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ABSTRACT: Calcium gluconate (0.0 to 0.5%), sodium gluconate (0.0 to 1.0%), and N-acetylglucosamine (0.0 to
1.0%) were added to skim milk to retain the viability of Lactobacillus acidophilus and Bifidobacterium longum.
To carry out response surface modeling, the regression method was performed on experimental results to build
mathematical models. The models were then formulated as an objective function in an optimization problem
that was consequently optimized using a genetic algorithm approach to obtain the maximum viability of the
probiotics. The genetic algorithms (GAs) were examined to search for the optimal value. The results indicated
that GAs were very effective for optimizing the activity of probiotic cultures.

Keywords: probiotics, optimization, genetic algorithms, response surface modeling

Introduction

LACTOBACILLUS ACIDOPHILUS AND BIFIDOBACTERIA MUST RETAIN

viability and activity in food carriers to meet the suggested
“therapeutic minimum” at the time of consumption (Playne 1994).
Several factors have been claimed to affect the viability of probiotic
cultures in fermented milk products. The culture conditions, chem-
ical composition of the fermentation medium (for example, carbo-
hydrate source), final acidity, growth promoters and inhibitors, in-
cubation temperature, and fermentation time and storage
temperature have all been identified as having effects on the man-
ufacturing and storage of yogurt (Young and Nelson 1978; Hamman
and Marth 1983; Kneifel and others 1993; Lankaputhra and Shah
1995).

In food microbiology, during the past few years, much effort has
been directed to developing models describing the combined ef-
fects of the factors for microbe growth. Response surface method-
ology (RSM) is a collection of statistical and mathematical tech-
niques useful for developing, improving, and optimizing processes.
The main advantage of RSM is the reduced number of experimental
trials needed to evaluate multiple parameters and their interactions
(Porretta and others 1995; Lee and others 2000). It was successfully
used for application in finding the optimum producing conditions
of the dairy product Kou Woan Lao (Weng and others 2001). The ex-
perimental data were used to build mathematical models using the
regression method. Once an appropriate approximating model is
obtained, this model may be analyzed to determine the optimum
conditions for the process.

Genetic algorithms (GAs) are search procedures that imitate the
natural evolution process and can be used for the computation of
the global maximum or minimum of a function (Mitchell 1996).
Genetic algorithms differ from other search techniques in that they
search among a population of points and use probabilistic rather
than deterministic transition rules. As a result, genetic algorithms
search more globally (Wang 1997). More details regarding GAs will
be included in the next section.

The purpose of this research was to study the addition of calci-
um gluconate (0.0 to 0.5%), sodium gluconate (0.0 to 1.0%) and N-

acetylglucosamine (0.0 to 1.0%) in milk to optimize the viability of
the probiotics by RSM and genetic algorithms. The experimental
data were used to build mathematical models using the regression
method. The mathematical models were formulated as an objective
function (as in an optimization problem) and were optimized us-
ing the genetic algorithm approach to obtain the maximum viability
for the probiotics. The endpoint was to provide a new optimization
method to improve the growth of probiotics in dairy products.

Materials and Methods

Preparation of fermented milk drink
The milk used in the experiments was reconstituted milk (12%

total solids, Anchor, New Zealand), heat treated at 85 °C for 30 min.
Samples were prepared using 100 mL of skim milk, mixed with 4%
of isomaltooligosaccharides and the growth promoters (calcium
gluconate, Cheng-Fung Co., Taiwan; sodium gluconate, Nacalai
Tesque, Japan; and N-acetylglucosamine, Sigma, Germany), which
was inoculated with 1% L. acidophilus and 2% B. longum suspen-
sions and fermented for 10 h at 37 °C.

Cultures and medium performance
Pure lyophilized cultures of B. longum (CCRC 14605) and L. ac-

idophilus (CCRC 14079) were purchased from the Culture Collec-
tion and Research Center, Hsin-Chu, Taiwan, R.O.C. Lactobacilli
MRS (deMan, Rogosa, and Sharp, Merck, (Darmstadt, Germany)
and Lithium propionate MRS agar (LP-MRS, Merck) were used as
the selective media (Lapierre and others 1992).

Activity determination
For determination of the viabilities of the probiotics, the popu-

lations of B. longum and L. acidophilus were measured as colony-
forming units (CFU) and by the amount of �-galatosidase produced
by them.

The suitability of the media was tested by plating decimal dilu-
tions of the probiotic cultures. Thus, a 1-g sample of each pure lyo-
philized culture was decimally diluted into sterile peptone water
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(0.1%) and then 0.1-mL aliquot dilutions were plated onto the dif-
ferent media, in triplicate. Plates of MRS agar were incubated aer-
obically for 72 h at 37 °C to inhibit bifidobacteria. Plates of LP-MRS
agar were incubated anaerobically (72 h at 37 °C, GasPak System-
Oxoid, Basingstoke, Hampshire, England). The population in col-
ony-forming units (CFU) and the characteristics of the colonies
were recorded for each medium.

�-galatosidase activity was measured by determining the rate of
hydrolysis of o-nitrophenol-�-galatopyranoside as described by Yu
and others (1987). Hydrolysis of this substrate results in the release
of o-nitrophenol, a highly chromogenic compound that can be de-
tected spectrophotometrically. One unit of enzyme activity released
1 µmol/L of o-nitrophenol/mL.

Experiment design
To carry out response surface modeling, the regression method

was performed on experimental results to build mathematical
models. The models were then formulated as an objective function
in an optimization problem that was consequently optimized us-
ing a genetic algorithm approach to obtain the maximum viabili-
ty of the probiotics.

According to Mitsuoka and others (1987) and our screening test,
the viabilities of L. acidophilus and B. longum were affected by 3
independent variables: calcium gluconate (0.0 to 0.5%), sodium
gluconate (0.0 to 1.0%), and N-acetylglucosamine (0.0 to 1.0%).
Among the 3 growth promoters, calcium gluconate is now a very
popular ingredient in Taiwan because it promotes bifidobacteria
and fortifies calcium. However, according to our pretest, milk started
to coagulate and produced a bitter taste when the concentration of
added calcium gluconate was higher than 0.5%. Therefore, the
upper limit for calcium gluconate was set to 0.5% in this study.

Response surface modeling. A 3-variable and 3-level design
method with 6 replicates at the center point was selected to build
response surface models (Box and Behnken 1960). The coded and
uncoded variables and their respective level are shown in Table 1.
The RSM procedure of the Design-Expert® software package (Stat-
Ease, Inc., Minneapolis, Minn., U.S.A., 2000) was used to fit the ex-
perimental data to polynomial equations of order 1 through 3 to
obtain coefficients. The following linear relationship achieved
this.

Yi = ƒi(X1, X2, X3) + �i i = 1,2,3 (1)

where Y1, Y2, Y3 were the observed numbers of L. acidophilus, B.
longum and �-galactosidase activity, respectively. ƒ1, ƒ2, ƒ3 repre-
sented the modeled response surfaces. X1, X2, X3, defined as natural
variables, were the concentrations of N-acetylglucosamine, Ca-
gluconate, and Na-gluconate, respectively. �1, �2, �3 were the errors
in each model. With RSM, it is convenient to transform the natural
variables to coded variables �1, �2, �3, where the coded variables are
defined as dimensionless, with mean zero and the same spread or
standard deviation:

Yi = ƒi (�1, �2, �3) +�i i = 1,2,3 (2)

Genetic algorithms (GAs). The GAs provide a very flexible frame-
work and recently have been regarded as not only a global optimi-
zation method but also a multi-objective optimization method in
various areas. Generally, the algorithmis can be described as follows
(Goldberg 1989; Mitchell 1996):

I.  Encoding: GA works with the coding of the parameters. The
methods of parameter coding that have often been used are binary
encodings and real-valued encodings. Binary encodings are most

commonly used. A l-bit binary variable is used to represent 1 pa-
rameter Xi, i = 1,…,q, where q is the number of parameters.

II.  Initial population: The population consists of N chromo-
somes, that is, arrays of q × l binary bits (binary encoding GAs). The
initial population of chromosomes is randomly generated. A chro-
mosome represents a set of experimental variables (growth promot-
ers) in our study.

III.  Selection for reproduction: Selection for reproduction is the
operation that couples of chromosomes are selected from the cur-
rent population. The chromosomes with higher fitness values are
more likely to be selected to reproduce. In this research, the fitness
of a chromosome is pertinent to the activities of probiotics, the high-
er the activities the higher the fitness.

IV.  Crossover: Crossover allows us to generate new chromo-
somes starting from existing ones. This operator randomly choos-
es a locus and exchanges the subsequences after that locus be-
tween 2 chromosomes to create 2 offsprings. The percentage of the
population chromosomes that mates is called crossover probabil-
ity.

V.  Mutation: Mutation operator alters some of the bits of ran-
domly selected chromosomes with a probability equal to the mu-
tation rate, which is usually very small.

VI.  New generation: After the mutations take place, a new gen-
eration of population has formed. The fitness value associated with
each chromosome in this generation is calculated.

VII.  Termination criteria: The stopping criteria often used are
the maximum number of generations, set at the beginning of the
optimization process, and that there is no appreciable improve-
ment in the highest fitness for a number of generations.

Steps III through VI are repeated until one of the termination
criteria is satisfied. With each generation, the population gets closer
to an optimal solution, which is an optimal set of percentages of
added growth promoters to produce the highest activities in pro-
biotics in our research. A flow chart of genetic algorithms described
above can be seen in Figure 1.

In the present article, the simple genetic algorithm and the micro
genetic algorithm were evaluated to determine which one was more
effective. Both GAs were programmed in Matlab codes (Math Works
2000). The numbers of bits in the binary strings, population size,
crossover rate, mutation rate, and maximum number of generations
in GAs were all obtained by fine tuning the algorithms through
multiple trial runs, which is a common practice for using GAs to
solve an optimization problem, such as Vallapuzha and others
(2002).

Although recently there have been researchers who proclaimed
the advantages of real-value encodings of GAs (Barrios and others
2000; Bessaou and Siarry 2001), binary encodings are still more pop-
ular for several reasons, one of which is that much of the existing GA
theory is based on the assumption of fixed-length binary encodings,
including the so-called fundamental theorem of genetic algorithms
or the Schema theorem (Holland 1975; Goldberg 1989). In this study,
the binary encoding GAs were adopted.

To search a solution that maximized multiple responses using
GAs, a composite function fitness was defined as the following:

Composite Function Fitness (CFF) = (3)

The CFF combines 3 responses into 1 single function whose
maximum can be sought by GAs. Each response contributes equally
to the CFF.

Simple Genetic Algorithm. The simple genetic algorithm (SGA)
searches for an optimal value by simulating the biological evolu-
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tionary process, based on crossover and mutational genetics (Niki-
tas and others 2001). To use the GAs, a chromosome was formed by
3 different growth promoters: calcium gluconate, sodium gluconate,
and N-acetylglucosamine, which were all coded as 20-bit binary
strings. Table 2 shows the parameters of the SGA. The initial popu-
lation, consisting of 50 chromosomes (population size), was gener-
ated at random. The crossover and mutation operators were applied
to those chromosomes. The crossover rate and mutation rate were
0.5 and 0.02 individually. The selection technique was based on the
roulette wheel selection and the elitist strategy (Mitchell 1996). The
roulette wheel technique is the most simple selection method while
the elitist strategy makes sure the 1 chromosome with the highest
composite function fitness survives to the next generation. The
maximum number of generations was set to 100 for SGA.

This iterative process continues until a prespecified maximum
number (100) of generations is reached, or until there is no appre-
ciable improvement in the CFF. With each new generation, the
population gets closer to an optimal value. Once the search is com-
plete, the best value from the final generation is taken as the optimal
solution.

Micro Genetic Algorithm. The essence of the micro genetic al-
gorithm (MGA) is the lack of mutations and presence of restarts.
Due to this feature, the algorithm converges rapidly to a local or glo-
bal maximum (Nikitas and others 2001). The lack of mutations also
results rapidly in a decrease of the variance of the cost values of the
population. When the variance value falls below a certain limit, a
restarting process begins, in which the chromosome with the high-

Table 1—Nature and coded variables, levels, and experimental data of fermented milk drinks

Variables Responses

Calcium Sodium N-acetyl- b-galactosidase
Treatment gluconate gluconate glucosamine L. acidophilus B. longum activity
nr* (%) (%) (%) (log CFU/ml) (log CFU/ml) (units/ml)

1 0.00 (–1) 0.00 (–1) 0.50 ( 0 )** 7.47 7.44 257.5
2 0.50 (+1) 0.00 (–1) 0.50 ( 0 ) 7.56 7.79 282.5
3 0.00 (–1) 1.00 (+1) 0.50 ( 0 ) 7.34 7.56 252.5
4 0.50 (+1) 1.00 (+1) 0.50 ( 0 ) 7.35 7.56 250.0
5 0.00 (–1) 0.50 ( 0 ) 0.00 (–1) 7.56 7.83 270.0
6 0.50 (+1) 0.50 ( 0 ) 0.00 (–1) 7.55 7.80 280.0
7 0.00 (–1) 0.50 ( 0 ) 1.00 (+1) 7.34 7.71 246.7
8 0.50 (+1) 0.50 ( 0 ) 1.00 (+1) 7.45 7.76 251.7
9 0.25 ( 0 ) 0.00 (–1) 0.00 (–1) 7.48 7.91 285.0
10 0.25 ( 0 ) 1.00 (+1) 0.00 (–1) 7.35 7.81 236.7
11 0.25 ( 0 ) 0.00 (–1) 1.00 (+1) 7.41 7.77 241.7
12 0.25 ( 0 ) 1.00 (+1) 1.00 (+1) 7.32 7.70 232.5
13 0.25 ( 0 ) 0.50 ( 0 ) 0.50 ( 0 ) 7.38 7.71 275.0
14 0.25 ( 0 ) 0.50 ( 0 ) 0.50 ( 0 ) 7.41 7.77 275.0
15 0.25 ( 0 ) 0.50 ( 0 ) 0.50 ( 0 ) 7.40 7.73 275.0
16 0.25 ( 0 ) 0.50 ( 0 ) 0.50 ( 0 ) 7.42 7.79 277.5
17 0.25 ( 0 ) 0.50 ( 0 ) 0.50 ( 0 ) 7.42 7.80 275.0

*Treatments were run in a random order.
**(–1), (0), and (1) are coded levels.

Table 2—Parameters of the simple genetic algorithm (SGA)
and micro genetic algorithm (MGA)

Parameter SGA MGA

Population size 50 10
Nr of bits 20 20
Mutation rate 0.02 0
Crossover rate 0.5 0.5
Maximum generation 100 500

Figure 1—Flow chart of genetic algorithms
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est composite function fitness is retained and the rest of the N-1
chromosomes (N is the total number of chromosomes in 1 genera-
tion) are replaced by the same number of randomly generated new
ones.

Table 2 shows the parameters of the MGA. The initial population
consisting of 10 chromosomes (population size) was generated at
random. The crossover rate was 0.5. The chromosomes with higher
CFF were selected and retained for the next generation. The max-
imum number of generations was set to 500 for the MGA.

Statistical analysis
Model verification experiments were repeated 3 times and the

results were analyzed using ANOVA from the SAS software package
(SAS Inst. 1990), with Duncan’s multiple range test for significance
used to detect differences between predicted values and observed
values.

Results and Discussion

Response surface modeling
Fitting the models. Three growth promoters (calcium gluconate,

sodium gluconate, and N-acetylglucosamine) were mixed with milk
to improve the activities of L. acidophilus, B. longum, and �-galac-
tosidase. The nature and coded variables levels and experimental
data of fermented milk drinks are shown in Table 1. The responses,
as linear, quadratic and cubic functions of the factors, were tested
for adequacy and fitness using analysis of variance (ANOVA). Table
3a examines the probability (Prob > F) to see if it falls below 0.05.
The highest order polynomial that is significant is selected. The
“lack of fit tests” (Table 3b) compares the residual error with the
pure error from replicated design points. If there is a significant lack
of fit, as indicated by a low probability value (Prob > F), the response
predictor should be discarded. The model with insignificant lack-
of-fit is selected. ANOVA showed that the quadratic models ap-
peared to be the most accurate for all 3 responses, with no signifi-

cant lack of fit (Table 3). Second-order polynomial Eq. 4 was fitted
to the experimental data using the Design Expert procedure:

k = 1, 2, 3 (4)

where fk were the 3 responses and �0, � i, � ii, and �ij were constant
coefficients and Xi were the uncoded independent variables. The
regression coefficients for the statistically significant models are
given in Table 4.

Factors affecting viability of L. acidophilus and B. longum.
Estimation of the overall effects of the 3 factors affecting viability of
L. acidophilus and B. longum using ANOVA indicated that all factors
were significant (P < 0.05). The relationships between the factors
and the responses were also investigated by examining a series of
3-D plots generated by holding constant one of the variables of the

Table 3—Analysis of variance for the variables as linear, quadratic and cubic terms and their interactions in a response-
variable model

(a) Model

Sum of squares Prob > F

Lactobacillus Bifidobacterium b-galactosidase Lactobacillus Bifidobacteriumb-galactosidase
acidophilus longum activity acidophilus longum activity

Source (log CFU/mL) (log CFU/mL) (units/mL) (log CFU/mL) (log CFU/mL) (units/mL)

Mean 937.000 1016.260 1.172 × 10–6

Linear 0.066 0.048 2531.51 0.0016** 0.3305 0.0170*
Quadratic 0.022 0.014 2168.73 0.0068** 0.0074** 0.0001**
Cubic 7.850 × 10–3 0.015 59.13 0.0280* 0.1367 0.0111*
Residual 1.120 × 10–3 6.000 × 10–3 5.00
Total 937.100 1016.480 1.177 × 10–6

*Significant at 5% level ; **significant at 1% level

(b) Lack of fit

Sum of squares Prob > F

Lactobacillus Bifidobacterium b-galactosidase Lactobacillus Bifidobacterium b-galactosidase
acidophilus longum activity acidophilus longum activity

Source (log CFU/mL) (log CFU/mL) (units/mL) (log CFU/mL) (log CFU/mL) (units/mL)

Linear 0.030 0.160 2227.86 0.0145* 0.0149* 0.0001
Quadratic 7.850 × 10–3 0.015 59.13 0.0280* 0.1367** 0.0111*
Cubic 0.000 0.000 0.00
Pure Error 1.120 × 10–3 6.000 × 10-3 5.00

*Insignificant at 5% level; **insignificant at 1% level

Table 4—Regression coefficients of the second-order poly-
nomials

Regression Lactobacillus Bifidobacterium
coefficient1 acidophilus longum b-galatosidase

�0 7.56 7.68 269.32
�1 –0.38 1.24 58.25
�2 0.01 0.39 26.45
�3 –0.24 –0.61 8.28
�11 0.87 –0.56 –14.00
�22 0.12 –0.30 –5.60
�33 0.06 0.45 –50.10
�12 –0.16 –0.70 –55.00
�13 0.24 0.16 –10.00
�23 0.04 0.03 39.10
1�0 represents intercept and �1, �2 and �3 represent the 3 factors of calcium
gluconate, sodium gluconate, and N-acetylglucosamine, respectively. �11,
�22, and  �33 represent the respective square terms. �12, �23, and �13 are the
interaction terms.
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CFF, which was composed of 3 second-order polynomial equations
(Eq. 4).

As Figure 2 shows, the composite function fitness increased with
increasing calcium gluconate. Addition of sodium gluconate im-
proved the activity of probiotics only at a level lower than 0.4%. The

optimal values in the plots changed negatively with N-acetylglu-
cosamine. According to the contour plots, most of the diagrams in-
dicated that maximum activity of L. acidophilus and B. longum
(AB culture) could be obtained with maximum calcium gluconate
and minimum N-acetylglucosamine. Growth promoters are sub-
stances known to improve the growth of probiotic bacteria. Mitsuo-
ka and others (1987) suggested the function of gluconic acid and its
salts (gluconic acid, glucono-delta-lactone, and calcium gluconate)
as a bifidobacteria growth promoter, and this was confirmed by an
in vitro test. The current study gave similar results. Lourens-Hat-
tingh and Viljoen (2001) indicated the N-acetylglucosamine could
be the nitrogen source of bifidobacteria and probably improved
viability of bifidobacteria. However, this study did not support that
statement.

Search of an optimal value using genetic algorisms
The CFF was optimized using the GAs. Figure 3 shows the evolu-

tion curves in searching for an optimal value. The CFF increased in
accordance to the number of function evaluations and reached the
maximum value in the curves of the MGA and SGA. The searching
procedure was stopped when the CFF continued to keep the same
maximum value with increasing numbers of function evaluations.
The chromosomes having the maximum CFF provided the optimal
ratios of concentrations of the growth promoters. The number of
function evaluations in Eq. 5 represents the efficiency of the algo-
rithms. A smaller number indicates a higher efficiency.

nr of function evaluations = nr of generations × Population size
(5)

In Figure 3, both methods produced fast increasing CFF during
the early stage of optimization process, which is typical for GAs. For
350 function evaluations, the CFF by SGA has been increased from
25.870 to 26.301, compared to 25.870 to 26.324 for MGA. At around
800 function evaluations, both SGA and MGA experienced an in-
crease in the CFF. For SGA, the CFF was raised from 26.327 to 26.331
for 800 to 850 function evaluations. For MGA, the CFF was lifted
from 26.328 to 26.333 for 810 to 820 evaluations. Finally, the same
optimal value (CFF = 26.334) was obtained in 1900 and 1490 func-
tion evaluations for SGA and MGA, respectively. The MGA con-
verged more rapidly to the optimal value than did the SGA. The

Figure 2—Response surface plots of composite function fit-
ness showing effects of calcium gluconate and sodium glu-
conate under the conditions of constant N-acetylglu-
cosamine: (a) N-acetylglucosamine = 0.0%, (b) N-acetylglu-
cosamine = 0.5%, (c) N-acetylglucosamine = 1.0%.

Figure 3—Evolution curves in searching for an optimal value
under the different search procedures of the genetic algo-
rithm
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essences of MGA are the lack of mutations and the mechanism of
restarts. Due to these features, the algorithm converges rapidly to
maximum (Nikitas and others 2001) and still maintains the ability
to reach the global optimum.

Population size also affected the results (Figure 3). An optimal
value was obtained at the 38th generation, that is, 1900/50 = 38 from
Eq. 5, for the SGA curve. For the MGA curve, comparing to SGA
curve, an optimal value was obtained at the 149th generation, that
is, 1490/10 = 149. This means the highest fitness value could be
obtained at earlier generations for increasing population size be-
cause of the variety of chromosomes. Moriyama and Shimizu (1996)
also drew a similar conclusion and indicated that large population
size could decrease the generation to reach the highest fitness value,
but the computational burden could be a big problem.

The elitist strategy used in this study is known as an effective way
for improving the fitness of chromosomes because a chromosome
with maximum fitness is compulsorily remained for next genera-
tion. However, its searching performance can easily fall into a local
optimum because only the superior individuals with higher fitness
are picked in each generation (Morimoto and others 1997). In this
article, the confirmation was carried out by using a round-robin
algorithm that examines all possible solutions around the near
optimal solution and by examining the response surface plots.

Model verification
The optimal producing conditions were suggested by the MGA,

SGA, and RSM and were verified by additional independent exper-
iments (Table 5). The optimal conditions were realized by using 100
mL of skim milk, mixed with 4% of isomaltooligosaccharides and
the prescribed growth promoters, which was inoculated and fer-
mented for 10 h at 37 °C.

Table 5 shows that the optimal ratio of growth promoters, sug-
gested by the MGA and SGA, were the same. The final responses
were very close to the calculated values with no significant differ-
ence (P > 0.05). Although, the optimal producing conditions, sug-
gested by the GAs, were not significantly different in increasing L.
acidophilus counts and in improving �-galactosidase activities than
with the RSM, the conditions did significantly raise the B. longum
counts (P < 0.05). The optimization technique used in the RSM was
the steepest ascent method. The coordinates along the path of
steepest ascent depended on the nature of the regression coeffi-

cients in the fitted model (Myers and Montgomery 1995). The
search might be stuck in a local maximum other than the global one
because of high dimensionality and irregularities contained in the
objective function response (Wang 1997).

Conclusions

THE 2-STAGE EFFORT, OBTAINING A SURFACE MODEL USING THE RSM
and optimizing this model using the GAs, resulted in a useful

method of finding an optimal set of process parameters. In the
current study, the RSM and GAs proved effective for optimization
of the activity of AB cultures when developing a new fermented milk
drink.
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