Coexpression of rumen microbial β-glucanase and xylanase genes in Lactobacillus reuteri

Je-Ruei Liu • Bi Yu•Xin Zhao • Kuo-Joan Cheng

Received: 4 May 2007 /Revised: 10 July 2007 / Accepted: 13 July 2007 / Published online: 11 August 2007
(C) Springer-Verlag 2007

Abstract

The aim of this study was to clone and coexpress two rumen fibrolytic enzyme genes in Lactobacillus reuteri. The ability of the genetically modified strain to degrade β glucan and xylan was evaluated. The Fibrobacter succinogenes β-glucanase (1,3-1,4- β-D-glucan 4-glucanohydrolase [EC 3.2.1.73]) gene and the Neocallimastix patriciarum xylanase gene, $x y n C D B F V$, were constructed to coexpress and secrete under control of the Lactococcus lactis lacA promoter and its secretion signal and then transformed into L. reuteri Pg 4 , a strain isolated from the gastrointestinal tract of broiler chickens. The transformed L. reuteri strain acquired the capacity to break down soluble β-glucan and xylan. The introduction of the recombinant plasmids and production of β-glucanase and xylanase did not affect cell growth. To the best of our knowledge, this is the first report of coexpression of rumen microbial fibrolytic enzyme genes in L. reuteri.

[^0]Keywords Rumen microbe • β-Glucanase • Xylanase • Lactobacillus reuteri

Introduction

Although in many areas of the world, the majority of poultry diets are corn-soybean based, barley, wheat, and rye remain the major feed grains in certain regions of the USA and in European countries. Water-soluble fractions of nonstarch polysaccharides (NSP), including rye and wheat arabinoxylan and barley β-glucan, are known to exert adverse effects on performance and nutrient digestibility in broilers (Englyst et al. 1989). In general, NSP have antinutritional effects related to their low digestibility and viscousness, which reduce the rate of passage, decrease diffusion of digestive enzymes, promote endogenous losses, and stimulate bacterial proliferation (Bedford and Schulze 1998; Choct and Annison 1992). The antinutritive effects of NSP can be attenuated by adding specific enzymes such as xylanase or β-glucanase into wheat- or barley-based diets for nonruminant animals (Mathlouthi et al. 2003). However, enzyme supplementation substantially increases feed cost. An alternative and less expensive strategy might be to develop probiotics with the capacity to digest plant cell wall structural carbohydrates by introduction of heterologous genes encoding fibrolytic enzymes (Cho et al. 2000).

Probiotic, which means "for life" in Greek (Gibson and Fuller 2000), has been defined as "a live microbial feed supplement which beneficially affects the host animal by improving its intestinal balance" (Fuller 1989). There is sufficient evidence to show that probiotics are effective at improving growth rate, feed efficiency, and disease resistance and reducing gut shedding of enteropathogenic bacteria (Patterson and Burkholder 2003; Reid and Friendship 2002).

Therefore, addition of probiotics to feed may be a potential replacement for antibiotics. Current probiotics have been mostly selected from native gut microflora, with the selection of optimal strains often largely empirical. In recent years, there has been interest in the development of methods for the expression of heterologous proteins in probiotics to improve their efficiency. Examples of such potential applications of genetically modified probiotics include strains that produce antibodies for use as recombinant live vaccines and enzymes for detoxification and fiber degradation (Steidler 2003).

To date, several studies have investigated the expression of fibrolytic enzyme genes in lactobacilli. Most of these reports describe the genetic manipulation of β-glucanase in L. plantarum, which is the primary bacterium used in silage fermentation (Rossi et al. 2001; Scheirlinck et al. 1990a, b). Only a few these investigations have focused on expression of β-glucanase genes in intestinal probiotic strains (Cho et al. 2000; Irvin and Teather 1988). In our previous study, the rumen microbial cellulase, β-glucanase, and xylanase genes were, respectively, cloned and expressed into a probiotic Lactobacillus reuteri strain (Liu et al. 2005). It was also demonstrated that the L. reuteri $\operatorname{Pg} 4$-transformed strains not only acquired the capacity to break down carboxymethyl cellulose, β-glucan, or xylan but also that there was no difference from the parent strain in terms of the adhesion efficiency to mucin and mucus and its resistance to bile salts and acid (Liu et al. 2005). To the best of our knowledge, however, coexpression of different fibrolytic genes in intestinal lactobacilli has not been reported previously.

In the present study, we have described the cloning, coexpression, and secretion of a β-glucanase ($1,3-1,4-\beta$-Dglucan 4-glucanohydrolase [EC 3.2.1.73]) gene from the ruminal bacterium F. succinogenes and a xylanase gene xynCDBFV from the ruminal fungus N. patriciarum in a
strain of L. reuteri isolated from the gastrointestinal tract of healthy broilers. We also examined the growth characteristics, heterologous enzyme production, and plasmid stability of this genetically modified L. reuteri strain.

Materials and methods

Bacterial strains, plasmids, and media
The bacterial strains and plasmids used in this study are listed in Table 1. L. reuteri Pg4 and Escherichia coli were grown at $37^{\circ} \mathrm{C}$ in de Man-Rogosa-Sharpe (MRS) broth and Luria-Bertani (LB) broth (Difco Laboratories, Detroit, MI), respectively. Agar plates were prepared by adding agar ($1.5 \% \mathrm{w} / \mathrm{v}$; Difco) to each broth.

DNA isolation and manipulation

Plasmid deoxyribonucleic acid (DNA) was isolated from E. coli using the alkali lysis method (Birnboim and Doly 1979). Lactobacillus plasmid DNA was isolated according to the method described by O'Sullivan and Klaenhammer (1993). Restriction enzymes and T4 DNA ligase (New England BioLabs, Beverly, MA) were used according to the manufacturer's instructions. All other DNA manipulations were performed using established procedures (Sambrook and Russell 2001).

Construction of xylanase and β-glucanase coexpression plasmids

The DNA sequences encoding xylanase and β-glucanase genes were amplified by polymerase chain reaction (PCR).

Table 1 Bacterial strains and plasmids used in this study

Strains or plasmid	Relevant features	Reference or source
Strains		
E. coli $\mathrm{DH} 5 \alpha$	Cloning host; $\mathrm{F}^{-} \varphi 80 \operatorname{lacZ} \Delta \mathrm{M} 15 \Delta($ lacZYA-argF)U169 recA1 endA1 hsdR17(rk ${ }^{-}$, mk ${ }^{+}$) phoA supE44 thi-1 gyrA96 relA1 λ^{-}	Invitrogen, Carlsbad, CA
L. reuteri $\operatorname{Pg} 4$	L. reuteri isolate from the gastrointestinal tract of broilers	Yu et al. 2007
L. reuteripNZ3004	L. reuteri Pg4 carrying pNZ3004	Liu et al. 2005
L. reuteri pNZJ021(xyn)	L. reuteri $\operatorname{Pg} 4$ carrying pNZJ021	Liu et al. 2005
L. reuteri $\mathrm{pNZJ023}(\mathrm{glu})$	L. reuteri Pg4 carrying pNZJ023	Liu et al. 2005
L. reuteri pNZ -xyn/glu	L. reuteri $\operatorname{Pg} 4$ carrying pNZ-xyn/glu	This study
Plasmids		
pNZ3004	$\mathrm{Cm}^{\mathrm{r}}, \mathrm{Em}^{\mathrm{r}}$; E. coli-L. reuteri shuttle vector, 5.0 kb	van Rooijen et al. 1992
pNZJ021(xyn)	pNZ3004 containing N. patriciarum xylanase gene (xynCDBFV), 5.7 kb	Liu et al. 2005
pNZJ023(glu)	pNZ3004 containing F. succinogenes β-glucanase gene (glu), 5.8 kb	Liu et al. 2005
pNZ-xyn	$\mathrm{Cm}^{\mathrm{r}}, \mathrm{Em}^{\mathrm{r}}$; $0.68-\mathrm{kb}$ xylanase gene $\operatorname{xyn} C D B F V$ PCR amplicon from pNZJ021 cloned into pNZ3004, 5.7 kb	This study
pNZ-xyn/glu	Cm^{r}, Em ${ }^{\mathrm{r}}$; pNZ3004 containing N. patriciarum xylanase gene (xynCDBFV) and F. succinogenes β-glucanase gene (glu), 6.4 kb	This study

The DNA sequence encoding xylanase xynCDBFV (Chen et al. 2001), a thermostable and alkalophilic mutant of the catalytic domain of N. patriciarum xylanase xynC (GenBank accession number AF123252), was amplified by PCR from pNZJ021 (Liu et al. 2005) using the oligonucleotide forward primer, xynF (5^{\prime}-GCAGTCGACCCAAAGTTT CTGTAGTTCAG-3'), and the reverse primer, xynR ($5^{\prime}-$ TTCCTGCAGATGCATCACCAATGTAAAC-3'). These two primers were designed to insert a SalI site at the 5^{\prime} end and NsiI and PstI sites at the 3^{\prime} end of the PCR product, respectively. The PCR fragments encoding xynCDBFV were digested with SalI and PstI and ligated with SalI-PstI-digested pNZ3004 (van Rooijen et al. 1992) to generate pNZ-xyn. The DNA sequence encoding the signal peptide derived from Lactococcus lactis lacA fusing to the catalytic domain of F. succinogenes β-glucanase glu (GenBank accession number M33676) was amplified by PCR from pNZJ023 (Liu et al. 2005) using the primers gluF (5^{\prime}-GCAATGCATGATGGCTATTGTTGTTG-3') and gluR (5'-TTCCTGCAGTCACGATTGCGGAG-3'). These two primers were designed to place a NsiI site at the 5^{\prime} end and a PstI site at the 3^{\prime} end of the PCR product, respectively. The PCR fragments encoding glu were digested with NsiI and PstI and ligated with NsiI-PstIdigested pNZ-xyn to generate the coexpression plasmid pNZ-xyn/glu, which was sequenced to ensure that there were no errors introduced by PCR.

Transformation of plasmid DNA

Competent E. coli cells were prepared and transformed by standard techniques (Sambrook and Russell 2001). The transformants were selected on LB agar plates containing erythromycin ($100 \mu \mathrm{~g} \mathrm{ml}^{-1}$; Sigma Chemical, St. Louis, MO). Plasmids expressing the desired enzyme activity in E. coli were electroporated into L. reuteri Pg 4 as described by Serror et al. (2002). Subsequent to electroporation, the L. reuteri Pg 4 transformants were incubated in MRS broth containing $\mathrm{MgCl}_{2}(10 \mathrm{mM})$ at $37^{\circ} \mathrm{C}$ for 3 h , with the transformants subsequently spread on MRS agar plates containing erythromycin $\left(10 \mu \mathrm{~g} \mathrm{ml}^{-1}\right)$ and incubated at $37^{\circ} \mathrm{C}$ until the appearance of transformants. The transformants were not only confirmed by direct colony PCR using the two primer pairs, $x y n F / x y n R$ and gluF/gluR, but also transferred to another MRS plates and screened using Congo red staining (Teather and Wood 1982). Those colonies surrounded by a yellow halo were selected for further analysis.

Growth characteristics and enzyme production by L. reuteri Pg4 transformants

For analysis of growth characteristics, 10 ml of MRS broth (Difco) was inoculated at 1% with an overnight culture of

Lactobacillus and was incubated statically at $37^{\circ} \mathrm{C}$ for 48 h . During the incubation period, samples were taken every 4 h for counting the cell numbers by using the standard agar plate method and measuring turbidity at $600 \mathrm{~nm}\left(\mathrm{OD}_{600}\right)$.

For estimation of enzyme activity, each transformant screened above was transferred to the MRS broth containing erythromycin ($10 \mu \mathrm{~g} \mathrm{ml}{ }^{-1}$) and incubated at $37^{\circ} \mathrm{C}$ for 24 h . The xylanase and β-glucanase activities of each L. reuteri cell culture were estimated by dividing cell culture into two fractions, one being an extracellular supernatant and the other being an intracellular extract, both prepared as described by Cho et al. (2000). Xylanase and β-glucanase activities were determined by measuring the amounts of reducing sugar liberated by fractions incubated with 0.5% (w / v) oat spelt xylan (Sigma) or barley β-glucan (Megazyme International, Wicklow, Ireland) in 50 mM sodium citrate buffer (pH 5.0), respectively. After incubation for 20 min at $40^{\circ} \mathrm{C}$, the reaction mixture was stopped by boiling for 10 min . The reducing sugar produced was estimated by the dinitrosalicyclic acid reagent (Konig et al. 2002). One unit of fibrolytic enzyme activity was defined as $1 \mu \mathrm{~mol}$ of reducing sugar equivalents released from the respective substrate per minute under the assay conditions.

Gel electrophoresis and zymography

A sensitive zymogram technique modified from that of Beguin (1983) was routinely used to identify β-glucanase and xylanase using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). In brief, intracellular extracts of each L. reuteri cell culture were electrophoretically separated on a 15% SDS-PAGE containing 0.1% glucan or 0.1% xylan. After electrophoresis, the gels were washed three times for 30 min at $4^{\circ} \mathrm{C}$ in 100 mM acetate buffer (pH 5.0) containing 25% isopropanol for the first two washes to remove SDS and then incubated in the same buffer for $20-40 \mathrm{~min}$ at $40^{\circ} \mathrm{C}$. The gels were stained in 0.1% Congo red solution for 15 min at room temperature, then washed with 1 M NaCl before 0.5% acetic acid to enable visualization of regions of enzyme activity within the gel.

Plasmid stability assay

The stability of the plasmids harbored by L. reuteri Pg 4 was investigated using a modification of the described method (Gurakan et al. 1998). L. reuteri Pg4 harboring pNZ3004, pNZJ021(xyn), pNZJ023(glu), and pNZ-xyn/glu were, respectively, grown in MRS broth without antibiotics and maintained in mid-log phase throughout 50 generations by serial dilution. At appropriate times, bacteria were plated onto MRS agar to determine the total number of viable cells and all the resulting colonies were transferred to erythro-mycin-containing MRS agar plates to screen for erythromy-

Fig. 1 Lactobacillus expression plasmid harboring the Fibrobacter succinogenes β-glucanase gene, glu, and the Neocallimastix patriciarum xylanase gene, $x y n C D B F V$. The $x y n C D B F V$ termination codon overlaps the $g l u$ initiation codon in an overlapping stop-start tetranucleotide 5'-AUGA-3'
cin-resistant $\left(\mathrm{Em}^{\mathrm{r}}\right)$ cells. The number of colonies growing on a MRS agar plate but not on an erythromycin-containing MRS agar plate represented the percentage segregational instability. The colonies growing under erythromycin selection underwent the Congo red dye assay to detect the presence of fibrolytic enzyme activity. The structural stability was assumed to be complete when all the Em ${ }^{\mathrm{r}}$ colonies were xylanase and β-glucanase positive as well.

Statistical analysis

All results were analyzed using the general linear model procedure available with Statistical Analysis System software (version 8.1; Statistical Analysis System Institute 1998). The Duncan's multiple range test (Montgomery 1999) was used to detect differences between treatment means. Each experiment was conducted in triplicate and repeated three times.

Results

Construction of glucanase-xylanase-coexpressing plasmids

To coexpress the β-glucanase and xylanase genes in L. reuteri Pg 4 , the recombinant plasmid was constructed
with E. coli $\mathrm{DH} 5 \alpha$ as a host. The β-glucanase gene glu of Fibrobacter succinogenes ($0.75-\mathrm{kb}$ NsiI-PstI fragment) and the xylanase gene xynCDBFV of Neocallimastix patriciarum ($0.68-\mathrm{kb}$ SalI-NsiI fragment) were cloned into the Lactobacillus expression vector pNZ3004, generating pNZxyn/glu (Fig. 1). The $x y n C D B F V$ termination codon overlaps the $g l u$ initiation codon in an overlapping stop-start tetranucleotide 5'-AUGA-3'. Therefore, termination of xynCDBFV translation triggers reinitiation on the glu AUG and hence coordinate synthesis of the two enzymes.

Transformation of plasmid DNA

The expression plasmid pNZ-xyn/glu was electroporated to L. reuteri Pg 4 with efficiency similar to that of $\mathrm{pNZ3004}$ (5-10 $\times 10^{2}$ transformants $\mu \mathrm{g}^{-1}$ of DNA). The presence of the glu and/or xynCDBFV genes in the L. reuteri transformants was verified by direct-colony PCR. In the L. reuteri pNZJ 021 (xyn), primers xynF and xynR amplified a $0.68-\mathrm{kb}$ fragment representing $x y n C D B F V$ (Fig. 2, lane 3), while in the L. reuteri $\mathrm{pNZJ} 023(\mathrm{glu})$, primers gluF and gluR amplified a $0.76-\mathrm{kb}$ fragment representing glu (Fig. 2, lane 4). In the L. reuteri pNZ-xyn/glu, the checking primers not only amplified the $0.68-\mathrm{kb}$ xyn $C D B F V$ fragment and the $0.76-\mathrm{kb}$ glu fragment but also a $1.44-\mathrm{kb}$ fragment representing the tandem arrangement of $x y n C D B F V$ and $g l u$ genes (Fig. 2, lane 5).

Fig. 2 PCR confirmation of glu and/or xynCDBFV in the transformants. Lane 1, 100-bp ladder; lane 2, L. reuteri pNZ3004; lane 3, L. reuteri $\mathrm{pNZJ} 021(\mathrm{xyn})$; lane 4, L. reuteri $\mathrm{pNZJ} 023(\mathrm{glu})$; lane 5, L. reuteri $\mathrm{pNZ}-\mathrm{xyn} / \mathrm{glu}$

Fig. 3 Plate test for fibrolytic enzyme activity of Lactobacillus reuteri transformants. Extracellular supernatant (A) and intracellular extract (B) of growing cells were pipetted into wells of glucan-containing (a) and xylan-containing (b) plates, allowed to incubate, and stained with Congo red. Well 1, L. reuteri $\mathrm{pNZ3004}$; well 2, L. reuteri $\mathrm{pNZJ} 021(\mathrm{xyn})$; well 3, L. reuteri $\mathrm{pNZJ023(glu);}$ well $4, L$. reuteri $\mathrm{pNZ}-\mathrm{xyn} / \mathrm{glu}$

Coexpression of β-glucanase and xylanase in L. reuteri $\operatorname{Pg} 4$

A Congo red plate assay was used to confirm the fibrolytic enzymes activity of the transformants. The L. reuteri pNZ3004-transformed strain was devoid of glucanase and xylanase activity (Fig. 3). The culture supernatant and cell lysate of the L. reuteri pNZJ 023 (glu) produced yellow halo zones on the glucan-containing plate but not on the xylancontaining plate (Fig. 3a), while the analogue of the L. reuteri $\mathrm{pNZJ} 021(\mathrm{xyn})$ produced degradation zones on the xylan-containing plate but not on the glucan-containing plate (Fig. 3b). The L. reuteri pNZ-xyn/glu, which showed clear halos on the glucan-containing plates, also produced clear halos on the xylan-containing plates, indicating that glucanase and xylanase were functionally coexpressed by L. reuteri $\mathrm{pNZ}-\mathrm{xyn} / \mathrm{glu}$ transformants (Fig. 3).

The enzymatic activities of the L. reuteri-transformed strains were further confirmed by the zymogram assay. In the zymographic analysis of glucan-containing SDS-PAGE, the intracellular extracts from L. reuteri pNZJ023(glu) and L. reuteri $\mathrm{pNZ}-\mathrm{xyn} / \mathrm{glu}$ transformants revealed a glucanase activity band of about $29-\mathrm{kDa}$ but not those of L. reuteri
pNZ3004 and L. reuteri pNZJ021(xyn) (Fig. 4a). Zymographic analysis of xylan-containing SDS-PAGE revealed a xylanase activity band of about $26-\mathrm{kDa}$ in the intracellular extracts from L. reuteri $\mathrm{pNZJ} 021(\mathrm{xyn})$ and L. reuteri pNZ xyn/glu transformants but not L. reuteri pNZ3004 and L. reuteri pNZJ023(glu) (Fig. 4b). This demonstrates that the rumen microbial β-glucanase and xylanase can be functionally coexpressed by L. reuteri pNZ-xyn/glu and did not form a fusion protein.

Growth characteristics and enzyme production of L. reuteri-transformed strains

When cultured in the MRS medium at $37^{\circ} \mathrm{C}$, L. reuteri Pg 4 reached stationary growth after 16 h of fermentation, with a concentration of $9.76 \pm 0.21 \log$ colony-forming unit (CFU) $\mathrm{ml}^{-1}\left(\mathrm{OD}_{600}\right.$ of $\left.1.18 \pm 0.26\right)$. The growth pattern of L. reuteri $\mathrm{pNZ}-\mathrm{xyn} / \mathrm{glu}$ was similar to that observed for L. reuteri Pg 4 . The cell counts did not differ significantly between L. reuteri $\mathrm{pNZ}-\mathrm{xyn} / \mathrm{glu}$ and L. reuteri Pg 4 throughout the fermentation period (data not shown).

Fig. 4 Zymogram of glucanase and xylanase in SDS gel electrophoresis. The intracellular extracts of Lactobacillus reuteri transformants were analyzed by glucan-containing (a) and xylan-containing (b) SDSPAGE, renaturated, then zymography was performed. Lane M, molecular weight marker; lane 1, . reuteri pNZ3004; lane 2, L. reuteri pNZJ021(xyn); lane 3,
L. reuteri pNZJ 023 (glu); lane 4, L. reuteri pNZ -xyn/glu

Table 2 The activity of fibrolytic enzymes of L. reuteri $\operatorname{Pg} 4$ transformants
${ }^{\text {a }}$ Enzyme activity was defined as that releasing $1 \mu \mathrm{~mol}$ of reducing sugar equivalents per minute from the respective substrate
${ }^{\mathrm{b}}$ Not detected

Strain	Enzyme activity ($\left.\mathrm{U} \mathrm{ml}^{-1}\right)^{\text {a }}$			
	β-Glucanase		Xylanase	
	Intracellular	Extracellular	Intracellular	Extracellular
L. reuteri pNZ3004	$n d^{\text {b }}$	nd	nd	nd
L. reuteri pNZJ021 (xyn)	nd	nd	1.54 ± 0.24	2.37 ± 0.19
L. reuteri pNZJ023 (glu)	1.06 ± 0.09	1.69 ± 0.20	nd	nd
L. reuteri pNZ -xyn/glu	0.72 ± 0.09	0.86 ± 0.09	0.98 ± 0.14	1.50 ± 0.15

In the L. reuteri pNZJ 023 (glu) culture, the β-glucanase activity in the extracellular fraction was 1.6 -fold that of the intracellular fraction. Approximately 62% of β-glucanase activity was detected in the extracellular fraction (Table 2). The xylanase activity in the extracellular fraction of the L. reuteri pNZJ021(xyn) culture was 1.5 -fold that of the intracellular fraction, with more than 60% of total xylanase activity detected in the extracellular fraction (Table 2). These results were consistent with the previous findings (Liu et al. 2005). Both β-glucanase and xylanase activities were observed for L. reuteri $\mathrm{pNZ}-\mathrm{xyn} / \mathrm{glu}$. The enzyme activity levels for glucanase in the extracellular and intracellular fractions was 0.72 ± 0.09 and $0.86 \pm 0.09 \mathrm{U} \mathrm{ml}^{-1}$, respectively, while the related xylanase activity was 0.98 ± 0.14 and $1.50 \pm$ $0.15 \mathrm{U} \mathrm{ml}^{-1}$, respectively. More than 50% of the total β-glucanase and xylanase activity of the L. reuteri pNZ-xyn/ glu culture was present in the extracellular fraction (Table 2). Furthermore, the specific enzyme activity levels for glucanase and xylanase in the intracellular fractions of L. reuteri pNZ $\mathrm{xyn} / \mathrm{glu}$ was 1.01 ± 0.24 and $1.37 \pm 0.27 \mathrm{U} \mathrm{mg}^{-1}$, respectively.

Plasmid stability in L. reuteri-transformed strains

In industrial fermentations, antibiotic selection is not economically feasible for the production of recombinant proteins. Therefore, the stability of the recombinant plasmids in L. reuteri was assessed in batch culture in the absence of antibiotics. As shown in Table 3, even after 50 generations, more than 55% of the CFU were resistant to erythromycin, and there was no significant difference between L. reuteri harboring pNZ3004, pNZJ021(xyn), pNZJ023(glu), and pNZ-xyn/glu $(p>0.05)$. However, Em^{r} and fibrolytic enzyme-producing cells were much lower in number than erythromycin-resistant cells during growth in the antibiotic-
free broth. After 50 generations, approximately 70% of the $E m^{\mathrm{r}}$ cells of L. reuteri $\mathrm{pNZ}-\mathrm{xyn} / \mathrm{glu}$ had lost their fibrolytic enzyme-producing phenotype (Table 3). Further, Em^{r} L. reuteri pNZ -xyn/glu, which had lost the β-glucanaseproducing phenotype, also lost its xylanase-producing phenotype. Thus, the plasmids used in this study showed modest segregational instability and much higher levels of structural instability under the conditions examined.

Discussion

Probiotics, which contain viable organisms and exert a beneficial effect on animal performance through modification of gastrointestinal microflora, offer great potential both as feed additives and as replacements for antibiotics (Fuller 1989). Using probiotics that secrete specific enzymes can provide additional benefits by reducing the cost of enzyme supplementation in that these enzyme genes could be replicated and expressed by the probiotics within the digestive tract. In addition, probiotics could directly deliver the enzyme to the target site, typically the intestine, where most of the feed digestion and nutrient absorption occurs. To this end, we successfully cloned two rumen microbial fibrolytic enzyme genes into a probiotic L. reuteri strain and demonstrated that these L. reuteri-transformed strains not only acquired the capacity to break down soluble β-glucan or xylan but also showed high adhesion efficiency to mucin and mucus and resistance to bile salt and acid (Liu et al. 2005). We also demonstrated that the supplementation of barley-based poultry diets with L. reuteri pNZJ023(glu) could decrease digesta viscosity and improve body weight gain and feed-conversion efficiency in broilers $0-6$ weeks of age (Yu et al. 2007). By contrast, however, supplemen-

Table 3 Stability of plasmids in L. reuteri pNZ -xyn/glu under nonselective growth conditions

Strain	n^{a}	$\operatorname{Em}^{\mathrm{r}}(\%)$	Em $^{\mathrm{r}}, \beta-$ glucanase $^{+}(\%)$	Em $^{\mathrm{r}}$, xylanase $^{+}(\%)$
L. reuteri pNZ-xyn/glu	0	100	100	100
	25	75.1 ± 2.9	41.9 ± 0.1	41.9 ± 0.1
	50	57.2 ± 2.3	15.9 ± 0.1	15.9 ± 0.1

[^1]tation of L. reuteri $\mathrm{pNZJ} 021(\mathrm{xyn})$ in wheat-based poultry diets improved body weight gain in the broilers at only $0-$ 3 weeks but not at 4-6 weeks (Liu et al. 2007). In certain regions of the USA and in European countries, wheat is the major feed grain used in poultry diets. Although arabinoxylans are the main wheat polysaccharides, significant amounts of β-glucan and cellulose are also present (Steenfeldt et al. 1995). Therefore, the combinations of fibrolytic enzymes with xylanase, β-glucanase, and cellulase are more effective than supplementation with solely xylanases at improving nutrient utilization in broilers fed wheat-based diets (Meng et al. 2005). In this study, we successfully cloned and coexpressed rumen microbial β-glucanase and xylanase genes in L. reuteri. To the best of our knowledge, and following a thorough review of the relevant literature, this is the first report of successful coexpression of β-glucanase and xylanase in intestinal lactobacilli. Although previous studies have demonstrated that L. reuteri $\mathrm{pNZJ} 021(\mathrm{xyn})$ and L. reuteri $\mathrm{pNZJ023(glu)}$ could survive and secrete xylanase and glucanase in the gastrointestinal track of broilers (Liu et al. 2007; Yu et al. 2007), future research should be directed at evaluation of the L. reuteri glucanase-xylanase-coexpressing strain as a probiotic in poultry diets.

The development of Lactobacillus strains expressing heterologous proteins at sufficient levels for application in industry has been hindered by the lack of detailed knowledge of gene expression control in these organisms. They are also generally considered to be poor protein secretors (Kerovuo and Tynkkynen 2000). Low-level expression and secretion of heterologous proteins are described in most publications on Lactobacillus; however, efficient expression and secretion have only recently been reported (Kerovuo and Tynkkynen 2000; Bates et al. 1989). In this study, L. lactis lacA promoter and its secretion signal were used to constitutively express and secrete fibrolytic enzymes in L. reuteri. Further, it was demonstrated that the L. reuteri $\mathrm{pNZ}-\mathrm{xyn} / \mathrm{glu}-$ transformed strains were able to secrete fibrolytic enzymes into the medium and that the capacity to break down soluble β-glucan and xylan was acquired. Future research on utilization of different promoters may further increase expression of the fibrolytic enzyme in Lactobacillus.

Plasmid instability constitutes a major problem for industrial utilization of many recombinant microorganisms. The instability of a recombinant plasmid in a microbial culture may reduce the overall levels of the desired product in the bioprocess. This leads to lower specific activities and increases production costs as growth substrates are consumed by nonproductive cells that may have a significant growth rate advantage over cells harboring the intact recombinant plasmids (Nayak and Vyas 1999). Two types of plasmid instability, segregational and structural, occur
frequently. Segregational instability is defined as the loss of the entire plasmid from the cells because of defective partitioning, whereas structural instability results in a plasmid population carrying structural rearrangements or deletions (Nugent et al. 1983). Studies have shown that plasmid stability is determined by many factors, such as plasmid load and copy number, replication pattern, substrate type, medium composition, host inheritable background, culture conditions and temperature, and expression protein toxicity (Nayak and Vyas 1999; Xu et al. 2006). The plasmids used in this study showed modest segregational instability and much higher levels of structural instability under the conditions examined. Cordes et al. (1996) indicated that both divergent transcription and the export of plasmid-specified proteins interfere with the structural stability of a pWVO1-derived plasmid. The explanation for these phenomena is that altered local DNA supercoiling is an important cause of plasmid deletion formation. Transcription, in particular the divergent form, induces positively and negatively supercoiled domains in plasmids (Drlica 1992). Expression of plasmid-specified membrane and exported proteins also has a drastic effect on local supercoiling through anchoring of the transcription ensemble to the membrane (Lynch and Wang 1993). Local hypersupercoiling may induce topoisomerase-dependent nicking activity if the plasmid becomes anchored to the membrane. Through uncoupling of the nicking and closing activities of DNA topoisomerase I, free $3^{\prime}-\mathrm{OH}$ ends may become available for processing by exonucleases, producing single-stranded DNA gaps and, finally, deletions (Cordes et al. 1996). The pNZ3004 series plasmids used in this study are derived from pWVO1. Two of the phenomena mention above applied to plasmid pNZ3004: (1) divergent transcription of truncated lacI and recombinant protein genes and (2) directed export of the recombinant proteins by the lacA signal sequence. We constructed a pNZJ021(xyn) derivative that lacks the entire lacA signal sequence and found that xylanase xynCDBFV was mainly present in the intracellular extract of the L. reuteri transformants (data not shown). Furthermore, lower levels of structural plasmid instability were demonstrated for the pNZJ021(xyn) variant, with a deletion in the lacA signal sequence relative to the parental pNZJ021(xyn) (data not shown). Further investigation is required to improve the plasmid DNA stability in the transformed L. reuteri cells under an antibiotic-free culture condition.

In conclusion, we have successfully cloned the rumen microbial xylanase and β-glucanase genes in a probiotic L. reuteri strain, and we have demonstrated that these heterologous fibrolytic enzyme genes are functionally coexpressed by the transformed L. reuteri strain. New studies for evaluating the L. reuteri glucanase-xylanase-coexpressing strain as a probiotic in poultry diets are now in progress.

Acknowledgment This research was conducted using funds partially provided by grant NSC-94-2622-B-002-004-CC3 from the National Science Council, Republic of China.

References

Bates EEM, Gilbert HJ, Hazlewood GP, Huckle J, Laurie JI, Mann SP (1989) Expression of a Clostridium thermocellum endoglucanase gene in Lactobacillus plantarum. App Environ Microbiol 55:2095-2097
Bedford MR, Schulze H (1998) Exogenous enzymes for pigs and poultry. Nutr Res Rev 11:91-114
Beguin P (1983) Detection of cellulase activity in polyacrylamide gels using Congo red-stained agar replicas. Anal Biochem 131:333-336
Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513-1517
Chen YL, Tang TY, Cheng KJ (2001) Directed evolution to produce an alkalophilic variant from a Neocallimastix patriciarum xylanase. Can J Microbiol 47:1088-1094
Cho JS, Choi YJ, Chung DK (2000) Expression of Clostridium thermocellum endoglucanase gene in Lactobacillus gasseri and Lactobacillus johnsonii and characterization of the genetically modified probiotic Lactobacilli. Curr Microbiol 40:257-263
Choct A, Annison G (1992) Anti-nutritive effect of wheat pentosans in broiler-chickens: role of viscosity and gut microflora. Br Poult Sci 33:821-834
Cordes C, Meima R, Twiest B, Kazemier B, Venema G, van Dijl JM, Bron S (1996) The expression of a plasmid-specified exported protein causes structural plasmid instability in Bacillus subtilis. J Bacteriol 178:5235-5242
Drlica K (1992) Control of bacterial supercoiling. Mol Microbiol 6:425-433
Englyst HN, Bingham SA, Runswick SA, Collinson E, Cummings JH (1989) Dietary fibre (non-starch polysaccharides) in cereal products. J Hum Nutr Diet 2:253-271
Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365-378
Gibson GR, Fuller R (2000) Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. J Nutr 130:391S-395S
Gurakan GC, Bayindirly A, Ogel ZB, Tanboga P (1998) Stability of a recombinant plasmid carrying α-amylase gene in Bacillus subtilis. World J Microbiol Biotech 14:293-295
Irvin JE, Teather RM (1988) Cloning and expression of a Bacteroides succinogenes mixed-linkage β-glucanase (1,3-1,4- β-D-glucan 4glucanohydrolase) gene in Escherichia coli. Appl Environ Microbiol 54:2672-2676
Kerovuo J, Tynkkynen S (2000) Expression of Bacillus subtilis phytase in Lactobacillus plantarum 755. Lett Appl Microbiol 30:325-329
Konig J, Grasser R, Pikor H, Vogel K (2002) Determination of xylanase, β-glucanase, and cellulase activity. Anal Bioanal Chem 374:80-87
Liu JR, Yu B, Liu FH, Cheng KJ, Zhao X (2005) Expression of rumen microbial fibrolytic enzyme genes in probiotic Lactobacillus reuteri. Appl Environ Microbiol 71:6769-6775
Liu JR, Lai SF, Yu B (2007) Evaluation of an intestinal Lactobacillus reuteri strain expressing rumen fungal xylanase as a probiotic for broiler chickens fed a wheat-based diet. Br Poult Sci 48 (in press)
Lynch AS, Wang JC (1993) Anchoring of DNA to the bacterial cytoplasmic membrane through cotranscriptional synthesis of polypeptides encoding membrane proteins or proteins for export: a mechanism of plasmid hypernegative supercoiling in mutants deficient in DNA topoisomerase I. J Bacteriol 175:1645-1655

Mathlouthi N, Mohamed MA, Larbier M (2003) Effect of enzyme preparation containing xylanase and β-glucanase on performance of laying hens fed wheat/barley- or maize/soybean meal-based diets. Br Poult Sci 44:60-66
Meng X, Slominski BA, Nyachoti CM, Campbell LD, Guenter W (2005) Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poult Sci 84:37-47
Montgomery DC (1999) Experiments with a single factor: the analysis of variance. In: Montgomery DC (ed) Design and analysis of experiments. Wiley, New York, pp 75-77
Nayak DP, Vyas VV (1999) Improved stability and expression of a recombinant shuttle plasmid in Escherichia coli during fedbatch cultivation. World J Microbiol Biotechnol 15:65-71
Nugent M, Nugent M, Primrose S, Tacon W (1983) The stability of recombinant DNA. Dev Ind Microbiol 24:271-285
O'Sullivan DJ, Klaenhammer TR (1993) Rapid mini-prep isolation of high quality plasmid DNA from Lactococcus and Lactobacillus spp. Appl Environ Microbiol 59:2730-2733
Patterson JA, Burkholder KM (2003) Application of prebiotics and probiotics in poultry production. Poult Sci $82: 627-631$
Reid G, Friendship R (2002) Alternatives to antibiotic use; probiotics for the gut. Anim Biotechnol 13:97-112
Rossi F, Rudella A, Marzotto M, Dellaglio D (2001) Vector-free cloning of a bacterial endo-1,4- β-glucanase in Lactobacillus plantarum and its effect on the acidifying activity in silage: use of recombinant cellulolytic Lactobacillus plantarum as silage inoculant. Antonie van Leeuwenhoek 80:139-147
Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
Scheirlinck T, Mahillion J, Joos H, Dhaese P, Michiels F (1990a) Integration and expression of α-amylase and endoglucanase genes in the Lactobacillus plantarum chromosome. Appl Environ Microbiol 55:2130-2137
Scheirlinck T, de Meutter J, Arnaut G, Joos H, Claeyssens M, Michiels F (1990b) Cloning and expression of cellulase and xylanase genes in Lactobacillus plantarum. Appl Microbiol Biotechnol 33:534-541
Serror P, Sasaki T, Ehrlich SD, Maguin E (2002) Electrotransformation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. Lactis with various plasmids. Appl Environ Microbiol 68:46-52
Statistical Analysis System Institute (1998) SAS user's guide: statistics. SAS Institute, Cary, NC
Steenfeldt S, Knudsen KEB, Borsting CF, Eggum BO (1995) The nutritive value of decorticated mill fractions of wheat. 2. Evaluation with raw and enzyme treated fractions using adult cockerels. Anim Feed Sci Technol 54:249-265
Steidler L (2003) Genetically engineered probiotics. Best Pract Res Clin Gastroenterol 17:861-876
Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 43:777-780
van Rooijen JR, Gasson MJ, de Vos WM (1992) Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity. J Bacteriol 174:2273-2280
Yu B, Liu JR, Hsiao FS, Chiou PWS (2007) Evaluation of Lactobacillus reuteri $\operatorname{Pg} 4$ strain expressing heterologous β-glucanase as a probiotic in a barley-base poultry diet. Anim Feed Sci Technol (in press), doi: 10.1016/j. anifeedsci.2007.04.010
Xu J, Li W, Wu J, Zhang Y, Zhu Z, Liu J, Hu Z (2006) Stability of plasmid and expression of a recombinant gonadotropin-releasing hormone (GnRH) vaccine in Escherichia coli. Appl Microbiol Biotechnol 73:780-788

[^0]: J.-R. Liu (\boxtimes)

 Department of Animal Science and Technology, Institute of Biotechnology, National Taiwan University, 4F., No. 81, Chang-Xing St.,
 Taipei, Taiwan, Republic of China
 e-mail: jrliu@ntu.edu.tw
 B. Yu

 Department of Animal Science, National Chung-Hsing University, Taichung, Taiwan, Republic of China
 X. Zhao

 Department of Animal Science, McGill University, Montreal, Quebec, Canada
 K.-J. Cheng

 Institute of BioAgricultural Science, Academia Sinica, Taipei, Taiwan, Republic of China

[^1]: ${ }^{\text {a }} n$ Number of generations

