行政院國家科學委員會專題研究計畫成果報告 非均勻砂礫之選擇性部分運移試驗研究與模式建立 Modeling and Experimental Study on Selective Partial Transport of Nonuniform Sand/Gravel Sediment

計畫編號:NSC 90-2211-E-002-085 執行期限:90 年 8 月 1 日至 91 年 7 月 31 日 主持人:吳富春 國立台灣大學生物環境系統工程學系

中文摘要

本研究針對非均匀砂礫之選擇性部分 運移進行試驗研究,以建立非均匀砂礫之 分區可動性、動靜態平均滯留時間及平均 移動速度與分區無因次剪應力之量化關 係。

關鍵詞:非均勻砂礫,選擇性部分運移, 可動性,無因次剪應力,分區輸 砂率。

Abstract

This study experimentally investigates the selective partial transport of nonuniform sand/gravel sediment and develops the quantitative relations of fractional mobility, mean holding time in static and moving states, and mean velocity of particle motion vs. dimensionless shear stress.

Keywords: Nonuniform sand/gravel sediment, selective partial transport, mobility, dimensionless shear stress, fractional transport rate.

一、前言

礫石河床之推移載在一般常流量範圍 內具有選擇性部分運移之特色,即河床上 僅有一部分之顆粒被啓動,其餘則屬不動 之顆粒,而這些被啓動顆粒所佔之比例稱 為可動性。若將非均勻砂礫分為若干粒徑 分區,則每一分區之可動性不盡相同,通 常隨粒徑之增大而減小。過去之河床推移 載模式並未考慮此種砂礫河床部分運移特 性,故僅適用於全部運移(即所有顆粒皆為 可動)之情況。本研究進行非均勻砂礫之部 分運移水槽試驗,利用表面攝影採樣法分 析各分區顆粒之可動性、動靜態平均滯留 時間及平均移動速度與分區無因次剪應力 之量化關係。

二、實驗研究

(1) 實驗設備與材料

本研究使用 HITACHI KP-F100C 數位 攝影機,如圖 1 所示。其解析度為 1300x1030約130萬像素(Pixels),連續取 像速度可達每秒12張,顏色取樣為10bit, 其鏡頭接環為 C 型接環,6倍變焦鏡頭焦 距介於12.5~75mm,可提供不同大小的觀 察區域。

圖1數位攝影機

影像 擷取卡與影像處理軟體選用 EPIX 公司所出產之 PIXCI D2X 及 XCAP Std.。PIXCI D2X 為 32 bit PCI Bus 介面卡, 支援數位攝影機 10 bit 取樣,並提供多種 影像擷取功能。而 XCAP Std.影像處理軟體 需搭配 PIXCI D2X 共同使用,本軟體提供 了顆粒分析、計數與追蹤的功能,藉此可 得到顆粒的數目及速度等所需的參數。

本實驗採用非均勻砂礫進行部分運移 實驗,其粒徑分布級配以模擬真實礫石河 床粒徑分布為原則,粒徑範圍選定在 1.41mm~12.7mm,粒徑以1/2w為間隔,共 分成6個粒徑分區,分別塗上不同的顏色, 實驗材料之分區與顏色分配如表1所示。

分區	顏色	停留	代表粒徑 d	混合重量	百分比
		篩號	(mm)	(kg)	(%)
1	黃色	#14	1.705	11.2	14%
2	草綠	#10	2.68	17.6	22%
3	黑色	#6	3.68	12	15%
4	紫白	#5	5.175	12.8	16%
5	寶藍	1/4"	7.935	16	20%
6	大紅	3/8"	11.11	10.4	13%
			總重	80	

表1彩色河床各粒徑分區混合比例

本研究將實驗分成兩部分:彩色河床 與非彩色河床兩部分。彩色河床實驗主要 探討泥砂顆粒的可動性 Y_i 及輸砂率 q_B ,而 非彩色河床實驗則是為了求得無因次平均 速度 $V_{p,i}$ 與動靜時間比 $T_{r,i}$,分述如下。

- (2) 彩色河床實驗步驟
 - i. 將已上色之砂礫按比例混合,攪 拌均匀後置入水槽試驗段,並使 試驗段的床面保持平坦。
 - ii. 調整主試驗段前後端之代替式河床,使其與彩色砂礫之高度相同。
 - iii. 架設 CCD、電腦等相關觀測儀器。
 - iv. 調整坡度,開始放水。放置尾水 板並控制上游堰板出水高度讓水槽緩慢蓄水至一定高度。
 - v. 利用數位攝影機拍攝主試驗段四 個分區之起始圖像。
 - vi. 逐漸增加流量至設定値並慢慢地 抽離尾水板讓水深緩慢到達平 衡。
 - vii. 當流量與水深穩定後,以固定時 間間隔(例如 1 小時)將推移載收 集段所收集之砂礫取出,慢慢從 主試驗段前端供砂,以達到平衡 輸砂之機制。
 - viii. 記錄相關水力參數,如水深、坡 度及堰板出水高度等。

- ix. 當每一時間間隔所收集之輸砂量 大致相同後,本研究即判斷此時 實驗已達到平衡輸砂之機制,並 以 Wilcock (1997)實驗進行時間 作為判斷,決定實驗進行之時間。
- x. 當到達預定之時間後,慢慢將流量減緩,並提高尾水板使水面達到穩定,當水面完全靜止不動後,利用數位攝影機拍攝主試驗段四個分區之實驗最終圖像。
- xi. 將實驗最後一個時間間隔所收集之推移載加以烘乾、過篩,統計各粒徑分區之輸砂量。
- xii. 影像處理:利用影像處理方式, 分析起始圖像與最終圖像之差 異,判斷顆粒之可動性 Y_i。
- (3) 非彩色河床實驗步驟
 - i. 將未上色的砂礫以大概的比例混合,攪拌均匀後刮平床面讓試驗段的床面保持平坦。
 - ii. 架設 CCD、電腦等相關觀測儀器。
 - iii. 調整坡度,開始放水。放置尾水 板並控制上游堰板出水高度讓水 槽緩慢蓄水至一定高度後,再逐 漸增加流量至設定值並慢慢地抽 離尾水板讓水深緩慢到達平衡。
 - iv. 當流量與水深穩定後,以快門
 1/60 秒每秒四張的速度,連續拍 攝擷取床面影像。
 - v. 從主試驗段之上游放置些許彩色 砂礫,盡量使彩色之礫石置於觀 察區內,或觀察區之上游段,並 且在實驗過程中隨時補充彩色砂 礫,以增加實驗結果之多樣性。
 - vi. 記錄相關水力參數,如水深、坡 度及堰板出水高度等。
 - vii. 由於硬碟空間限制,本實驗最多 只能連續拍攝3小時。
 - viii. 影像處理:利用影像處理之顆粒追 蹤(Particle tracking)功能,判別顆 粒之移動距離及時間,藉此計算顆 粒之移動速度及動靜時間比。

三、實驗結果分析

3.1 彩色河床實驗

(1) 可動性 (Mobility)

可動性實驗結果如圖 2 所示,圖中顯 示每一粒徑分區之可動性均會隨著剪應力 增加而增加,但均會有一些明顯之轉折點 存在,此結果可由顆粒彼此間遮蔽效應及 本身臨界剪應力來解釋,每一粒徑分區均 有其臨界剪應力,當剪應力到達臨界剪應 力時,顆粒之可動性才會明顯增加,而當 粗顆粒之可動性增加後,細顆粒之遮蔽效 應即不存在,例如一顆粒徑較大之顆粒移 動後,往往伴隨著許多細顆粒一起移動, 因此會有斜率明顯增加之現象。

圖 2 可動性與底床剪應力之關係

(2) 分區輸砂率 (Fractional transport rate)

分區輸砂率實驗結果如圖 3 所示,圖 中顯示可動性較高之粒徑分區,其分區輸 砂率除以分區比例 fi後大致會相同,而可 動性較低之粒徑分區則會急速降低,明顯 區分全部運移與部分運移。圖 3 中可看出, 剪應力 2.16 Pa與 3.08 Pa之兩組實驗,其 qbfi之值會隨著粒徑增加而急劇下降,顯 示此時顆粒之移動是屬於部分輸砂之機 制,而剪應力越大,下降之趨勢就越緩和, 顯示此時細顆粒之分區已漸漸達到全部運 移之機制。

(3) 可動性與無因次剪應力之關係

可動性與無因次剪應力之關係如圖 4 所示,圖中顯示 LogNormal 累積機率曲線 可有效對應可動性與無因次剪應力之關 係,R²値可達 0.9 以上。

圖 4 可動性與無因次剪應力之關係

3.2 非彩色河床實驗

(1) 無因次移動速度(V_{p,i})

本研究利用數位攝影機,將底床顆粒 之移動以連續影像拍攝,記錄所置入彩色 顆粒之移動事件,影像拍攝速度每秒四 張,圖5中,以藍色顆粒為觀察對象,影 像藍色顆粒之座標,與前一張影像之資料 比較,可計算出在四分之一秒內之移動距 離,並可得到一次之移動速度,圖5顯示 五組移動事件,移動路徑亦標示於圖中, 本研究針對各粒徑分區,計算平均移動速 度。

圖 5 顆粒移動事件及路徑示範(實驗編號 5)

實驗結果如圖 6 所示,本研究以對數型態取趨勢線,發現相關係數可達 0.9 以上,圖 6 中對數曲線 V_{2,i}=0 時,對應之無因次剪應力約在 0.01 左右,與可動性 V_i之 實驗結果相符合,而移動速度會隨著剪應 力增大而增大,但會趨於平緩,剪應力較 小時,顆粒以滾動為主,每次移動之距離 較小,而剪應力增大後,躍移事件增多, 平均移動距離增大,但躍移距離會受到旁 邊顆粒之影響,最大躍移距離有限,因此 隨著剪應力增大,平均速度亦漸趨於定值。

圖 6 無因次移動速度與無因次剪應力之關係

(2) 動靜時間比(*T_{r,i}*)

若砂礫顆粒運移遵守馬可夫鏈隨機歷 程,則顆粒停留在狀態1或狀態2的時間 *T_{m,i}*(*m*=1,2)是隨機變數,且符合指數分 布,取實驗編號004之做爲討論,將停留 在狀態1與狀態2的資料排序後,計算其 超越機率並繪製圖7,圖中顯示移動時間資 料點分布與趨勢線相當吻合,相關係數可 達0.9以上,靜止時間整體資料之趨勢性亦 相當明顯,靜止時間較短之數據偏多,乃 是因爲細顆粒在移動的過程中,會不時的 被大顆粒阻絕了移動路徑,亦或掉入縫隙 中無法繼續移動,造成走走停停的現象, 而顆粒之移動往往具有高度之不確定性。 *T*,;與無因次剪應力之關係如圖 8 所示,圖 中不同之標繪點表示不同實驗之結果,結 果顯示動靜時間比與無因次剪應力之關係 非常符合對數分布之型態。

圖7動靜時間之超越機率(di=3.36mm)

參考文獻

- Sun, Z., and Donahue, J. (2000). "Statistically derived bedload formula for any fraction of nonuniform sediment." *J. Hydr. Engrg.*, ASCE, 126(2), 105-111.
- 2. Wilcock, P. R. (1997). "The components of fractional transport rate." *Water Resour. Res.*, 33(1), 247-258
- Wilcock, P. R., and McArdell, B. W. (1997). "Partial transport of a sand/gravel sediment." *Water Resour. Res.*, 33(1), 235-245.