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Analytical and experimental studies of forced and free bars
in channels with variable width (2/3)
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Abstract

In this study we performed nonlinear
analyses on free and forced bedforms. A
singular multiple scale perturbation method
is employed to derive the weakly nonlinear
solution of alternate bars in straight channels,
while a regular perturbation method is used

for the forced bars in variable-width channels.

The results reveal that the nonlinear solution
of free bars exhibits natural features not
captured by the linear solution. Compared to
the experimental results, the analytical model
tends to overestimate the wavenumber while
underestimate the bar height. The nonlinear
solutions of forced bars made realistic
corrections to the bedforms. Longitudinally,
they reveal the secondary bedform;
transversely, they realistically describe the
bedform where deposition occurs. However,
the nonlinear effect is significant only when
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the amplitude of width wvariation is

sufficiently large.

Keywords: weakly nonlinear solutions,
perturbation method, free bars,

forced bars.

1. Nonlinear Analysis of Free Bars in
Straight Channels

A rectangular alluvial channel with
width 2B

channel bed is erodible while the banks are
non-erodible. The dimensionless forms of the

is considered (Figure 1). The

shallow water and sediment continuity
equations are:
Ua_U+V8_U FOZaH ﬂT =0 (la)
0x dy ox D
o oV _,oH Pr,
U=tV —+F>— =0
0x oy ' oy " D (1b)
o(UD) (VD)
B S T e R
ox ’ dy (1c)
aq aq ,
— X = O

where 1=1"/(By/Uy);

dyRgd, _ . .
Q, = —————— = dimensionless sediment
(1-p)D,U,
transport parameter. No penetration boundary
conditions are used for both fluid and

sediment. Closure relations are given by

(x,y)=(x",»")/B;;

(7,.7,)=(UNU" +V*)"”C, (2a)
(4,.9,) = (cosa,sin a)d) (2b)
7O v _

sna=snz = a SNy =m—s (2ed)
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Fig 1. Definition sketch of alternate bars in a
straight channel

A singular perturbation multiple scale

method is employed (Colombini et al., 1987;

Schielen et al., 1993). A preliminary

expansion can be expressed as

U,v,H,D,n)=(1,0,H,,1,H, -1) (3a)
+(U V', H'\D'\1)

T0T,:q4,q,)=\Cy,0,P,,0

(007,240, )=(Cr0.0.@4.0) G3b)

+(Tx'9ry’9qx"qy’)
At the linear level, the perturbed terms are
expressed by
(U',H’,D’,?]’)=
) (4a)

Ae(Q—iw)zei/lx Sin(% y)(ul’ hy,d,, 771)+ cc.+ O(A2

V= Ao\ @-iok it cos(% v +ce+ O(AZ) (4b)

amplitude of perturbation;
= complex constants; €

where A4 =
(ulavlahladlanl)
and w= bar growth rate and bar celerity;
A= dimensionless wavenumber, defined as
A =2—7Z , L = dimensionless wavelength.
Two parameters, € and @, are obtained
by the solvability condition (Nayfeh, 1981),
leading to

Q-iw=f(A,p,6,.d.,) (5)

which relates bar growth and bar celerity to
geometric (A), flow (f5,6,) and sediment

(d, ) parameters. The curve Q =0 separates

the domain into ‘stable’ and ‘unstable’
regions, where (f.,4.) are defined as the

minimum value of £ for bed instability and

the corresponding wavenumber, respectively.
Linear solutions severely suffer from the lack
of precision. Spatially, they fail to describe
the observed troughs and diagonal fronts. In
addition, the maximum scour and deposition
occur at the same cross section, which is

against reality. Temporally, positive values of
Q imply continual growth of alternate bars.
It is thus a matter of time before the solutions
go out of control, which is the most
inadequate feature of the linear solution.

B=B.(+&), A=A +¢&4 (6a-b)
where € <<1, implying that flow conditions
are in the neighborhood of the minimum
instability criterion. At high orders, higher
harmonics are formed due to the interaction
of the lower ones. However, at some orders,
the lower harmonics are reproduced. Such
reappearance causes secular terms that inhibit
the solutions to be valid as ¢ — o, thus
must be suppressed. Here, the very same
forms of the first harmonic are found at two
orders higher, indicating a balance between

04
8_
oT

expansions of the perturbed terms read
(U’, V',H’,D’,ﬂ’)

1
- 7
= 30,0, H,.0,.1, e +0[e) (7

*>" po
s P

1
and A4’ , or A~O(g*) . Full

(Tx'a Ty’9 qx'a qu)
(7b)

1
= pzill(rxp’ Typ> Dp>Dop )(‘92 )"+ 0(82)

1
At O(g?), the system is satisfied since

(ﬂa/i) is (ﬂc,ﬂc) , the

corresponding values of (Q,w) are given by

replaced by

(0,w,). The amplitude A is replaced by
A(T) . Allowing the coefficients to vary with

the slow timescale 7 is the main feature of
the multiple scale method. At O(¢), the

final results come to solving the
non-homogeneous systems:
AX, =B,  (i,/))€{0,2} (8)

At O(e’’?), the solutions of the

variables comprise two parts. The first part is
presented to counteract the secular terms; the
second part represents the non-secular terms.
The alternate bar height and wavelength at
the equilibrium state are solved by a
non-homogeneous system of equations:

A, X, =By, (9)
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Fig 2. (a) Intersecting feature of the four
solution curves for the four Landau equations;
(b) Agreement between the intersection of
solution curves for A, 3 and A, 4

To extend this work, define A, by replacing
the jth column of A,, with vector B;,. To
ensure the existence of the solutions X, , the
solvability condition requires

(10)
This generates ordinary differential equations
for the amplitude A(7), i.e.,

A |=0  j=1~4

dA
d—T‘I'O(U

A+a, A74=0  j=1~4 (11)

which is a Landau equation. The maximum

equilibrium amplitude |4,| is given by
).2=_Re(0!1j) j=1~4 (12)
! Re(a,;)

Given the flow and sediment conditions, this
can be written as

4, =Ag/'(j']) (13)

All individual solvability conditions must be
satisfied. Hence, a solution of A, is sought

for such that

j=1~4

Ael (}%) = AeZ (/1@ )= Aes (ﬂc) = Ae4 (’%) = Ae (14)

The equilibrium solutions (A,,4,) that
answer such a relation are obtained by
numerical  computations. The typical

intersecting feature of the four solution
curves corresponding to the four Landau
equations is shown in Figure 2. In Figure 3
such feature is confirmed using available
experimental data on alternate bars by
plotting the intersection of solution curves
for i=2,3 against that for i=14. It is

thus possible to predict both the wavenumber
and amplitude where all necessary inputs are
simple flow and sediment parameters.

2. Nonlinear Analysis of Forced Bars in
Channels with Variable Width

On the problem of forced bars, time is
no longer an issue. However, secular terms
still do appear, only now, space-wise. In the
longitudinal direction the variables alter
periodically, in response to the variations of
channel width. In the transverse direction, on
the other hand, the validity problem exists
with reappearance of the first order solutions
at the third order. The geometry of the
channel in question has been confined
between —1 and 1. Moreover, the imposed
boundary conditions guarding at two banks
limit drastic deviations of the solutions. As
such, a regular perturbation method would
suffice to obtain solutions with an acceptable
accuracy.

Using a small parameter J for
asymptotic expansion, which is given from
the small amplitude of the width oscillation,
b(x) is expressed in a complex form:

b(x) =1+ 8b, (x) =1+ 5[ +c.c] (15)
The perturbed values can be fully expanded
as

'V, 1D\ 7
) (16a)
- p2=1(Up’Vp’HP’DP’77P)(5)p +0(§3)
(7,0, a,)
(16b)

= é(Txp,TW,qxp,qwkb‘)P +0(§3)

p=l



Substituting these into the governing
equations, boundary conditions, and closure
relations, and collecting like-power terms,
one obtains a linear system O(0) and a
nonlinear system O(J°). The variables at
O(0) are given as follows:

(U17VI7H15D15771)

idyx o1 1 1 1 1 (1 7a)
=e b (ul (y)avl (y)a hl (y)a dl (y)a 771 (y)) tc.c.
(Txla Ty159x1> qyl)
= euhx(c_f'ofiq ), CfoZ;q ), (1 7b)
Dy (). Ry (1) +cc.
The superscript and subscript ‘1’ denote
p=1 and the first harmonic in the

longitudinal direction. The shear stresses and
sediment transport rates are expressed by the
flow and sediment variables. As such, the
system of equations is simplified to an ODE:

(18)

d*v|
dy2

—L4+T, +0,v =0

The boundary conditions become
d*v|
dy*
At O(5%), on the right hand sides of the
system, interactions among variables of the
lower harmonics are observed. The solutions
at this order are rather tedious. The dual
harmonics comprised in the first order
generate many possibilities for the higher
ones. The solutions can be grouped into two

types, i.e., the homogeneous and particular
solutions:

(U29H29D29’729Tx2’qx2)

1 o
v, =tik,,

= 4T,

_ 2idxr, 2 32 2 2 2 2 (192)
=e” " [(Ujns Miasd 2> Mias € ol ana > P oG]

+(”,2)2 > hiz > d,z)z 5 77,2)2 > CfOtij > ®09§p2) tcc]

+[(”;o:h;oad:oa77:oa CfotjhO’(I)Oqiho)

+(u,2)o > hio > d;o > 77,2)0 > Cf()tjp() > ®09§p0) +ec]
(Vs7,004,0) = € (125 C ot @034 (19b)

2 2 2
+(v,,Ct,0, Poq,,,) + ]

2 2 2
HVo> CfOtyhO > (Dotho )

2 2 2
(V05 C o0, Po4,,0) + €]

The superscript ‘2’ denotes p =2 and the

subscripts ‘2’ and ‘0’ denote solutions for the
‘second’ and ‘zero’ harmonics; ‘ p’ and ‘A’
in the subscript denote ‘particular’ and
‘homogeneous’ solutions. Incorporation of
homogeneous solutions is required to satisfy
the boundary conditions, which are main
origins of the forcing effect. Grouping the
terms with the same harmonics ends up
solving 11 systems of equations, which can
be expressed as

A, X, =B,  j=1~11 (20)

For the homogeneous solutions, the variables
with a second harmonic are first solved. The
second homogeneous solutions regarding the
zero harmonic are then solved. From the final
forms of the equations, one knows that
Vizlo = tiho = Qiho =0 ) and
(Upos o>y o> tone»Gone) are constants. To
determine the values of these constants, two
more relations are introduced. At O(8%), the
resulting forms of these two relations are

Ly

1 1
[W,+D,+UD)dy=0> [ [ndyax=0 (21a-b)

Substituting (19a) into (21), and using the
particular solutions, it is possible to solve the

Thus, a

complete set of solutions for O(5%) is
obtained.

rest of the components in X, .

3. Results and Discussion
3.1. Nonlinear Solutions of Free Bars

The linear and nonlinear solutions of
bed deformation over three wavelengths of
the alternate bars are shown in Figures 3a and

3b, respectively, where the perturbed term
1

n’ is expanded to O(e?) for the linear
solution and O(&) for the nonlinear solution.

The linear result is inappropriate for
describing the natural features of alternate
bars because: (1) it does not show diagonal
fronts and the deep pools at their downstream
faces; (2) the maximum deposition and scour



take place at the same cross section; and (3)
the transition slope from the maximum
deposition to the downstream pool is steep
rather than mild. The nonlinear solution, on
the other hand, exhibits such features and
thus closer to the natural phenomenon.

(a) Linear solution

(b) Nonlinear solution

Fig. 3. (a) Linear and (b) nonlinear solutions
for bed deformation of alternate bars
(B=15,60,=0.1,d;=0.01)

(a) Centerline

1

-0.5 4 === Linear solution
== Nonlinear solution

T T T T T T T
0 5 10 15 20 25 30 35 40

Fig. 4. Comparison of linear and nonlinear

solutions of bed deformation along (a)

channel centerline and (b) right bank
(B=15,0p=0.1,d;=0.01)

A detailed comparison is made in
Figures 4a and 4b, where the bed
deformations along the centerline and right
bank are shown. The difference between the
two solutions is denoted by A#zn’, which

represents the effect of a pure second
harmonic. Along the centerline the linear
solution exhibits null variation and the
nonlinear solution is fully attributed to the
second harmonic. The peaks of the nonlinear
solution correspond to the diagonal fronts.
Along the right bank, the superposition of the
two harmonics urges the bar front to shift
downstream and the pool to shift upstream.
This results in the milder slope from a pool to
a front and steeper slope from a front to a
pool.
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Fig. 5. Comparison between predicted and

observed results of (a) bar
wavenumber and (b) bar (or
maximum) height



Table 1. Alternate bars wavenumber prediction errors associated with various models

Authors Model type  Theory Helical flow Prediction Error
Ikeda (1984) Empirical Dimensional analysis  Not included  —40% ~ 80%
Blondeaux & Seminara  Analytical Linear stability Not included  —25% ~ 40%
(1985)

Colombini et al. (1987)  Analytical Linear stability Not included  —30% ~ 70%
Lanzoni (2000) Analytical Linear stability Included =15%~25%
This study Analytical Weakly nonlinear Not included  —20% ~ 60%
Defina (2003) Numerical Fully nonlinear Not included  —30%

Nelson & Smith Numerical Fully nonlinear Included 4%

(1989) Numerical Linear theory Not included  55%

To see whether the present model, while
predicting simultaneously the bar wavelength
and height, still holds a fair accuracy, the
predicted results of alternate bar wavenumber
and bar height are plotted against the
observed results in Figures S5a and 5b,
respectively. Aside from the line of perfect
agreement, two other solid lines correspond
to the range of error between —20% ~ 60% in
Figure 5a and —60% ~ 20% in Figure 5b. A
total of 66 experimental data are shown in
Figure 5. In Figure 5a, more than 77% of the
data fall within the —20% ~ 60% error range,
indicating an overall trend of overestimation.
A scatter of data with errors > 60% shows
that the present model may at times
overestimate the wavenumber by 3~5 times.
On the other hand, for the alternate (or
maximum) bar height in Figure 5b, 79% of
the data fall within the —-60% ~ 20% error
range, indicating an overall trend of
underestimation.

The wide range of prediction errors has
been also reported in previous studies. In this
study, such errors still exist although the
range of error has been significantly reduced,
especially for the prediction of bar height. A
comparison of wavenumber prediction errors
associated  with  various models is
summarized in Table 1. The possible causes
for these prediction errors include: (1)
Misusage of shallow water equations for
deep flow problems; (2) Neglecting
suspended load could often over-predicts bed
stability; (3) The helical flow effect is not
taken into account. The alternating pattern of
fronts and pools causes distortion of
streamlines and thus results in the secondary
flows. The importance of secondary flows in

meandering channels is well known, but
remains both qualitatively and quantitatively
vague concerning the alternate bars in
straight channels, which will be addressed in
the third year.

3.2. Nonlinear Solutions of Forced Bars

(a) Experimental result

Distance (cm)

Bed level perturbation
EE [ [ [ T

-1 08 -06 -05 -0.2 0 0.2 0.4 0.6 0.8 1 (cm)

Fig. 6. Comparison between (a) experimental
result, (b) linear and (c) nonlinear
solutions of bed deformation in our
run S6

The ability of the linear model, with the
helical flow effect incorporated, in predicting
various types of forced bedform has been
shown in our previous work (Wu and Yeh,
2005). On this basis, we further investigate
the microscopic corrections due to the
nonlinear effects. The linear and nonlinear
solutions for our run S6 and Bittner’s run
CI-11, along with the experimental results,
are shown in Figures 6 and 7, respectively. In
Figure 6, no apparent change is found by
introducing the second-order solutions. All
scour and deposition occur at very similar



sections. The phase shift for the locations of
the maximum deposition and scour induced
by the nonlinear effects is slight. Such results
are expectable since the amplitude for the
channel width variation is rather small in our
experiments (J = 0.078).

(a) Experimental result

y* (cm)

y* (cm)

y* (cm)

0 100 200 300 400 500 600

Distance (cm)

Bed level perturbation

-1.5 -1 -0.5 0 0.5 1 1.5 (cm)

Fig. 7. Comparison between (a) experimental
result, (b) linear and (c) nonlinear
solutions of bed deformation in
Bittner’s run C1-11

For Bittner’s run Cl-11 where the
amplitude of width variation is large
(0=0.19), we see in Figure 7 that the
correction due to the nonlinear solutions is
significant. Two major differences are
observed. First, the nonlinear result is more
clearly separated from the bars on the
opposite side of the channel, while the linear
solution predicts band-like bars with the
maximum deposition at the two sides.
Furthermore, the location where the bars
from the two sides meet as they stretch their
way to the channel centerline (referred to as

the primary peak hereinafter) is also different.

In Figure 7b, the bars meet at approximately
halfway from the widest section to the
narrowest one. In Figure 7c, the bars
extended along the channel axis until they at
last meet near the narrowest section. The

overall bedform is better described by the
nonlinear  solution, especially at the
centerline the linear solution tends to
overestimate the bar height there. The bed
deformations along the channel centerline are
shown later.

Second, a secondary trough is found in
the nonlinear solution, which corresponds to
the second harmonic. The trough is enclosed
by the side bars with a primary peak at the
downstream face and another peak (referred
to as the secondary peak hereinafter) at the
upstream face. The peak and trough found in
the linear solution are referred to as ‘primary’
bedforms, while those additional features
revealed by the nonlinear solution are
referred to as the ‘secondary’ bedforms. In
this sense, as one travels downstream, one
should encounter a secondary peak, a
secondary trough, a primary peak and then a
primary trough.

(a)Run S-6 [This study]

2

n" (cm)

14
04

1

2

0 100 200 300 400 500 600 700 800
Distance (cm)

(b) Run C1-11  [Bittner, 1994]

——— Linear solution
Nonlinear solution
* Experimental data

2

= 14

0 100 200 300 400 500 600
Distance (cm)

Fig. 8. Comparison of experimental and
analytical results of longitudinal bed
deformation profile in (a) our run S6
and (b) Bittner’s run C1-11

Detailed comparisons are made in
Figures 8 to 10, where the longitudinal and
lateral bed deformations are shown. In Figure
8a, we see that no greater precision is
obtained with additional consideration of the
nonlinear effects regarding to run S6. Both
linear and nonlinear solutions yield very fine
agreement, both in magnitude and phase. In
Figure = 8b, however, a noticeable
improvement is attained. The single
harmonic of the linear solution tends to
overestimate the bed level perturbation at the



location where its maximum occurs. This is
most obvious at the distance x = 170, 330,
and 490 cm where a rise is predicted as a
corresponding drop, or a secondary trough, is
found. The second harmonic from solutions
at O(6%) fairly describes such drops but
underestimate the primary troughs.

For lateral profiles, both solutions agree
well with the results of our run S6 (Figure 9).
In the narrowest section, however, the scour
depth is underestimated by ~0.6cm at the
center although the general concave profile is
captured. Such error could be caused by
relaxing the no-slip boundary conditions, as
will be discussed later. For Bittner’s run
Cl1-11 (Figure 10), the data measured over
four cycles are presented with a mean value
and error bars showing the range of observed
values. A similar error is found in the
prediction of the narrowest sections. In the
narrowest sections, the deformation of the
bed profiles is rather weak. An overall form
of a convex can however be seen. Both linear
and nonlinear solutions give the prediction of
the convex form at the center but with
exaggerated curvature of the convex. The
maximum deviation is ~0.7cm. Hence, at the

narrowest section, the scour depth is
underestimated. However, this 1S
compensated by the excessive erosion

predicted at the two sides. At the widest
section, on the other hand, the incorporation
of the nonlinear solutions gives a positive
correction toward reality. The linear solutions
showed greater bar heights than the actual
value, also the locations for the occurrence of
the maximum bar height are shifted toward
the centerline. Both defects are reduced with
the nonlinear effects considered. The
comparison at the narrowest sections for both
experimental studies (Figures 9b and 10b)
shows that the present model tends to
underestimate the scour depth near the

centerline but overestimate that near the bank.

Such errors could arise from neglecting the
no-slip boundary condition at the sidewalls
whose effect becomes more important in the
narrow sections (Wu and Yeh, 2005).

(a) Widest section

1.5

Nonlinear solution

——— Linear solution
Experimental data

n" (cm)
05 -

-20 -10 0 10 20

(b) Narrowest section

0

-0.5 4

n" (cm)

y'(em)

Fig. 9. Comparison of experimental and
analytical results of lateral bed
deformation profile in our run S6: (a)
widest and (b) narrowest sections

(a) Widest section

—— Nonlinear solution
15 4 ——~— Linear solution
o Experimental data | .~ 7N\

-30 -20 -10 0 10 20 30

-30 -2'0 —1I0 (I) 1I0 2I0 30
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Fig. 10. Comparison of experimental and
analytical results of lateral bed
deformation profile in Bittner’s run
CI-11: (a) widest and (b) narrowest
sections



4. Concluding Remarks

Nonlinear analyses are performed on the
free (alternate) bars in straight channels and
forced bars in variable-width channels. The
results reveal that the nonlinear solution of
free bars exhibits natural features not
captured by the linear solution, such as
diagonal fronts and downstream pools,
different sections for maximum deposition
and scour, and steep transition from
maximum deposition to downstream pool. A
comparison of the compiled experimental
data and nonlinear solution further indicates
that the present model tends to overestimate
the wavenumber while underestimate the
alternate (or maximum) bar height.

The nonlinear solutions of forced bars
give realistic corrections to the bedforms in
the variable-width channels. Longitudinally,
they reveal the existence of the secondary
bedform; transversely, they realistically
describe the forced bedform when deposition
occurs, although predictions at the sections
where erosion occurs are less satisfactory.
The nonlinear effect is, however, significant
only when the amplitude of width variation is
so large that the solution at O(5°) becomes

non-negligible.
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ABSTRACT

We present a novel HMA (Histogram Matching
Approach) for optimization of the mandatory
environmental flows. The HMA uses the degree of
histogram dissimilarity as a metric for impact
assessment, which is based on the quadratic-form
distance between the frequency vectors of the pre-
and post-impact histograms weighted by a specified
similarity matrix. The HMA is coupled with an
aggregated multiobjective optimization GA (genetic
algorithm) and applied to a case study on the
Kaoping diversion weir (Taiwan) for determining the
optimal environmental flow scheme that balances the
ecosystem and human needs objectives. We compare
the performances of the HMA and existing RVA
(Range of Variability Approach). We also employ
three types of similarity function to investigate their
effect on the outcomes of the HMA. The results
reveal that the HMA consistently outperforms the
RVA in preserving the natural flow variability
regardless of what type of similarity function is used.
However, no single type of similarity function can be
found that would simultaneously best preserve the
natural patterns of 32 THA (Indicators of Hydrologic
Alteration).

Keywords

HMA (Histogram Matching Approach); IHA
(Indicators of Hydrologic Alteration); RVA (Range of
Variability Approach); Mandatory environmental
flows; Optimization

1. INTRODUCTION

Rivers downstream of reservoir and/or weir operation
facilities typically experience a loss of natural flow
variability, leading to alterations of geomorphic
processes, physical habitat, nutrient cycling, water
quality, temperature, and biotic interactions, thus
deteriorating the health of the riverine ecosystem. In
an effort to mitigate these impacts and support
sustainable ecosystems, a managed release of water
to meet the instream flow requirements (or termed
‘environmental flows’) is currently mandated by the
governmental and natural resources agencies in many
nations around the world.

Determining the environmental flows for the riverine
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ecosystems continues to be a challenge for
contemporary scientists and natural resources
managers. A key issue regarding the definition of
environmental flows is to determine how much of the
original flow regime should continue to flow down a
river and onto its floodplains in order to maintain the
valued features of an ecosystem. Over the last decade,
the concept of ‘natural flow regime’ has been
emerging as a paradigm for river management (Poff
et al., 1997), which recognizes the full range of
natural flow variability as a primary driving force for
sustaining the ecological health of a river. To
characterize the natural and altered flow regimes, a
number of hydrologic index systems have been
proposed. A thorough review can be found in Olden
and Poff (2003). Richter et al. (1996) adopted 32
hydrologic parameters to develop a suite of IHA
(Indicators of Hydrologic Alteration). The 32
ecologically relevant IHA are categorized by five
groups of hydrologic features, i.e., flow magnitude,
duration, timing, frequency, and rate of change.

The IHA have become increasingly popular tools for
river management. Abundant examples can be found
where researchers have employed the IHA to assess
the hydrologic changes induced by flow regulations,
as demonstrated by the THA Applications Database
(The Nature Conservancy, 2005). Despite the
popularity of IHA, studies that incorporated the
natural flow regime to optimizing water release
strategies were rarely reported, primarily due to a
lack of widely accepted methodology for quantifying
the ecological fitness of environmental flows. Only
recently, incorporation of the regime-based
environmental flows in water resources and
ecosystem management becomes practicable with the
aid of the RVA (Range of Variability Approach) (see
Shiau and Wu, 2004a, 2004b, 2006, 2007a, 2007b).
The RVA employs the natural (or pre-impact) flow
series to establish the IHA target ranges (Richter et al.,
1997). The management goal is to recommend
environmental flow schemes that would attain the
target ranges as frequently as the natural flow series.
Richter et al. (1998) further suggested an IHA target
range bracketed by the 25th- and 75th-percentile
values, implying that 50% of the pre-impact years
would have the values of the hydrologic parameter
within the target range. To evaluate the deviation of



the post-impact flow regime from the natural
conditions, Richter et al. (1998) defined a ‘degree of
hydrologic alteration’:

N, . —N,

o,m e

Dy = x100%, m=1,...,32

where Dy ,, = degree of alteration for the mth THA;
N, = observed number of years whose post-impact
values of the mth IHA are within the target range; N,
= expected number of years whose IHA values would
fall in the target ranges = p/Nr, here Ny = total number
of post-impact years, p = 50% by definition. The RVA
has been employed in a series of water allocation
studies (Shiau and Wu, 2004a, 2004b, 2006, 2007a,
2007b) to assess the flow regime alteration induced
by weir diversions and specify the optimal
environmental flows balancing the ecosystem and
human needs objectives.

Although the RVA is one of the first attempts to
preserve the natural flow regime, it is subjected to
certain potential limitations. Specifically, the RVA
only concerns the frequency of a hydrologic
parameter falling in the target range. Variations of the
parameter value within the target range are not
explicitly taken into account. Moreover, the value and
frequency of the hydrologic parameter falling beyond
the target range, be it above the upper- or below the
lower-target, are totally ignored. These could
potentially result in false evaluations of the flow
regime.

We present in this work a novel HMA (Histogram
Matching Approach) to resolving the issues stressed
above. The HMA uses a dissimilarity metric to assess
the flow regime alteration, which is based on the
quadratic-form distance between the frequency
vectors of the pre- and post-impact histograms
weighted by a specified similarity matrix. The HMA
is employed to seek the optimal environmental flow
scheme for a case study on the Kaoping diversion
weir, Taiwan. The performances of the HMA and
RVA are compared. In addition, a sensitivity analysis
is carried out on different types of similarity function.
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Figure 1: Schematic diagram of HMA

2. METHODS
2.1 Histogram Matching Approach
(HMA)

The distribution of hydrologic data is typically
expressed by a continuous probability function or a
discrete histogram. The former is suitable for the
situation that a sufficiently large amount of data is
available for deriving an unbiased probability
distribution. For most of the case where available
data are limited, however, the latter is adopted by
partitioning the data space into a predefined number
of classes showing the frequency of occurrence in
each class. The central idea behind the HMA is that
two flow regimes would be similar if their frequency
histograms resemble to each other. Such a
resemblance is usually measured using the ‘statistical
distances’ between the pre- and post-impact
frequency histograms. As such, alteration of the flow
regimes can be assessed with a distance-based
dissimilarity metric.
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A quadratic-form distance is employed to measure
the dissimilarity between two histograms H and K
(Figure 1). This metric, originally proposed by
Niblack et al. (1993) for color-based image retrieval,
accounts for both the class-by-class correspondence
and cross-class information. The quadratic-form
distance 9o is defined as
dy(H,K)=+/(h-K|) A(h-K|)

where h=(h,hy,....h, )" and k=(k.k,,....k, )" are
frequency vectors of the histograms H and K;
lh—k|= statistical distance vector. The cross-class
correspondence is incorporated via a similarity matrix
A =[a;], where @; =similarity between classes i and ;.
The values of ¢; vary between 0 and 1 as a function
of the ground distance between classes i and j. A
general expression of ¢; is given by

dif ‘



in which d; = |[V; — V}| = ground distance between
classes 7 and j, where V; and V; are mean values of
classes i and j; @ =maX(d,-,-)=‘V1 ~V.|. Values of a
are specified in a range between 1 and %, a linear
similarity function is obtained with o =1, whereas a
diagonal pulse similarity matrix that ignores the
cross-class correspondence is obtained with o =00,
Variations of @; with d;/dn. for a variety of «
are illustrated in Figure 2. As shown, the linear and
pulse similarities are envelops of the similarity curve
family.

2.2 Degree of Histogram Dissimilarity

To be consistent with the definition of Dra., the
quadratic-form distance is scaled with its maximum
value to define a ‘degree of histogram dissimilarity’:

dom
om =————x100%, m=1,...,32
’ max(dQ’m)

where D, ,,= degree of histogram dissimilarity (mth
IHA); d,,,= quadratic-form distance (mth IHA).

2.3 Overall Degree of Flow Regime

Alteration
An integrative index is used to evaluate the overall
degree of flow regime alteration, i.e.,

1 3 , 1/2
where Dy, = overall degree of ‘hydrologic
dissimilarity’. Similarly, individual values of Dy, is
integrated as an overall degree of ‘hydrologic
alteration’, i.e.,

1 3 s 1/2

Do = (5 mZ:lDR,mJ

Minimizing Doy or D,, is regarded as equivalent
to best preserving the natural flow regime, thus is

taken to be a surrogate objective of the ecosystem
needs in our case study.

3. CASE STUDY

3.1 Overview of Kaoping Diversion Weir
The Kaoping diversion weir is located in the
midstream of Kaoping Creek, southern Taiwan. Its
alluvial plain is a major agricultural area. To mitigate
the impacts of groundwater overdraft and provide an
alternative source of water supply, construction of the
Kaoping diversion weir was initiated in 1992 and
completed in 1999. The monthly flow characteristics
(1951-2004) of the Lilin Bridge gauge station,
located immediately above the weir site, exhibit a
highly fluctuating and uneven flow pattern. The
water-supply objectives of the diversion weir are to
meet the agricultural and domestic water demands.
Currently a minimum flow (= 9.5 m’/s) is released

from the Kaoping diversion weir for protecting the
downstream water quality (WCA, 2000), which is
unlikely to create a sufficient resemblance to the
natural flows (Shiau and Wu, 2006). Since the
post-diversion flows vary as a function of the
environmental flow prescriptions, a weir operation
model is used to simulate the flow series diverted for
water supplies and released for ecosystem
preservation.

3.2 Weir Operation Model

The system of flows in the weir operation model is
depicted in Figure 3, where two flow criteria are to be
met at time ¢, i.e., the projected diversions Q,, and
environmental flows Q;.; Q; denotes the natural (or
pre-diversion) inflow; @/, denotes the amount of
flow actually diverted for water supplies; Q)
denotes the post-diversion outflow. The projected
monthly diversions @), are summarized in Shiau
and Wu (2007b), and the values of Q.. are the only
decision variable to be specified. A total of twelve
Q.. values are to be prescribed for the monthly

varying environmental flow scheme. The operational
rules are given by

=0, Qip=0 if 0} <O

05 =05 > Qup =01~ Op if Opp <0 <Opr +0pp

00=01-0pp» Qup=0pp if 0>0p+0pp
These operational rules are currently implemented by
the Water Resources Agency of Taiwan with a
constant value of Q. (=9.5 m’/s). Here we modify
the operational rules by allowing the values of Q.
to vary monthly. The daily flows at the Lilin Bridge
gauge station (1951-2004) are used in the simulation
as the inflow series Q). The post-diversion series,
0, are used to assess the degree of flow regime
alteration. The flow series actually diverted for
human demands, Q,, are used to evaluate the water

supply deficit.

i
Qi o

Kaoping Creek

Figure 3: Flow system of Kaoping diversion
weir



Table 1: Optimal sets of environmental flows O;. obtained with the RVA and HMA, the
associated outcomes of Dy and SR, and statistics of Dy and Dy

HMA with different types of similarity function

RVA Linear Exponential (o = 5) Pulse
Do (%) [Dor or Dog] 9.3 11.1 9.3 9.2
SR (%) 29.2 34.1 32.1 30.9
January 39.7 59.0 40.4 40.5
February 344 52.5 59.5 50.3
March 27.3 66.0 28.2 30.7
April 22.8 40.7 28.4 38.3
May 23.4 27.5 41.0 27.6
Opr June 26.2 19.3 19.1 26.2
(m’/s) July 9.6 14.9 13.3 26.2
August 30.0 26.2 11.8 259
September 9.6 13.3 13.3 22.0
October 28.3 26.7 26.7 26.7
November 47.5 65.0 48.7 21.5
December 27.9 38.9 39.0 55.0
Dp<5% 47 9° 10 12 14
5% <Dp<10% 10 11 11 10 10 11
No of lHA oo, <Do<iswe 7 7 7 6 7 4
15% < Do < 20% 5 2 1 4 1 1
Do>20% 6 4 4 2 2 2
Dr<33.3% 32 32 32 31
No_ of tHA 33 304 < Dy < 66.7% 0 0 0 1
Dr>66.7% 0 0 0 0

Superscripts a, b, and ¢ associated with the RVA-based results denote the values of Dy calculated with the linear,

exponential, and pulse similarities, respectively.

3.3 Index of Water Supply Deficit

The shortage ratio, SR, is employed herein as an
index of water supply deficit (Cancelliere et al.,
1998):

N
> |min(Qlyp = Opy, 0)
_ 1=l
= t N )
ZQPD
t=1
where N= total number of days. The value of SR
represents a human needs objective to be minimized

with the aggregated multiobjective optimization
algorithm.

SR x100%

3.4 Aggregated Multiobjective
Optimization
The operational goal of the Kaoping diversion weir is
to supply human demands while retaining the natural
flow variability, which formulate a typical
multiobjective optimization problem. The objective
function can be expressed as
Min {D,,, SR}

where Dy = overall degree of flow regime alteration,
either Dog or Doy is used. Because the purpose here
is to demonstrate the proposed HMA and compare
the performances of HMA and RVA, rather than fully
explore the tradeoffs between Pareto solutions, an
aggregated multiobjective optimization genetic
algorithm (AMOGA) is used to find the optimal

solution of a rescaled and aggregated objective
function, i.e.,

2 5 1/2
Dy —Dg i - .
Min 0 O, min + SR SRmm
D(),max - D()‘min SRmax - SRmin

The values of Dg max and SRy, are obtained with an
extreme condition that Qj,.= 0 at any time ¢, whereas
Domin and SRy, correspond to the condition that
0'p,= 0 at any time ¢. The optimal set of Q},. is
obtained using a simple GA (Haupt and Haupt, 2004),
with population size = 1000, and typical values of
crossover and mutation rates = 0.8 and 0.05,
respectively. The selection, crossover, and mutation
operators are used to iteratively evolve a population
toward the true optimal solution. The procedure is
repeated until a stable optimal solution is obtained,
which represents a compromise between the human
and ecosystem needs objectives.

4. RESULTS AND DISCUSSION

4.1 Comparison of HMA and RVA

The results obtained with the RVA and HMA,
including the optimal sets of Ogr, optimal values of
Do and SR, and statistics of Dy and Dj are
summarized in Table 1, where Dgr and Dyg
correspond to the results of RVA and HMA,
respectively. These values of D, are largely on the
order of 10%, indicating that the overall degrees of



flow regime alteration associated with these four
AMOGA-based optimal environmental flow schemes
are relatively low. Although such a result may have to
imply that the RVA is as useful as HMA for finding
the optimal environmental flows, the strength of the
HMA becomes apparent as we look at the
post-optimal series of IHA. Two examples are given
below to demonstrate this.

Figure 4a shows the natural and post-optimal series
of monthly flows in December, obtained using both
the RVA and HMA with a pulse similarity (referred to
as HMA-pulse hereinafter). The post-optimal series
based on the HMA-pulse closely resembles to the
pattern of natural series, while the post-optimal series
based on the RVA exhibits much less variability
despite that 50% of the data points are within the
target range. Most of these within-target data points
obtained with the RVA have values that are just
passing the lower target. Moreover, the percentage
above the upper target is reduced to 11% while that
below the lower target is increased to 39%. The
frequency histograms (Figure 4b) further reveal that
the post-optimal series based on the HMA-pulse
closely follows the natural distribution, whereas 65%
of the RVA-based post-optimal series are
concentrated in the second class, which is a 37% over
the corresponding natural frequency and 24% over
the post-optimal frequencies resulting from both the
HMA-linear and -exponential.
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Figure 4: Monthly flows in December (a)
Natural and post-optimal series; (b)
Frequency histograms

As the second example, the natural and post-optimal
series of annual mean low-pulse durations are shown
in Figure 5a. The post-optimal series obtained with
the HMA-linear exhibits a reasonably good
resemblance to the natural series. The RVA-based
post-optimal series of low-pulse durations is not as
disturbed as that of monthly flows in December, with
most of the RVA-based results being slightly greater
than the corresponding values obtained with the
HMA-linear. As a result, the frequency of the
RVA-based post-optimal series in the fourth class is
higher than the corresponding HMA-based
post-optimal frequencies (Figure 5b), while the
RVA-based post-optimal frequency in the first class is
consistently lower than the corresponding
HMA-based post-optimal frequencies.
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Figure 5: Mean low-pulse durations (a)
Natural and post-optimal series; (b)
Frequency histograms

The above two examples demonstrate that the HMA
outperforms the RVA in preserving the natural flow
variability, which is achieved at the cost of greater
water-supply deficits, as revealed by the slightly
greater values of SR associated with the HMA (i.e.,
ranging from 30.9 to 34.1%) than the RVA-based
value of SR (= 29.2%). Such minor degradation in
human needs fitness, however, may be overlooked as
we compare the statistics of Dy derived from the
RVA- and HMA-based post-optimal series of 32 THA.



Table 1 shows the numbers of IHA with the
corresponding values of Dy in five different levels,
where the superscripts a, b, and ¢ associated with the
RVA-based results denote the values of Dy calculated
with the linear, exponential, and pulse similarities,
respectively. Comparison of Dy should be made
between the values obtained with the same type of
similarity. For Dy < 5% (the most similar level), the
HMA-based post-optimal numbers of IHA are
consistently greater than the corresponding
RVA-based values regardless of which similarity
function is used, while for Dy > 20% (the most
dissimilar level), the RVA-based post-optimal
numbers of IHA are consistently greater than the
corresponding HMA-based values. These statistics of
Dy clearly indicate that, compared to the outcomes of
the RVA, the post-optimal series of IHA obtained
with the HMA preserve more of the natural flow
regime via reducing the dissimilarity to the
histograms of the natural series, thus offering the
improved ecosystem needs fitness with only minor
increases in SR.

4.2 Comparison of Similarity Functions

The effect of similarity function on the outcomes of
HMA is explored. Three types of similarity, i.e.,
linear, exponential (a0 = 5), and pulse, are compared.
From the frequency histograms of monthly flows in
December (Figure 4b), we see that the post-optimal
distribution obtained with the HMA-pulse is most
similar to the natural pattern, while the identical
results obtained with the linear and exponential
similarities are inferior. The best outcome associated
with the HMA-pulse is attributed to the largest value

of Opr prescribed (Table 1), which, however, does
not necessarily mean that the environmental flows
prescribed with the HMA-pulse are greater than those
obtained with other types of similarity function. For
example, the value of Oz prescribed for November
using the pulse similarity is smallest, resulting in the
only value of Dy ranging between 33.3% and 66.7%
while others are below 33.3% (Table 1). The
frequency histograms of the low pulse durations
(Figure 5b), on the other hand, reveal that the
post-optimal  histogram  associated with the
HMA-linear is most similar to the natural pattern,
whereas that associated with the HMA-pulse is least
similar to the natural one. These data provide
information from which a general conclusion can be
drawn. Specifically, there is no single type of
similarity function that would make the post-optimal
series of 32 IHA simultaneously best retain the
natural flow regime. Nevertheless, practical
guidelines may be obtained from the finding of this
work. For the situations where water-supply

reliability is of critical concern, the pulse similarity is
recommended because it would assure the smallest
water-supply deficit. However, if minor degradation
in the water-supply reliability may be overlooked, the
linear similarity is suggested because it would
generally result in the post-impact flows that most
satisfactorily resemble to the natural flow regime.

5. CONCLUSIONS

Herein a novel HMA for assessment of flow regime
alteration is presented. The proposed HMA is applied
to a case study on the Kaoping diversion weir for
determining the optimal mandatory environmental
flows. The results reveal that the HMA eliminates the
shortcoming of the existing RVA, thus consistently
outperforms in preserving the natural flow variability
regardless of which similarity function is used. Such
performances of the HMA are achieved via reducing
the dissimilarities to the pre-impact frequency
histograms of 32 THA. However, no single type of
similarity function can be found that would
simultaneously best retain the natural patterns of 32
IHA. Selection of an appropriate similarity function
may be based on the finding of this work.
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