in many cases only few chains wrap
around. Nonelectrostatic mean-field type methods have
been used to study the monomolecular precipitation of
these semiflexible chains into toroids.24,41 The toroids,
however, are only observed at intermidiate semiflexible
chain sizes. When the chain is very long, the precipita-
tion of semiflexible molecules has been observed and
predicted to be into a rather spherical coil.24 Vasi-
levskaya et al.24 use simple scaling forms to compute
the entropy reduction in the spherical monomolecular
precipitates of chains, such as the standard entropy
decrease of stretched chains42 and of collapsed chains.43

We follow a similar approach, but we include many
chain aggregates, hereafter referred to as micelles. A
micelle approach to study many chain multivalent-
induced aggregation ignoring electrostatic effects was
first proposed by Park et al.34 They only analyze
monodispersed toroids and conclude that finite size
toroids are observed rather than an infinite phase of
precipitated DNA due to topological defects encounter
as the toroid grows by wrapping around more chains.
We explore here the case of very long chains where the
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toroid is very large and resembles a spherical aggregate.
In the limit of long chains we can use the standard
entropy reduction of flexible chains to describe the
entropy reductions, following Vasilevskaya et al.24

Notice that there are two possible scenarios for the
entropy change of confining p chains each with N
monomers of length a into a dense aggregate of size
R(p) ) (pN)1/3a. Either the chains form macroscopic
aggregates (p* ) ∞) of monomolecular precipitated
chains of radius N1/3a, or they form spherical aggregates
of “interpenetrated” chains of a size R(p) ) (pN)1/3a. We
show here that though the first possibility may have
lower energy in flexible unconstrained chains, there is
a metastable state of multimolecular interpenetrated
stretched chains in aggregates of size p* ∼ Nz that may
be observed experimentally due to kinetics effects
associated with forming an infinite cluster of chains.
This entropic effect may explain the finite size toroidal
bundles observed in semiflexible chains in multivalent
salt solutions.1,33,34 When the radius of the toroid
increases by adding more chains to the bundle, the
entropy reduction increases, possibly giving rise to a
finite value of p*(N).

In section II we describe the theoretical approach for
flexible chains and the equations used for the different
terms in the free energy functional. As explained above,
we use standard entropy reductions in the precipitated43

(p ) 1, 2, 3, ...) and stretched42 (p ) 1) states and the
solid-state physics approach for the electrostatic con-
tributions.21,22 We explain the differences between
unconstrained chains and chains constrained to stretched
conformations. For simplicity, we do not consider the
possibility of necklace conformations expected between
the stretched and collapsed states in bad solvent
conditions.44-47 Though this simplification may lead to
errors in the transition from stretched to collapsed in
flexible chains, in semiflexible chains, where finite size
aggregates are predicted, it is more difficult to form
necklaces between the stretched and spherical precipi-
tated states. In section III we describe the results for
mutivalent salts of valence z ) 2 and 3, and in section
IV we give the conclusions.

II. Theoretical Approach

In this section we construct the free energy of mono-
disperse polyelectrolyte chains in the presence of a
solvent at temperature T with a bulk dielectric constant
ε. We assume that there are two possible states for the
chains: stretched and precipitated. In addition, we
consider the aggregation of precipitated chains in the
presence of monovalent and multivalent salt solutions.
In section II.a, we calculate the free energy of precipi-
tated polyelectrolytes aggregating into micelles with p
chains per aggregate, p ) 1, 2, 3, .... In section II.b we
calculate the free energy of extended single chains. By
comparing the free energy of each possible state, we
determine the conditions under which the stretched
single chains, the collapsed single chains, or the mul-
tiple aggregated micelles are preferred.

II.a. Monomolecular and Multimolecular Ag-
gregation of Polyelectrolyte Chains. We assume
that each chain has N monomers, and each monomer
is positively charged with valence equal to 1. The
solution contains monovalent salts with concentration
s and multivalent salts with concentration m and
valence z. The total monomer concentration of polyelec-

trolytes is φ, and the concentration of polyelectrolytes
aggregated with p chains is φp, such that

Therefore, the number density of aggregates with p
chains per aggregate, np, is then equal to φp/(pN).
Initially, the concentration of negative monovalent and
multivalent counterions is s + φ and m, respectively.
Since the fraction of monovalent and multivalent coun-
terions condensed in a given size aggregates depends
on the size of the aggregate, we denote fs(p) and fm(p)
the fraction of monomer charge in every p-aggregated
chain compensated by the condensed monovalent and
multivalent counterions, respectively. We then have
fs(p)N and fm(p)N/z condensed negative monovalent
and multivalent ions per chain, where fs(p) and fm(p)
are determined self-consistently by the minimization
process. Therefore, the concentration of free negative
monovalent ions is

The concentration of free negative multivalent ions is
equal to

The concentration of free positive monovalent and
multivalent counterion is simply s and m, respectively,
since none of them condense to the polyelectrolyte
chains.

Each p-aggregated micelle in a precipitated state of
p chains is contained within a sphere of average radius
R(p), such that

where a is the size of each monomer. That is, the water
is ignored because we assume that the aggregates are
dense systems of monomers and condensed hydrated
monovalent and multivalent ions with a hydrated size
of the order of the monomer size a.

We assume that the concentration of aggregates is
very low, so that the average distance between the
aggregates is much larger than the maximum value
of R(p). Furthermore, since after the minimization
the effective charge of the aggregates is strongly re-
duced by the condensed counterions, we neglect the
interactions among the aggregates. Indeed, it has
been demonstrated that the electrostatic interaction
between nearly neutralized charged spheres by con-
densed counterions is very short range.48,49 The multi-
pole fluctuations and polarizability of charge induced
by the nearby neutralized colloids are short-range (of
the order of the size of the ions) and negligible.49

Therefore, we neglect all the electrostatic interactions
in dilute concentrations of nearly neutral aggregates.

The free energy per unit volume of the system is
given by

where V is the total volume, F0 is the free energy of the
system when monomer is uncharged, and Fc is the

φ ) ∑
p)1,2,...

φp (1)

ns
f ) s + φ - ∑

p)1,2,...
nppNfs(p) (2)

nm
f ) m - ∑

p)1,2,...

nppNfm(p)

z
(3)

R3(p) ) a3pN(1 + fs(p) + fm(p)/z) (4)

F/V ) F0/V + Fc/V (5)
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contribution to the free energy due to the charge of the
monomers and the free counterions. By using the
simplest mean-field theory,

where

is the translational entropy of the aggregates, and Fid(p)
is the free energy reduction of p chains confined to R(p),
given by24,43

On the right-hand side of eq 8, we add the two limits of
confined random walks of unperturbed chains of size
R0 ) N1/2a to a region of size R(p), where R(p) is given
by eq 4; the first term is for R0 . R(p), the second one
is for R0 , R(p), and the last term is to ensure that the
change in free energy is zero when R0 ) R(p). The first
term on the right-hand side of eq 8 is not applicable to
describe collapsed chains given that in the collapsed
state the chains are not constrained to be expanded by
any force. (The electrostatic force that stretches the
chains when the concentration of multivalent particles
is low is not present in the collapsed or aggregated state
because this state is nearly neutral.) However, in
double-stranded DNA and in other semiflexible poly-
electrolytes, it is well-known that a monomolecular
collapse occurs first to a toroidal conformation when N
is sufficiently large. In that case, the initial toroid acts
like a seed to other chains to add to the cluster. The
cluster stops growing after certain size is reached
because the entropy of the chains increases due to a
stretching of the chains to the size of the toroid. The
volume occupied by the chains in the toroid is the
circumference of the toroid equal to 2πR multiplied by
the area of the toroid equal to πr2. When N is large and
the toroid grows, r is of the order of R, and the volume
occupied by the toroid is given by 2π2R3 ∼ pN, leading
for large p and N to R(p) ∼ (pN)1/3a. Therefore, when N
is large (when the hole in the toroid center is negligible),
eq 8 does describe the stretching of the chains when they
add to the toroid. The first term in eq 8, applicable to
these constraint chains when R > N1/2a, is responsible
for a finite most probable micelle size p* in the aggre-
gated state. In eqs 34 and 35 in section III we find by
scaling that the most probable value of the number of
chains aggregated in the micelles is indeed determined
by the balance of the surface energy term (derived in
eq 16) and the first term on the right-hand side of eq 8.
Notice that with eq 8 we are only describing a meta-
stable state. The lowest energy state will give an
aggregated size p* ) ∞ for both flexible and semiflexible
chains. Since this is a macroscopic phase, a phase
diagram has to be computed. However, this macroscopic
phase corresponding to p* ) ∞ is impossible to observe
in semiflexible chains due to kinetic effects. In flexible
unconstrained chains, however, the aggregated chains
are collapsed due to the strong short-range electrostatic

attractions generated by the multivalent ions, and even
if they are initially in a monomolecular collapsed state
(obtained setting R(p)1) in the second term on the
right-hand side of eq 8) or if they form a homogeneous
aggregate of collapsed chains with R < N1/2a, their
entropy per micelle with p chains decreases as p
increases favoring an infinite aggregate.

The electrostatic contribution to the free energy in
eq 5, Fc, contains the translational entropy of the free
counterions Fti, the electrostatic interactions among
all of the free ions Fei, the internal excess free energy
of the net polyion due to the Coulombic interactions
Fes, the electrostatic attraction free energy of the bulk
in the precipitated state Feb, and the electrostatic
contribution to the interfacial free energy for finite size
R(p) of p-aggregates Fein(p):

We use an ideal translational energy form,

The electrostatic interactions among all of the free ions
Fei are expressed in the Debye-Huckel form,

where κf
-1 is the net Debye length determined by

where lB ≡ e2/(kBTε) is the Bjerrum length. The Debye-
Huckel approximation for point ions, eq 11, is only valid
at very dilute concentration of ions when the solution
is electrically neutral.50 In the precipitated state the
aggregates are nearly neutral. However, in the stretched
conformation there is an excess of counterions noncon-
densed along the chains. In this case one should use a
neutral cell model,26 where each cell contains one
polyelectrolyte and its counterions. The neutral cell
model for spherical polyelectrolyte solutions at low salt
concentrations does recover Debye-Huckel screening
laws for the counterions far away from the polyelectro-
lytes in dilute polyelectrolyte solutions. It also gives an
effective reduced charge for the polyelectrolytes by the
condensed counterions. As pointed out by Alexander et
al.,26 the effective charge of the polyelectrolytes can be
computed assuming that condensed ions reduce the
monopole electrostatic energy term. The fraction of
condensed counterions is determined self-consistently
by equating the chemical potential of the condensed and
free counterions. We follow here a similar approxima-
tion to determine the effective charge of the aggregates
(see eq 13) and for the stretched conformation (see
eq 29). Also, we include the fluctuations of the free
counterions using the Debye-Huckel law, which they
showed is valid when the solution is sufficiently dilute
in salts and in polyelectrolytes. When the concentration
of ions increases, one has to use the full Debey-Huckel
approximation,51 the modified mean spherical approxi-

F0/V ) Ftp/V + ∑
p

npFid(p) (6)

Ftp/V ) kBT ∑
p

np ln φpa
3 (7)

Fid(p) ) kBTp(32 R2(p)

Na2
+ π2

6
Na2

R2(p)
- 3.1449) (8) Fc/V ) Fti/V + Fei/V + Fes/V + Feb/V + Fein/V (9)

Fti/V ) kBT(s ln sa3 + m ln ma3 +

ns
f ln ns

fa3 + nm
f ln nm

f a3) (10)

Fei/V ) -
kBTκf

3

12π
(11)

κf 2 ) 4πlB(s + mz2 + ns
f + nm

f z2) (12)
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mation,52 or other models that include the size of the
ions53 to avoid spurious results predicted by Debye-
Huckel models of points ions, such as phase separation
of polyelectrolytes semidilute solutions in monovalent
salts.54 A big difference between our approach and the
nonlinear Poisson-Boltzmann approach of Alexander
et al.26 and of others is the inclusion of strong correla-
tions in the free energy (see eq 15).

The monopole term in the excess free energy of the
net polyion due to the Coulombic interactions Fes has
the form

where the net charge of a p-aggregate Zeff is equal to

The electrostatic attraction energy of the bulk for
p-aggregated chains in the precipitated state Feb is
given by21

In eq 15 we use the model of an ionic crystal with a
cohesive energy computed as follows. We have assumed
that all small distances in the system are of order a.
We cluster one counterion with all the monomers that
are required to compensate its charge, 1 for monovalent,
and z for multivalent ions. If all the particles in the
cluster compensated by ions of valence z are at about
the same distance from each other, the Coulombic
energy contribution of the cluster is E/(kBT) ) -lBz(z + 1)/
(2a). This is the first term in the series for the effective
Madelung constant. There are pfsN clusters with mono-
valent counterions and pfmN/z with multivalent counter-
ions. The proportionality constant in the monopole term
used in eq 15, the Madelung constant, was obtained
numerically for a neutral spherical aggregate of radius
R in a three-dimensional Cartesian coordinate space55

and is added in eq 15 to recover the results for mono-
valent ionic solids in a cubic lattice. For each element
the interaction between it and every other element in
the sphere is summed. For monovalent finite size
salt crystals, the total free energy divided by the num-
ber of positive atoms that contributed to the free
energy plotted vs the radius R shows a convergence
from above to -1.71 for large values of R. The correction
for small values of R can be fit to 0.5R-1. This is a
deviation due to the surface energy of our finite ag-
gregates. Therefore, if one modifies the coefficient to
include the multivalent ion clusters, the electrostatic
surface free energy for finite size R(p) of p-aggregates
Fein(p) has the form

which is often rewritten as

where γ is the surface energy per unit area. In poor
solvent conditions γ has an extra thermodynamic con-
tribution besides the electrostatic contribution deter-
mined from eqs 4, 16a, and 16b. Here we assume good
solvent conditions.

Once the free energy is constructed, we minimize it
by equating (i) the chemical potential of the chains in
all of the p-aggregates with p ) 2, 3, ... and the chemical
potential of the free chains (p ) 1), i.e.,

where µp ) ∂(F/V)/∂np. This condition is often rewritten
as

where µ°p is the p-aggregate standard pseudochemical
potential, (ii) the chemical potential of the free mono-
valent counterions and the chemical potential of the
monovalent counterions condensed to the p-aggregates
for p ) 2, 3, ...,

and (iii) the chemical potential of the free multivalent
counterions and the chemical potential of the condensed
multivalent ions to the p-aggregates for p ) 2, 3, ...,

The numerical procedure is described as follows. First
of all, we input the initial conditions, such as s, m, φ,
ns

f, and nm
f . We then determine the variables fs(p) and

fm(p) for p ) 1, 2, 3, ... by solving simultaneously eqs 18
and 19, which lead to

and

Fes/V ) kBT ∑
p

np

lB

R(p)
Zeff

2 (13)

Zeff ) pN(1 - fs(p) - fm(p)) (14)

Feb/V ) -1.71kBT
lB

a
∑

p

nppN(fs(p) +
fm(p)(z + 1)

2 ) (15)

Fein/V ) 0.5kBTlB ∑
p

nppN

R(p)
(fs(p) +

fm(p)(z + 1)

2 ) (16a)

Fein/V ) kBT ∑
p

np4πR2(p)γ (16b)

µp ) pµ1 p ) 2, 3, ... (17a)

ln φp ) p ln φ1 - (µ°p - pµ°1) (17b)

∂(F/V)

∂ns
f

)
∂(F/V)

∂(nppNfs)
(18)

∂(F/V)

∂nm
f

)
∂(F/V)

∂(nppNfm/z)
(19)

ln ns
fa3 + 1 -

lB

2
[4πlB(s + mz2 + ns

f + nm
f z2)]1/2 +

lBpN(1 - fs(p) - fm(p))2

R2(p)
∂R
∂fs

+
2lBpN(1 - fs(p) - fm(p))

R(p)
+

1.71
lB

a
- 8πRγ

pN
∂R
∂fs

- 4πR2

pN
∂γ
∂fs

- 3R
N2

∂R
∂fs

+ π2

3R3
∂R
∂fs

) 0

(20)

ln nm
f a3 + 1 -

lBz2

2
[4πlB(s + mz2 + ns

f + nm
f z2)]1/2 +

lBzpN(1 - fs(p) - fm(p))2

R2(p)
∂R
∂fm

+

2zlBpN(1 - fs(p) - fm(p))

R(p)
+ 1.71

lB

a
z(z + 1)

2
-

8πzRγ
pN

∂R
∂fm

- 4πzR2

pN
∂γ
∂fm

- 3zR
N2

∂R
∂fm

+ zπ2

3R3
∂R
∂fm

) 0 (21)
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Finally, we obtain the concentration of p-aggregated
polyelectrolyte chains, φp, for p ) 1, 2, 3, ... by substitut-
ing these values of fs(p) and fm(p) into eq 17b, in which
µ°p has the form of

Once φp, fs(p), and fm(p) for p ) 1, 2, 3, ... are obtained,
the total concentration of polyelectrolytes φ in eq 1, the
concentration of free negative monovalent ions ns

f in
eq 2, and the concentration of free negative multivalent
ions nm

f in eq 3 are determined. These new values of φ,
ns

f, and nm
f have to coincide with the initial values we

input. Otherwise, we have to modify the initial condi-
tions and repeat the numerical procedures described
above. It should be noted that even for the polyelectro-
lyte chains in the presence of only multivalent salt
solutions, it is still possible for negative monovalent
ions with initial concentration φ to condense to the
chains.

The degree of polydispersity of the micelles is evalu-
ated by computing the number-average PN, the weight-
average PW, and the z average PZ, defined as

where

The moments PN and PW are accessible by osmotic and
by light scattering measurements, respectively. The
critical micelle concentration (cmc) is defined as the
polyelectrolyte concentration at which

where np* is the maximum of the number density of
aggregates with p* chains.

II.b. Stretched Single Polyelectrolyte Chains.
The free energy functional per unit volume, F/V, of
polyelectrolyte chains with concentration φ in the
extended state is constructed in the same way as that
in the precipitated state, except that there is no inter-
facial free energy term Fein/V for the extended single
chains. That is

where

with R ) Na/2,

where the effective charge per chain Zeff is given in eq
14 setting p ) 1. Equation 29 is obtained from eq 13
setting R ) Na and adding the ln N term, which is due
to the anisotropy of the rods.14 At higher concentrations
of φ, s, and/or m, the effective charge of the stretched
conformation is nearly zero. (Since in this regime the
chains are self-avoiding coils rather than stretched-like
rods, our approach overestimates the entropy decrease
of the stretched-coil conformation, which gives minor
errors to the transition in this regime.) Ion condensation
leads to a further decrease in energy from the electro-
static short-range contacts between monomers and the
condensed ions, which ignoring dipole-dipole inter-
actions is given by22

The ideal translational energy term of free counterions
Fti and the electrostatic interactions among all of the
free ions Fei are the same as those for precipitated
chains and are given in eqs 10 and 11, respectively.

Both variables fs and fm are determined by equating
the chemical potential of the free monovalent counter-
ions and the condensed monovalent ions to the chains,
which leads to

and by equating the chemical potential of the free
multivalent counterions and the condensed multivalent
ions to the chains, which leads to

Once the variables of fs and fm are determined, the free
energy of rodlike chains is calculated and compared with
that of the precipitated chains.

III. Results and Discussion
The numerical results discussed here are for poly-

electrolytes with N ) 500 in the presence of multi-
valent salt with valence z ) 2 and z ) 3 solutions. In
our calculations, we assume a very low concentration
of monovalent salts (ln sa3 ) -100), such that the
amount of monovalent salt is ignored. The dimension-
less Bjerrum length lB/a is fixed to be equal to 2.8.

µ°p ) 1 - pNfs(ln ns
fa3 + 1) -

pNfm

z
(ln nm

f a3 + 1) +
lBp2N2(1 - fs(p) - fm(p))2

R(p)
+

lBpN
2

(fs + fmz)[4πlB(s + mz2 + ns
f + nm

f z2)]1/2 -

1.71
lB

a
pN(fs +

fm(z + 1)
2 ) + 4πR2γ +

p(32 R2

Na2
+ π2

6
Na2

R2
- 3.1449) (22)

PN ) M1/M0

PW ) M2/M1

PZ ) M3/M2 (23)

Mi ) ∑
p)1,2,...

npp
i i ) 1, 2, 3 (24)

ln np* ) ln n1 (25)

F/V ) Ftp/V + Fid/V + Fti/V + Fei/V + Fes/V + Feb/V (26)

Ftp/V ) kBT φ

N
ln φa3 (27)

Fid/V ) kBT φ

N(32 R2

Na2
+ π2

6
Na2

R2
- 3.1449) (28)

Fes/V ) kBT φ

N
lB

a
1
N

Zeff
2 ln N (29)

Feb/V ) -kBT φ

N
lB

a
N(fs + fmZ)

2
(30)

ln ns
fa3 + 1 -

lB

2
[4πlB(s + mz2 + ns

f + nm
f z2)]1/2 +

2lB

a
(1 - fs - fm) ln N + 0.5

lB

a
) 0 (31)

ln nm
f a3 + 1 -

lBz2

2
[4πlB(s + mz2 + ns

f + nm
f z2)]1/2 +

2zlB

a
(1 - fs - fm) ln N + 0.5

lB

a
z2 ) 0 (32)
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In Figure 1, we present the numerical phase diagram
for z ) 2. The circles in Figure 1 correspond to the
critical micelle concentrations (cmc) given by eq 25, at
which the chains start to form finite size micelles due
to the significant amount of condensed negative multi-
valent ions. The squares, which denote the critical
micelle dissolved concentration (cmdc), at which the
formed p-aggregates start to dissolve, show a linear
relationship φ ∼ mz. This transition line from precipi-
tated micelles to collapsed single chains almost overlaps
with the transition line from collapsed single chains to
nearly stretched rods, denoted as the solid line in Figure
1. As expected, when the multivalent salt concentration
m is very low (ln ma3 e -32), only the transition from
collapsed single chains to rodlike single chains is
observed as the polyelectrolyte concentration increases
to φ* = mz. That is, when the total charges of the
monomers are smaller than the charges of the multi-
valent salts, most of the monomer charges are compen-
sated by the condensation of multivalent salt ions. The
polyelectrolyte chains are collapsed due to the effective
electrostatic attraction arising from these multivalent
counterions condensed to the chains. In Figure 2a, we
plot the fraction of monomer charge from condensed
multivalent and monovalent ions, fm and fs, as a function
of ln φa3 when ln ma3 ) -40. In Figure 2b we plot the
corresponding concentrations of free monovalent and
multivalent ions, ns

f and nm
f , with increasing ln φa3.

Clearly, when the chains are precipitated, fs ) 0 and
fm f 1. That is, none of the negative monovalent salt
ions condense to the chains, and ns

f is equal to the
initial monovalent ion concentration φ. Though fm f 1
when φ < φ*, the amount of negative multivalent ions
condensed to the chains is not significant, so that nm

f

still remains a constant. As φ increases such that
φ g φ*, fm drops dramatically to 0, while nm

f given in
eq 3 reaches a minimum value and then increases to
the initial concentration of multivalent salts. Though
fs increases with increasing φ, the number of free
monovalent ions ns

f given in eq 2 still keeps a linear
increasing relationship with φ. Since there exist only

a few condensed monovalent ions along the chains,
the electrostatic attraction energy is not strong enough
to precipitate the chains. Therefore, the most stable
state for the single chains is stretched when φ g mz.
Notice that the favorable state is a stretched coil and
not a stretched rod because at these concentrations
there are enough free ions to screen the electrostatic
interactions.

As the amount of multivalent salts increases such
that m g m** (ln m**a3 ) -32), we find that the
precipitated chains start to form micelles at a critical
concentration (cmc) lower than φ* = mz. The micelles
transform back to single collapsed chains and then to
extended single chains with further increasing of φ. The
transition from collapsed to extended state still occurs
at φ* = mz. The transition from micelles to mono-
molecular aggregates (which occurs at about the cmdc
value shown in Figure 3a and defined below) is very
close to the transition from collapsed to stretched chains
(denoted by φ* in Figure 3a). In Figure 3a, we plot the
variation of the concentration of free chains (φ1) as a

Figure 1. Numerical phase diagram in terms of logarithm of
the concentration of multivalent salt ions (ln ma3) and
logarithm of the monomer concentration (ln φa3) for dilute
polyelectrolytes with N ) 500 in the presence of divalent
multivalent salt solutions. The logarithm of the concentration
of monovalent salts ln sa3 ) -100, and the dimensionless
Bjerrum length lB/a ) 2.8.

Figure 2. (a) Fraction of monomer charge compensated
by condensed multivalent and monovalent ions, fm and fs, vs
ln φa3, and (b) logarithm of the concentration of free multi-
valent and monovalent ions, ln nm

f a3 and ln ns
fa3, vs ln φa3,

for systems described in Figure 1 with ln ma3 ) -40.
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function of the total concentration of polyelectrolytes (φ)
with ln ma3 ) -30. In Figure 3b, we also show the
typical results of number density of p-aggregates ln npa3

vs p at various values of polyelectrolyte concentration
φ corresponding to various states of the chains. As
shown in Figure 3a, when the polyelectrolyte concentra-
tion is well below cmc (ln φa3 ) -46), the precipitated
chains remain single since φ1 ∼ φ. As φ increases
from cmc, the concentration of free chains remains a
constant. This manifests the fact that there are more
aggregates with p* > 1 chains with increasing φ, until
when ln φa3 is close to a value of -29.38, the free chain
concentration increases abruptly, and the number den-
sity of p-aggregated micelles decreases. In particular,
when ln φa3 ) -29.38, we observe that though there
exists a local maximum of ln npa3 at p ) p*, ln np* ) ln
n1, as shown in Figure 3b. We define the concentration
at which ln np* ) ln n1, as the critical micelle dissolved
concentration (cmdc). As φ increases above the cmdc
such as when ln φa3 ) -29.25, the micelles dissolve,
and these polyelectrolyte chains become single mono-
molecular aggregates again, as shown in Figure 3b.

Furthermore, we find that the value of cmdc is very
close to the concentration at which the collapsed single
chains transform to the stretched rods, denoted as
φ*. Once the concentration is above φ*, these single
chains become stretched. Similar to the case for very
low concentration of multivalent salts, we observe
that no matter when the precipitated chains are
single or micelles, each chain is almost neutral by the
condensation of multivalent salt counterions. This is
shown in Figure 3c where we plot fm(p)1) and fs(p)1)
as a function of ln φa3 with ln ma3 ) -30. As φ increases
to the stretched-like state, fm decreases dramatically
to 0; however, the charge of monomers is still partly
compensated by the condensation of monovalent counter-
ions. With the polyelectrolyte chains aggregating to form
the micelles, fs(p) remains 0, while fm(p) increases and
approaches 1 as p increases. In Figure 3d we plot the
average aggregation numbers defined in eq 23 as a
function of polyelectrolyte concentration φ. As can be
seen clearly, the formed p-aggregated micelles are finite
size with the typical value of average aggregation
number equal to 205.

Figure 3. (a) Logarithm of the concentration of free chains ln φ1a3 vs ln φa3, (b) logarithm of the number density of p-aggregated
micelles (ln npa3) vs p at various values of ln φa3, (c) variation of fm(p)1) and fs(p)1) as a function of ln φa3, and (d) average
aggregation number vs ln φa3, for systems described in Figure 1 with ln ma3 ) -30.
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The multimolecular aggregation behavior, which occurs
when the multivalent salt concentration is above a criti-
cal value m**, is driven by a sufficient amount of con-
densed multivalent salt counterions. These condensed
counterions act as a bad solvent to the chains given
that they generate effective attractions between the
charged monomers. As shown in Figure 4a, where we
plot fm(p)1) as a function of multivalent salt concentra-
tion at a fixed value of ln φa3 ) -70, fm(p)1) increases
as m increases. That is, with more multivalent salts
added to the solutions, more multivalent ions condense
to the polyelectrolyte chains. These counterion-mediated
attractions drive more chains to aggregate into micelles,
as shown in Figure 4b where we plot the average
aggregation numbers as a function of ln ma3.

When m is very large, such as when ln ma3 ) -8.7,
we only observe the transition from single precipi-
tated chains to finite size aggregates with increasing
φ. For example, in parts a and b of Figure 5, we plot
ln φ1a3 vs ln φa3 and ln npa3 vs p as a function of
ln φa3, respectively. Once the precipitated single chains
form the micelles when φ g cmc, φ1 remains almost a

constant with increasing φ, which manifests the fact
that the amount of the formed p-aggregates increases
as φ increases, as shown in Figure 5b. Since the initial

Figure 4. (a) Variation of fm(p)1) and fs(p)1) as a function
of logarithm of the concentration of multivalent salt counter-
ions (ln ma3), and (b) average aggregation number vs ln ma3,
for systems described in Figure 1 with ln φa3 ) -70.

Figure 5. (a) Logarithm of the concentration of free chains
ln φ1a3 vs ln φa3, (b) logarithm of the number density of
p-aggregated micelles (ln npa3) vs p at various values of ln φa3,
and (c) average aggregation number vs ln φa3, for systems
described in Figure 1 with ln ma3 ) -8.7.
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multivalent salt concentration is very high, we observe
that no matter whether the chains are free or aggre-
gated, none of the monovalent counterions condense to
the chains. However, the precipitated chains are neutral
with the condensation of multivalent ions. It should be
noticed that even when ln φa3 increases to -20, due to
the effects of sufficient condensed multivalent counter-
ions, these precipitated chains still form very mono-
disperse micelles, as shown in Figure 5c, where we
plot the average aggregation numbers as a function of
polyelectrolyte concentration.

Analytical results of finite-size aggregation behavior
of polyelectrolytes can be obtained by minimizing
(µ°p - pµ°1)/p in eq 17b with respect to p, i.e.,

The scaling results of p* are easily obtained by inserting
µ°p in eq 22 and the values of fs(p*) ) 0 and fm(p*) ) 1
into eq 33,

from which we obtain

Notice that the first term and the second term on the
left-hand side of eq 34 is contributed from the electro-
static surface energy in eq 16 and the first term on the
right-hand side of the entropy term in eq 8. Without
the nonlinear additive in p term via the R(p) ) (pN)1/3a
in the chain entropy term added to the free energy, the
only possible value of p* from eq 33 is ∞.

With increasing the valence of multivalent salts, due
to the stronger electrostatic attraction free energy gener-
ated from the condensed multivalent salt counterions,
we expect that the finite size multimolecular aggrega-
tion behavior occurs at a lower critical salt concentration
m**. For example, in Figure 6 we show the numerical
phase diagram for z ) 3. In comparison with the results
for z ) 2, similar phase behavior is observed; however,
the region of micelles is much enlarged. Notice that
though z ) 2 is a condensing agent in poly(acrylic
acid)s,5 it is only a marginal condensing ion for PSS
and DNA. We therefore conclude that our equation over-
estimates the decrease of the electrostatic energy of the
precipitated state (and also overestimates the chain
entropy reduction of the chains in the stretched-coil
state).

IV. Conclusions

We develop a simple thermodynamic model for poly-
disperse micellar suspensions, which includes both
monovalent and multivalent ion condensations along the
chains. We determine the number density of aggregates
with p chains (np) by equating the chemical potential
of all the p-aggregated chains with p ) 1, 2, 3, ...,
and equating the chemical potential of the condensed
counterions in the aggregates with p ) 1, 2, 3, ... and

the free counterions. We calculate the free energy of the
stretched chains and compare it with the free energy of
the precipitated chains.

Finite size micelles are predicted in dilute polyelec-
trolyte solutions in the presence of multivalent salts
with valence z only if a nonlinear additive term in the
number of chains p is used in the entropy decrease of
the aggregated chains. This situation arises only in
chains constrained to stretched conformations, such as
semiflexible chains growing from a toroid seed formed
during the monomolecular collapse of long chains at low
concentrations of chains. Flexible unconstrained chains,
however, lead to aggregates with an infinite number of
chains. When the concentration of multivalent salts m
is low, the monomolecular collapsed chains transform
to nearly stretched chains, increasing the monomer
concentration above φ* = mz. When φ < φ*, the chains
are nearly neutralized by condensed multivalent coun-
terions. Though there are condensed counterions along
the chains when the φ g φ*, the amount is not large
enough to drive the precipitation of the chains. At larger
concentrations of multivalent salts (m > m**) the
monomolecular collapsed chains form multimolecular
aggregates upon increasing φ. If the aggregates of
collapsed chains are assumed to be monodisperse and
homogeneous (i.e., containing p* chains in a sphere of
R(p) ) (pN)1/3a), the minimization of free energy func-
tional yields p* ∼ NzlB/a. With increasing the valence
of multivalent salts, the finite size multimolecular
aggregation behavior occurs at a lower critical salt
concentration m** since the electrostatic attractions
increase with increasing z.

At constant m > m**, the micelles redissolve with
further increasing φ, at about φ*, where φ* ∼ mz is the
concentration at which the chains transform from
collapsed to stretched. The approximations used here
are not good enough to determine whether the micelles
redissolve directly into stretched chains by increasing
φ or whether they transform into monomolecular col-
lapsed chains and then into stretched chains. Since as
m increases also φ* increases, the screening of the

∂[(µ°p - pµ°1)/p]
∂p

) 0 at p ) p* (33)

-(p*)- 4/3N2/3 lB

a
z(1 + 1

z)-1/3
+

(p*)-1/3N-1/3(1 + 1
z)2/3

) 0 (34)

p* ∼ Nz
lB

a
(35)

Figure 6. Numerical phase diagram in terms of logarithm of
the concentration of multivalent salt ions (ln ma3) and
logarithm of the monomer concentration (ln φa3) for dilute
polyelectrolytes with N ) 500 in the presence of trivalent
multivalent salt solutions. The logarithm of the concentration
of monovalent salts ln sa3 ) -100, and the dimensionless
Bjerrum length lB/a ) 2.8.
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electrostatic interactions may lead to necklaces44,45 and/
or stretched-coil statistics at the redissolution, leading
to lower free energies than the stretched state used
here. Moreover, for large m values, the transition at φ*
may occur at concentrations where there is sufficient
overlapping between the chains, which is ignored here.
Finally, at large m values the continuum Debye-Huckel
free energy used for the free counterions breaks down
due to Bjerrum association of the free multivalent and
monovalent salt ions.
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