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Rolling and lifting probabilities for sediment entrainment

ABSTRACT

This study addresses the rolling and lifting probabilities for sediment entrainment by
incorporating the probabilistic features of the turbulent fluctuation and bed grain geometry. The
two threshold conditions identified herein enable us to precisely define the probabilities of
entrainment in the rolling and lifting modes. The lifting probability increases monotonously with
the dimensionless shear stress 4, consistent with the earlier results yet displaying improved
agreement with the experimental data The maximum vaue of rolling probability, with a
magnitude of 0.25, occurs at #=0.15. For 6<0.05 (or 6>0.6), the rolling (or lifting)
probability makes up more than 90% of the total entrainment probability and thus can be used as
an approximation to the total entrainment probability. The rolling and lifting probabilities are
further linked to two separate criteria for incipient motion. The results reveal that a consistent
probability corresponding to the critical state of sediment entrainment cannot be found.

Keywords. Rolling and lifting probabilities, sediment entrainment, turbulent fluctuation, bed
geometry.

1. Introduction

The purpose of this study is to develop theoretical components for evaluating two types
of entrainment probability, i.e., the rolling and lifting probabilities, in hydraulically smooth-bed
and transitional open-channel flows. The thresholds for two different entrainment modes are
identified, which lead to a more precise definition of the rolling and lifting probabilities. Both the
fluctuation of turbulent flow and the randomness of bed grain geometry are considered in the
derivation of rolling and lifting probabilities. The lifting and rolling probabilities are verified
with the published data. These two probabilities are further linked to the rolling and lifting
thresholds to demonstrate the inconsistency involved in the calculation of critical shear stress.

2. Results and Discussion

2.1 Verification of Results

The relationships between the computed results and the dimensionless shear stress &
are shown in Fig. 1, where a distinct difference between the lifting and rolling probabilities is
demonstrated. The lifting probability PL increases monotonously with &, whereas the rolling
probability PR increases with & intheregion of €<0.15 but then reduces for larger values
of 4. Firstly, the lifting probabilities reported by Guy et a. (1966), Luque (1974), Jain (1992),
and Papanicolaou (1999) are used for comparison with the calculated PL. Fig. 1 reveasthat the
computed result of PL agrees well with the published data. The discrepancies present at the
upper end are probably due to the observed flow-retardation (or drag-reduction) effect caused by
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the impact on the near-bed flow of the increasing particles in motion at higher 6 values. The
lifting probability from Wu and Lin (2002) is aso presented in Fig. 1 to demonstrate the
improvement made in this study. The earlier result of Wu and Lin (2002) displays a substantial

overestimation of lifting probability for 6=1. The magnitudes of the Euclidean norm |, and

the coefficient of determination R? for the result of Wu and Lin (2002) and the present result
are compared. The values of |¢|, and R? for the result of Wu and Lin are 0.266 and 0.966,
respectively, whereas the corresponding values for the present result are 0.245 and 0.971. The
percentages of reduced |¢f, and increased R® are 8% and 0.5%, respectively. In contrast to

the work of Wu and Lin (2002), the present study incorporates the probabilistic feature of the
initial bed geometry (in addition to the turbulent velocity fluctuation) and also the dependence of
lift coefficient on flow condition (whereas a constant lift coefficient C, =0.21 was used by Wu
and Lin). The improvement is believed to originate from these additional considerations.
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Figure 1. Relationships between entrainment probabilities and dimensionless shear stress

Secondly, the rolling and lifting probabilities are compared with the observations made
by Drake et al. (1988). Bed shear stress was approximately 6 Pa. The streambed is hydraulically
transitional, consisting of fine gravels with a median diameter = 4 mm. The transport of sediment
was almost entirely as bedload. The recorded plan and side views of the motion of individual
bedload particles indicated that rolling was the commonest mode of entrainment for particles
larger than about 3 mm, whereas lifting was the mode of entrainment for most bedload particles
smaller than about 2 mm. The bed shear stress (i.e., 6 Pa) and particle diameters correspond to
the values of 4=0.12 (for d=3 mm) and 8=0.18 (for d =2 mm), respectively. In other
words, when 6<0.12, rolling is the commonest mode of entrainment, whereas for 6 >0.18,
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lifting is the dominant mode of entrainment. Clearly demonstrated in Fig. 1 is that the rolling
probability is greater than the lifting probability in the region of 6<0.12; however, the lifting
probability becomes much greater than the rolling probability for € >0.18. The results obtained
in this study coincide very well with the observations made by Drake et al. (1988) and are
physically meaningful. In fact, such a coincidence can be reasonably interpreted because when
the values of @ are sufficiently high (i.e., for very large 7 values or very small d values),
there is a strong tendency that particles will be entrained in the lifting (i.e., rolling-lifting) mode
rather than the pure rolling mode. On the other hand, when the magnitudes of & are appreciably

low (i.e., for negligible 7 values or extremely large d values), the particles will most likely
stay in repose rather than move. As such, the probability of entrainment in the rolling mode
becomes vanishing small at both very high and low values of 6.

2.2 Total Entrainment Probability

Because rolling and lifting are mutually independent modes, the total entrainment
probability (B, ) is the summation of rolling and lifting probabilities, i.e., B, =Pz +P_. Taking
the expected value of B, over the entire range of J yields PM =PR+PL , where
PM =mean total entrainment probability. The PM curve resulting from the superimposition
of PR and PL curves is shown in Fig. 1. It is found that the rolling probability makes up
more than 90% of the total entrainment probability for any 8 value less than about 0.05, while
the lifting probability occupies more than 90% of the total entrainment probability for any &
value greater than about 0.6. Hence, for the regions of 6<0.05 and 8>0.6, PR and PL
can be used respectively as the approximationsto PM . However, for the 8 vauesin the range
between 0.05 and 0.6, the contributions of both probabilities to the total probability of
entrainment should be equally weighted.
2.3 Critical Entrainment Probabilities

We are also interested in the probability of entrainment corresponding to the condition
that the applied shear stress equals to the threshold shear stress for incipient motion, i.e., =6,
where 6, =dimensionless critical shear stress. Gesser (1971) reported a 50% probability of
movement in rough turbulent flow when 6, (based on ds,) was applied to the bed particles.

The entrainment probabilities at the critical conditions can be evaluated with the aid of the
rolling and lifting thresholds developed by Ling (1995). His criteria for incipient motion can be
presented in a graphical format similar to Shields diagram, i.e., 6, versus critical boundary

Reynolds number RZ (shown in Fig. 2). He found that the Shields’ curve for the most part lies

between the two theoretical thresholds. For a given value of R;, the corresponding rolling and
lifting thresholds (i.e., 85 and &, ) can be determined from the two separate criteria for
incipient motion. The values of 6, and &, are then liked to the proposed PR-6 and

PL -6 relations (or Fig. 1) to evaluate the critical rolling and lifting probabilities, respectively.
The results so obtained are shown in Fig. 2, where the entrainment probabilities corresponding to
the critical conditions demonstrate considerable variations in the magnitude, especially for the
critical lifting probability. The maximum and minimum values of the critical lifting probability
are 1.0 and 0.05, respectively, while the critical rolling probability ranges from 0.008 to 0.2. The

critical lifting probability drops drastically from about 0.8 to 0.05as R, increases from 1 to 10.

For R >10, the critical lifting probability increases modestly from 0.05 to 0.16. On the other
hand, the critical rolling probability remains approximately constant within the range between
0.01 and 0.04 for R, <10, but then increases to about 0.2 as R, increases from 10 to 500. For
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smooth boundaries (R}, <2), both of the critical entrainment probabilities display decreasing

trends with the increasing R;. However, in the transitional regime (2< RZ <500), both of the

critical entrainment probabilities demonstrate transitions from descending to ascending trends.
These trends of variation appear to correlate with the criteria for incipient motion. In summary,
the probabilities of entrainment corresponding to the critical rolling and lifting conditions are

neither constant values nor monotonous functions of R} Their variation trends agree with those
of the entrainment thresholds.
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Figure 2. Variations of dimensionless critical shear stress and critical entrainment probabilities
with critical boundary Reynolds number

If the critical shear stressisadistinct threshold for incipient motion of the sediment, there
must be a consistent probability of entrainment corresponding to such a critical condition. For
example, a 50% probability of movement at the critical conditions as proposed by Gessler (1971).
However, the results gained in the present study do not support such an argument, in terms of
both rolling and lifting modes of entrainment. It is revealed that even when the threshold shear
stress is applied to the sediment particle, the entrainment probability is a highly variable function
of the hydrodynamic boundary condition, rather than a meaningful value representing the critical
state of particle entrainment. Since the probabilities of entrainment corresponding to the so
called “critical conditions” vary over such a wide range, a possible explanation would be that
there is no such thing as “critical shear stress’, as pointed out by many investigators. The results
of this study appear to imply the inconsistency embedded in the conventional definition of the
critical shear stress for incipient motion, thus probably provide a different aspect worth further
investigations.



3. Conclusions

The results show that the lifting probability (ranging from 0 to 1) increases monotonously
with the dimensionless shear stress &, whereas the rolling probability (ranging from 0 to 0.25)
displays an increasing trend for € <0.15 yet a decreasing trend for larger € values. Both of
the rolling and lifting probabilities coincide well with the published data, quantitatively and
qualitatively. Moreover, the lifting probability gained in this study demonstrates an improved
agreement with the experimental data. For 0.05<8<0.6, the summation of rolling and lifting
probabilities is recommended for use as the total probability of incipient motion. However, for
@ less than 0.05 (or greater than 0.6), the rolling (or lifting) probability can be used as the
approximation to the total entrainment probability. The critical entrainment probabilities are
highly variable functions of the boundary Reynolds number, thus no consistent probability
corresponding to the critical state of particle entrainment can be found. The results of this study
appear to imply the inconsistency involved in the conventional definition of critical shear stress.
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