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Abstract-—The shock wave is a ciscontinuous profile of rapidly varied flow. A series of shock waves in
channel contraction are numerically simulated and their results are verified using experimental data.
Based on time- and space-marching approaches, two high-resolution finite-difference numerical schemes
are applied for simulation of two-dimensional oblique shock waves. To initiate the simulation. the
body-fitted coordinate transformation is employed to fit the channel boundary geometry. which is then
followed by a set of well designed and controlled numerical simulations. The experimental data of
Ippen and TPWCB are used to examine the validity of numerical results. ¢ 1998 Elsevier Science Ltd.
All rights reserved

1. INTRODUCTION

Supercritical flow through a channel contraction that results in oblique shock waves can be
described by the two-dimensional shallow-water equation. With the assumptions of hydrostatic
pressure distribution and mild channel-bed slope, the shallow water equation is reduced to the
Saint-Venant type equations [1].

The Saint-Venant equations are a system of time-dependent nonlinear hyperbolic partial
differential equations. Their solutions for supercritical flow in a channel contraction may contain
discontinuity. It is not possible to analytically solve this nonlinear system of equations in their
complete form. With the assumption of no energy loss by friction, Ippen [2] obtained analytical
solutions for cases with small change in boundary angle. In most studies, researchers have
resorted to numerical methods for their solutions. Various numerical methods have been pro-
posed to address this class of problem. The non-oscillatory high-resolution finite-difference
scheme based on Godunov's method has been developed for simulating aerodynamic problems
with shock waves. Numerical models have also been formed to simulate the supercritical
flow in channel contraction [4]. Garcia and Kahawita [3]. and Fennema and Chaudhry [5]. suc-
cessfully introduced schemes of second order accuracy such as MacCormack, Lambda, Gugutti
and Roe’s TVD schemes to model the shock waves cansed by dam break or channel contrac-
tion. By using shock-capturing techniques, Jimenez and Chaudhry [6], and Molls and Chaudhry
[7] simulated a rapidly varied open channel flow from the depth averaged shallow-water
equation.

The main purposes of this study are to develop and compare two approaches—time-marching
and space-marching-—-that are considered useful for computation of supercritical shock waves,
for their numerical behaviors and simulation effects, and to further look into model applicability
with respect to the design characteristics of hydraulic structures.

In the following sections of ttis paper, the aim is first focused on the simulation of the two-
dimensional supercritical flow i1 a channel contraction. Based on time-marching and space-
marching approaches. two finite-difference schemes with an improved non-oscillatory shock-cap-
turing method, i.e. time-marching and space-marching finite-difference schemes, are developed
and used for simulation. The tody-fitted coordinate transformation is employed to treat the

tCorresponding author.
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boundary at the channel contraction. A series of numerical experiments have been conducted.
The computed results are compared with the experimental data to demonstrate the validity of
the numerical model.

2. GOVERNING EQUATIONS

Based on the assumptions that the pressure is hydrostatically distributed, that the unsteady
flow in the channel is governed by the shallow-water principles in terms of mass and momentum
conservations [8], that the channel has a rectangular cross-section, and that the channel bed var-
ies smoothly, the two-cimensional shallow-water equation set can be derived in the conservation
form:

U+F+G, =S8 (1)
The subscripts indicate partial differentiation. The above terms are defined as
U = [h, uh, vh)T
1
F = [uh, u*h + zghz, uvh)T

ol 1
G = [vh, uvh, v-h + ighz]T

S = [0, gh(Sox — Sp)s 8h(Sey — Sp)” 2)

in which, /# represents the water depth; » and v, S,, and S,,, Sy and Sy, correspond to the flow
velocity components, bed slopes and the friction slopes along x- and y-axis, respectively. The
friction slopes are expressed with Manning’s formula as

n*uy/(u? + v?) s v/ (2 + v?)
— s Sh =

Spx = WA/3 ’ hA3

where # is the Manning roughness coefticient. The system of equations expressed in the form of
Equation (1) is a hyperbolic type of partial differential equations. Equation (1) can also be writ-
ten in the form [9] as follows

U+ AU, +BU, = S 3)

in which 4 and B are the Jacobian matrixes defined as

0 1 0 0 0 1
G
A=£= A—u 2u 0 Bz—g—(j: —uy vV o u 4)
oU —uy v o u A—v: 0 2v

where c is the celerity of gravity wave

c=\/gh

The eigenvalues (A, and A,) and corresponding eigenvectors (I'y and I'y) of Equation (1) or
Equation (3), can be derived as follows

1 0 1
Ac=lin 2 A =lwutcu—c’, Ti=|utc 0 u—c (5)
L v 1 12
1 0 1
Ay = [)',V’ A;—’ j"}_]T - [V’ v+ V= C]Ts r‘y = U 1 u (6)
lv+ec 0 v—c

Because the flow velocity exceeds the celerity of gravity wave in supercritical flow throughout
the channel contraction, the solution may lead to spontaneous discontinuities with real physical
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meaning. With most of the classical methods, it 1s not possible to simulate such discontinuities
at the steep wave front of the water surface profile. In this study. the high-resolution finite-
difference method is used to capture the wave front.

3. BODY-FITTED COORDINATE TRANSFORMATION

An approximation of the boundaries of a curvilinear physical system with the rectangular
grids may introduce large errors [10]. The boundary fitted grids in irregular domain are used to
solve the governing equations in transformed coordinates. The procedures of generating the cur-
vilinear coordinate system are followed through the numerical solution of partial differential
equations.

In a two-dimensional physical domain, the Cartesian coordinates x and y are used, whereas
the coordinates in the computational domain are denoted by ¢ and 5. The general equations
used for coordinate transformation are Poisson squations shown in the following [11]:

where the source terms P and ¢ are specified functions of ¢ and 5, and are given by adjusting

the coordinate system [12]. Equation (7) is transformed into the computational coordinates by
interchanging the dependent and independent variables. The transformed equations are:

axz: = 2PNz X, + Jz(P.\'; +Qx,)=0 (8)

avze = 2Bvey 4 Py + J(PY: 4+ Q1) =0 9)
where,
¥ = ,\‘fz + 17‘1 f=xex, 410y, 7= \2 + 13 J = (xry, — )

The physical coordinates, x and y, are determined by solving Equations (8) and (9) with the
Dirichlet boundary conditions.

4. TIME-MARCHING APPROACH

Splitting method is used to discretize Equation (1) with the finite-difference operator L. The
use of L operator on U(x,. v}, t,) yields:

U(Xi o tyr) = L3721 LY (0 (g vy, 1) (10)
or in a compact form:

Ul = LY72 LY LY ) (n
In Equation (11), the scheme first advances a half-time step along the v-direction, then takes a
full-time step on the v-direction, and finally another half-time step on the x-direction. This
scheme has third-order accuracy in time as well as second-order accuracy in space [13]. When
the L operator is performed in the y-direction. the variation in the y-direction is neglected, 1.e.
F. is considered to be zero. Similarly. G, is zero when L, is processed. To illustrate the pro-
cedure L3 is performed on U}, from the discretized form of Equation (1) in a following man-
ner.

LA[/Z" U”»V — U~ A[“([}”T-]/4 FH-HM )+ ﬂ ontl/d
NN

(19
i T A iy T ) i (12)
LA A
where, F/'Z 13, and §/;7 ' are the time averaged flux and source/sink over [1,, t, , 1 2]. respect-
ively. Their exact values may be evaluated by integration over that time interval theoretically.
Instead of the integration, the J" is used to approximate the time averaged flux.
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il -
FIAL =~ FO)

4172,
Fo = FOL) 13)
Uy}, is obtained by Godunov’s method [14], that is
A
U, =Ui;— erxiJAxi‘/in_j(Ui+1‘i - Ui—l,j)
At o o
* 28 D | Aij 1 T (Ui = 2U1; + ULy ) (14)

where,

| A;,'J‘ |= diag(| lxiJ [ | A;J [, | /1;,“,‘ )]

in which, the symbols, A%;; and I'y;;, denote the eigenvalues and eigenvectors of Equation (1) at
node (x;, y;) calculated ‘rom Equation (5). The function, diag( - ), is a diagonal matrix function.
The eigenvalues A%;; are always positive for supercritical flow. The time averaged source/sink
terms S}’JJr Y4 over [t,, tn + 4 2] is approximated as

. Ur+0r
S;'j‘/“zs(————"' 5 i ‘J) (15)

In order to capture the shock wave without oscillation for supercritical flow, FU%) in
Equation (13) should be expressed by a combination of an upwind flux Fi(U7)) and a flux-limi-
tation step [13], i.e.

F(ﬁf’J) = FU((?{'J) + [%AﬁiJ(sgn(vi) -V ,-)Axia:.'] (16)

where v;=2max(4,; Al i Axi)At/Ax; and sgn( - ) is a sign function that matrix elements equal
to +1, —1, and 0 for positive, negative, and zero argument, respectively. In the above equation,
the upwind flux, Fi{(U7)), is defined as

Fu(U7) = F(U}) + Ay i, i, a7

n

in which, A% ;=min(A%;;, 0). The symbol, a,, is the coefficient of y,;, in an eigenvector expan-
sion of U7 4 { ~U7,; [13], i.e.

ur = yun.
J+1y i
*—_—inJ (18)

Qi =

The last term in Equation (16) is the flux-limiter for non-oscillation, in which of is determined
by the minmod slope function,

1
o] = Eminmod(U}’HJ - U,”J», UZ]. - ?_1‘,-) (19)

i
where the minmod function is defined as
a, if |al<|bl,a-b>0

minmod(a,b)={ b, if |bl<jal,a-b>0 (20)
0 if a-b=<0

The minmod slope function used in o of Equation (16) is to ensure non-oscillation. In other
words, the total variation does not grow when F(U7)) is calculated from Equation (16).
In a similar way, Lﬁ’ operator in Equation (11) is expressed as follows,

At at1z Fati2 wntl/2
Lywr) =ur, - Z—)—);(G;‘;{ 7= GIh) + AST 1)
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The numerical flux in y-direction, G(U7)). is expressed in a similar way as Equation (16). recal-
ling the definition v,=2max(4,;;, 25, 2,7,)At/Ay;.

G(U!) = G(U!) + [—; Ay j(sgn(v)) — v)Aya)] (22)
where
GLU}) = GUL) + Abja Ty (23)
. ,,
0 = A—y—}_mmmod( Ul = U UL = U ) (24)

A set of appropriate values for the flow variables, u, v and /., at time zero are specified at all
nodes. For a two dimensional-supercritical flow, inflow boundary conditions have to be treated
as Dirichlet boundary conditions and specified at the upstream boundary.

Because the bottom shear stress in the governing equations is considered to account for all
the flow resistance, the slip condition is taken as the boundary condition at the side walls.
Hence, the resultant velocity at the solid wall surface is tangent to the wall. Chaudhry and
Bhallamudi [10] investigated several wall boundary techniques for gas dynamics and hydrodyn-
amics computations. They used the reflection procedure to set the slip condition. This procedure
is adopted herein because it can account for the impact of the refraction angle of shock wave
and wall reflection of the flow near the boundary. Figure | is a sketch of reflection procedure.
With this procedure, the flow depth and the magnitude of the resultant velocity at the imaginary
reflection point are assigned the same as those at the corresponding interior grid point. and the
normal velocity at the wall is set to zero. If ¢ is the angle between the wall and the x-axis and «
is the angle between the resultant velocity at the interior point and the x-axis. then the velocity
components « and v al the reflection point are:

u=Vcos(20 — a) (25)

v = Fsin(20 — 2) (26)

where F is the resultant velocity at the interior point. Equations (25) and (26) are valid for both
channel contraction and expansion.

For time-marching schemes to be stable, the Courant-Friedrichs-Lewy (CFL) condition must
be obeved. The CFL condition for the two-dimensional flows is usually expressed as follows
[15]:

V4ot 5 5
C = ("&E%—\/(A»\')“ + (A_V)z =<1 (27)
YA r/eflection point Voeflection point
/ I wall

wall '

e o Vinterior point

interior point
poid
» X

X

|Vreﬂection point |=| Vintcrior point

Fig. 1. Sketch of the reflection procedure for a wall [10].
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5. SPACE-MARCHING APPROACH

For simulation of steady supercritical flow, the time derivative term of Equation (1) is
dropped, i.e.

Fe+G, =S (28)

The Jacobin matrixes C and the eigenvalues A of Equation (28) can be derived as (shown in
appendix)

oG ﬁ uz_-vzv-’ u? ie"
C=—= 202,30 2 0 ! (29)
oF cartvi-c) =2 —T__r"(z“z =)
wi2—c2) 2=ct)  wui=cTy

+

(30)

u u —¢? w2 —c?

T
A=[L it i“]T~[—‘i uv + c*VFrl — 1 uv—c?'«/Frz—-l]

For a two-dimensionzl supercritical flow, the Froude numbers, Fr = +/u? +v2/c, are greater
than 1.0 throughout the computational domain. The discretization of Equation (28) is made
with respect to the space coordinates.

Finite-difference operator L2 is used to discretize the first term of Equation (28),

F(xi21, ) = LAF(x;, ;)
or

Fiprj=LYFyy (1)

where, LY is composed of backward-difference prediction step L%, forward-difference correction
step L%, and flux-limitation step L. ie.
LY¥F,; = L\IPF;; — L'F; (32)

X
These steps are elaborated as
(a) Backward-difference prediction step [16]

Ax
Fl,=LF;=Fi;+ ‘A—V(Gi,j —Gjj1) + AxSi; (33)

The flow variables u, v and 4 at the prediction step are found by roots solver from the com-
ponents of F7, then G7; and §%,, are calculated from Equation (2) using these flow variables.
(b) Forward-differencz correction step [16]
¢ [ Ax
F,=L Ff’.=F{fj—A—V(G{?J+l -Gl )+ AxS); (34)

x*t i
(c) Flux-limitation step [17]

M;MQ) V(1 — (Fij — Fiy)

L'F;; =(1 -

B (1 o) + ¢ /rim1)
2

)v(l —V)(Fi; — Fij-1) (35)

where

rp=(Fi; — Fi;-)/(Fijn — Fiy)

min(2r;, 1); ;>0
o)) = { 0: r<0
i Ax

V= max(/l,«‘j, /li,j’ AL)A—y
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Fig. 2. Sketch of side-wall boundary conditions for space-marching approach.

To solve Equation (28). the Dirichlet boundary conditions are imposed on both the upstream
boundary and the side walls. The upstream boundary conditions are given by specifying the
water depth /i and the velocity V. The side wall boundary conditions are derived from
Equation (28), based on the assumption that the source/sink term is negligible along the wall,
then Equation (28) becomes,

Fot G, =0 (36)

The physical curvilinear side wall can be approximated by numerical boundary grids with the
technique of body-fitted coordinate transformation. The shock wave is caused by the deflection
of a vertical channel-wall from each downstream grid to upstream grid through a finite angle
Af, as shown in Fig. 2. The refraction angle of the shock wave front is /. The exact solution for
the shock-wave flow along the wall will be derived in the following manner. The vectors, s and 7
are defined as the directions of normal and tangent to the shock wave front. Equation (36) can
be rewritten in the new coordinates as

Fi+G, =0 (37)
or
ih vh
h+ %gh: -+ uvh =0 (38)
itvh oLl

where the # and v are the flow velocity components along the normal and tangent direction to
the shock wave front, respectively. The derivatives of w, v and & along the shock wave front can
then be neglected.

hi=0. i,=0, v,=0 (39)

Hence. the term G, in Equation (37) will be zero and Equation (37) is simplified as
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(wh), = 0 (40a)
(@h + % gh®), =0 (40b)
(uvh); =0 (40c)

From Equation (40a), Equation (40c) can be rewritten as
7=0 (41)

Let subscripts 1 and 2 denote the upstream and downstream sides, respectively, of the shock
wave front (shown in Fig. 2). Equations (40) and (41) can be expressed as follows,

iy = hin (42a)

_ 1, 1
#hy + 58h = #hy + 3 gh (42b)
V=W (42¢)

Since u; =V sin B, corabining Equation (42a) and (42b) yields,
h .
hy = 71( 14 8F2sin’f — 1) (43)

in which, Fry = ¥1/,/gh;. The relationship among uy, 1, Vi, v2, A@ and f can be obtained from
Fig. 2 that

_ - 753
"Stang T tan(g - A0 (44)
Because v, = v,, the implicit functional form of 8 is [2]
tan B(,/1 + 8Fr? sin’g — 3)
= tanAf (45)
2tan?f — 1 4 ,/1 4+ 8F2sin’p
The downstream velocity along the wall is obtained as follows
Vy = Vycos fsec(f — Af) (46)

After the refraction angle of shock wave ‘f’ calculated from Equation (45) the given water
depth A, the velocity I} and the wall-deflection angle Af along the side wall, the water depth 4,
and velocity ¥, can be determined from Equations (43) and (46), respectively. As a result of the
velocity ¥, and the water depth h; calculated in process from upstream to downstream step by
step, the side-wall boundary conditions are specified.

For the space-marching schemes to be stable, the symbol, v, which is defined in Equation (35)
must satisfy the following condition.

vl (47)

6. SIMULATION RESULTS
6.1. Ippen’s circular-arc channel contraction

A numerical simulation of the supercritical flow in a contracting channel designed and experi-
mented by Ippen and Dawson [18] was performed. The channel has the Manning roughness
coefficient of # = 0.01, and the upstream and downstream widths of 60.96 cm and 30.48 cm, re-
spectively. They are sach joined to the parallel walls at both ends by a horizontal circular-arc
(see Fig. 3(a)). The water enters with flow depth of 0.254 cm (0.1 inch), velocity 70.9 cm/s, and
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Fig. 3. Definition sketch for the channel contraciion and the boundary-fitted gnds used for numerical
simulation. (a) Definition sketch for the channel contraction from Ippen’s experiment (Ippen. 1951).
(b) Boundary fitted grids (49 x 15) used for numerical simulation.
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Fig. 4. Measured and computed water depth contours for Ippen’s circular-arc channel contraction.
(a) Measured (2]. (b) Simulated.
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Fig. 5. The simulated maximum stage of standing shock wave and its location with various grid points.

the Froude number Fr = 4.0. Used in the numerical simulation is a boundary fitted grid of
49 x 15 (see Fig. 3(b)). The measured and simulated contours of flow depth, with time-marching
scheme, are shown in Fig. 4(a) and (b). They are in good agreement with the experimental
results given by Ipper. and Dawson [18]. Figure 4(a) shows that the maximum stage along the
center line of the channel is 1.04 cm caused by the standing shock wave. Figure 5(a) and (b)
gives the comparison plots of the simulated maximum stage of the standing shock wave and its
location with various grids. The simulated results achieve mesh-independence when the grid is
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Table 1. The numerical experiment of mesh independence for Ippen’s circular-are channel contraction

Grid
number 1 2 3 4 3 6 7 8 9 10
Grid 25x 7 29x9Y IS x 11 9 x 13 45 %15 49 % 15 35x 17 69 x 21 83 x 27 99 x 21
Grid points 173 261 385 507 673 733 Q23 1449 2241 2069
Relative
error® (%u)
Time-
marching 226 8.3 €.4 36 1.7 0.4 0.2 0.2 0.2 0.2
Space-
marching 36 2.7 1.4 0.8 .7 0.6 0.3 0.5 0.5 0.3
CPLU timet
(min.)
Time-
marching 2211 20.8 0.4 41.6 74.4 96.5 243.0 6523 1469.2 3088.6
Space-
marching 4.7 49 25 6.7 %.2 121 9.2 28.5 RRIR 50.2

*Relative error = ABSisimulated stage-measurec stage) = meusured stage x 100(%4).
+The computer is Sun Spack 10 model 41

finer than 49 x 15. The comparison of the computer CPU time used and the relative error for
different grids is shown in Table 1. It is obvious that the grid of 49 x 15 (grid number 6) is fine
enough to produce accurate results within a reasonable computer CPU tume. Figure 6(a) and (b)
gives the comparison plots of two sets of computed profiles. one with time-marching and the
other with space-marching, and one set of measured water-surface profiles, respectively, along
the wall and the center line. There exist apparent phase differences among the results of the two
numerical simulations and the experiment.

Figure 6 shows that the time-marching scheme gives better results than the space-marching
scheme with respect to the phase of the shock waves. The different treatment of side-wall
boundary conditions in the two schemes is the main reason for the differences in the simulated
results. The time-marching scheme uses the reflected boundary techniques for the slip condition
along the side-wall as stated zarlier in this paper. In the space-marching scheme. based on an
additional assumption that source’sink term is ncgligible along the wall. the side-wall boundary
conditions including water depth and the velocity along the wall are calculated and specified as
the Dirichlet boundary conditions for solving the flow field. However. there i1s no significant
difference between the wave amplitudes from the two schemes as shown in Fig. 6. The space-
marching scheme uses about one-cighth of the CPU time for the time-marching scheme when
the grid of 49 x 15 (grid number 6) 1s used.

For lack of measured velocity data in this experiment, the Froude number and specific energy
obtained from the numierical similations are compared to each other in Fig. 7(a) and (b). The
specific energy, E, is the total energy head above the channel bed and is defined as

-

E=ht5 (48)

f

The results of the comparison show that the difference is manifest where the shock wave occurs.
Further comparison of the experiments with the numerical results of both schemes will be made
in the following section.

6.2. Experiments in TPWCB

In order to test the time- and space-marching numerical schemes. which are developed in this
study. an experimental investigation was conducted at the Hydraulics Laboratory of Taiwan
Provincial Water Conservancy Bureau (TPWCB). The experimental setup is a channel contrac-
tion composed of two converging straight walls in the upstream. with the angle 43.55° between
them. and with two circular arcs at the transitions to the downstream parallel walls (Fig. 8).
The roughness coefficient (1) is 0.01 and the bottom slope is 0.06. The discharge used in the ex-
periments is 1.55 x 10* em¥/s. The upstream water depth is 1.0 cm and the velocity is 309.1 cm/s.
The measured data, u, v and /., arz specified for the upstream boundary condition at the left-end
nodes.
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Fig. 6. Water surface profiles along the wall and the center line for Ippen’s circular-arc channel contrac-
tion.

A boundary fitted grid of 52 x 15 was used in the numerical simulation. The simulated results
are shown in Figs 9, 10, 11 and 12. The computed results are in good agreement with the
measured data. Figure 9(a) and (b) show the comparison of the computed and measured water-
surface profiles along the wall and the center line, respectively. They show that the time-march-
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Fig. 7. Froude number and specific energy profiles along the center line for Ippen’s circular-arc channel

contraction.

ing scheme gives better results than the space-marching scheme, similar to what is observed in
the preceding section. The time-marching scheme makes good prediction on the phase along the
center line as well. There also exists a distinct phase difference between the experimental and
computed results along the wall. Chaudhry and Bhallamudi [10] suggested that the errors in the
computed results along the cente- line of the transition section are probably attributable to vio-
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Fig. 8. Definition sketch of the channel contraction, the TPWCB channel.

lation of the hydrostatic pressure assumption at steep surface gradients and the effect of air
entrainment. The transverse water-surface profiles at cross-sections I (x = 35cm) and II
(x = 80 cm) are plotted in Fig. 10(a) and (b), respectively. The computed water surfaces are
symmetrical about the center line of the channel. The asymmetry of the experimental data is
caused by a small slopz variation of 0.001 in the channel cross sections of the existing exper-
imental setup.

To further investigate the accuracy of two numerical approaches, the Froude number and
specific energy obtainec. from the numerical simulations are compared with that from the exper-
iments. As depicted in Fig. 11, the locations of maximum Froude number predicted by the nu-
merical simulation are roughly the same as those by the experiment. However, the differences in
values between the experiment and the two numerical simulations increase when x = 60 cm, and
the simulation peak value at x = 86 cm is about 15% greater than experimental one. Figure 12
compares the specific energy profiles. It reveals discrepancies in the same area as the Froude
number (Fig. 11), though the numerical simulation by the time-marching approach gives better
agreement with the experiment than that by the space-marching. In other words, the two nu-
merical models fail to very precisely predict the hydrodynamic effect as well as the specific
energy, and thus have caused phase differences. According to Fig. 12, both the space- and time-
marching approaches simulate well the specific energy when x < 50 cm. In the region where a
shock wave forms (x> 50 cm), however, the time-marching approach simulates the specific
energy better, though it needs 17 times more CPU time than the space-marching approach in
this case.

A possible reason fcr the discrepancy may be the inaccuracy in estimation of the source/sink
term in the governing equation in the numerical modeling or the neglect of the turbulence resist-
ance. However, according to Molls and Chaudhry {7}, the inclusion of turbulent viscosity in the
simulation of the supercritical flow also results in a significant phase difference between simu-
lation and measurement. As a result, phase difference could more probably come from the
biased estimation of a source/sink term in the governing equation. Source/sink terms in
Equation (1) include S, and Sy, which represent the slope of the channel bed and that of friction,
respectively. Since S, 15 constrained by the geometric form of the experiment, Sy is the term with
possible inaccuracy in estimation [19].

In this study, Sy is represented by Manning’s formula using a constant roughness value
throughout the simulation area. Chow [1] described the influence of Manning’s » under different
Froude numbers and low depths. According to his experimental result, Wu [20] has shown that
Manning’s n increases with depth in supercritical flow. In order to model the oblique shock
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Fig. 9. Water surface -rofiles along the wall and the center line for the TPWCB channel.

wave precisely under any turbulent flow conditions. The S, term described in the Manning or
Chezy formula has to be carefully examined, for instance, establishing a functional relationship
of water depth and the value of Manning » or Chezy C under different Froude numbers in
supercritical flow.
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Fig. 10. Transverse water surface profiles at cross-sections I and II for the TPWCB channel.

7. CONCLUSIONS

This paper describes two numerical approaches, one marching in time and the other in space,
by which to solve the two-dimensional shallow-water equations for supercritical flow in a chan-
nel contraction. Both approaches employ the high-resolution finite-difference scheme that is effi-
cient for discontinuous regions such as shock waves and rapidly varied flow conditions. The
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computed results show that bcth approaches are generally in reasonable agreement with the
measured data, and that the time-marching approach is more accurate than the space-marching
one but consumes more CPU time. The phase difference between the computed and measured
results in channel contraction is noticeable when the effect of non-hydrostatic pressure distri-
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Fig. 12. Specific energy profiles along the center line for the TPWCB channel.
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bution, air entrainment and the inaccuracy in estimation of source/sink terms in the governing
equation are predominant. Nevertheless, the computed results can be used effectively for deter-

m

ining the design height of hydraulic structures.
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8. APPENDIX
Equation (28) can also be vritten in the form [9] as follows

F.+CF. =8 49)
The Jacobian matrixes of Equation (49) are defined as from Equation (4) by chain rule [9]
G 5 o
=—=_ 4-'B 50
¢ oF X 0
Hence
o 1 o[ o o 1
C=A""B=|c-u* 2u 0 —uv v u (51)
—uv v ou - 0 2
and

)

1
| — |
S ij?
il
ER e )

0 0 1
—w v u (52)
A-v 0 v
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Then
uy v "
s - I
U= —c= u =t ==
C=|..0 . 0O ! (53)
e {um T =) — V2 ~c7)
(i —cY) (1= —e=) nulu ~¢=)

The characteristic equation correspondingz to Equation (53) 1s written as:

det(C - 7)) =0 (54)
where I is unit matrix. The eigenvalues 4 = [A, 4", 4717 of Equation (28) are three roots of 4 in Equation (54). i.c.
A=)
T o aa
v uv + c%/%ﬁ —1 w—=¢* \/' et

(55)
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