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Abstract

Although German cockroach and
Blattella bisignata are close-related species,
their habitats are extremely different: .B.
bisignata is a feral species, whereas B.
germanica is a strictly domicile species.
There are large differences between the
expression of circadian rhythm of the two
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species. The comparative study of the
expression of circadian rhythm, is a good
theme in the investigation of ecological
significance of circadian rhythm. Hence,
after constructing the basic data of Blattella
bisignata, by the solitary or aggregating

experiments of  Blattella  bisignata,
investigated the ecological differences
between the two cockroaches. We also

investigated the effect of the expression of
circadian rhythm on mate searching behavior
of Blattella bisignata, based on its ecological
characteristics. In addition, by constructing
of phase response curves of both species, we
can understand how the pacemakers adjust
their phase according to the environmental
changes. Using brain microsurgery and
tissue sectioning, we demonstrated the exact
location of pacemaker of . locomotion
circadian rhythm of German cockroach is in
its optic lobes. There is little effect on the
expression of locomotor circadian rhythm of
German cockroach caused by sound
interference, but it seemed more effects on
Blattella bisignata.

Keywords: German cockroach, Blattella
bisignata, locomotor behavior,
circadian rhythm, pacemaker,
human interference
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How the German Cockroach Tells Time?

Ying-Sheue Wei and How-Jing Lee
Dept. Entomology, National Taiwan University, Taipei 106, Taiwan

1. Introduction

The German cockroach is a cosmopolitan species that lives closely with human.
It’s daily activities cause a threat to our health and environmental quality. Therefore,
the German cockroach as a household pest is worth the attention of researchers to find
a way of suppressing its population (Schal and Hamilton, 1990). If we know how
the German cockroach tells time and avoid the contact with us, we should be able to
design a control strategy against it.

The question “How the German cockroach tells time?” has two levels of aspects.
One is at the molecular mechanism aspect to ask how the endogenous clocks of
cockroach generate time signals and was sent out to control the expressing of overt
rhythms. Another aspect is at the individual level to ask how the cockroach does a
right thing on the right place at the right time (Enright, 1970). Although the
molecular clock mechanism of the German cockroach is still unknown, we do have
some information on the physiological and behavioral expression on the time (Lee
and Wu, 1994 ;. Lin and Lee, 1996 ; 1998 ; Tsai and Lee, 2000 ; Wen and Lee,
2000).

2. Why the existence of biological clocks?

The Earth’s daily rotation along its axis provides organisms an important
environmental cue on the control of behavioral state. The ubiquitous adaptation of
organisms to daily alternating cycles of light and darkness and daily temperature
fluctuations is the existence of an endogenous 24 h rhythmicity synchronizing life
functions at the biochemical, physiological, and behavioral levels (Daan, 1982 ;
Giebultowicz, 1999 ; Schwatz and Zlomanczuk, 1999). The circadian rhythms are
self-sustained, persist in constant environmental conditions, and temperature
compensated with close to a 24 h period. The endogenous period of many rhythms
is not exactly 24 h, but they are entrained to the 24 h daily environmental fluctuations.
This property of biological clock allows for more stable entrainment by environment
cycles and organisms to adapt successfully to seasonal changes in photoperiod
(Schwatz and Zlomanczuk, 1999).

Circadian clocks also provide organisms with a mechanism that allows body




rhythms to be integrated for concerted action and phased to the local time of day,
optimizing the economy of biological systems and allowing for a predictive
homeostatic control (Brady, 1982 ;: Schwatz and Zlomanczuk, 1999). Circadian
clocks not only contribute to the regulation of reproductive rhythms, seasonal
behaviors, and celestial navigation and migration, but also closely associate with
internal physiological cycle and external behavioral rhythm.

3. Outline of molecular mechanism of biological clocks

Although no research has been done on the molecular mechanism of biological
clocks in the German cockroach, a lot of progress have been down a fruitfly and some
other model organisms. In each organism studied so far, the biological timekeeping
mechanism is characterized by an intracellular feedback loop in which expression of a
group of genes results in production of proteins that then switch off the expression of
those genes (Hardin and Glossop, 1999). In order to be entrained, the feedback loop
maintains synchrony with environmental light-dark cycles by shifting phase in
responding to light. Light is speculated to destroy the clock protein at the rate that is
proportional to the light intensity, at least up to a limit (Giebultowicz, 1999). This is
concerted with the finding that PER levels is low under constant light (Zerr et al.,
1990). Our knowledge about molecules involved in circadian timekeeping comes
mostly from the genetic researches on the fruit fly Drosophila melanogaster. The
circadian feedback loops of Drosophila are controlled by a homologous set of
transcriptional activator proteins (dCLK and CYC / dBMALI1), and inhibitors (PER-
TIM heterodimer) that block these activators (Dunlap, 1999). Transcription of the per
and tim genes is activated by dCLK-CYC protein dimers in the late night. These
feedback loops are interlocked because the interaction of PER-TIM with dCLK-CYC
inhibits per / tim transcription and releases dClk repression at the same time, thus
enabling per / tim and dClk mRNA to cycle in opposite phases (Glossop ef al., 1999).
Light applied early in the dark phase causes phase delays, whereas light applied late
in the dark phase causes phase advances (Hardin and Glossop, 1999).

Light leads to the degradation of TIM protein (Hunter-Ensor ef al., 1996 ; Lee
etal., 1996 ; Myersetal., 1996 : Zeng et al., 1996). Since it appears that the fly
circadian clock is composed of two interlocked negative feedback loops, those loops
are affected by light acting via CRY photoreceptors (Giebultowicz, 2000). The CRY
protein interacts with TIM and activates phase shift responses when light stimulates
on CRY photoreceptors (Stanewsky et al., 1998 ; Emery et al., 1998 ; Ceriani et al.,
1999).

Molecular characterization of the per gene in other fruit fly species rather than D.




melanogaster (Colot et al., 1988), reveled conserved regions within this gene and led
to isolation of the structural and functional per homologous from several species of
moths and from a cockroach (Reppert ef al., 1994). Since homologues of the period
gene were identified in humans and mice (Sun et al., 1997, Tei et al., 1997), these
discoveries imply that molecular elements constructing circadian clocks have been
conserved in evolutionary processes (Geibultowicz, 1999). Thus, probing circadian
mechanism in insects should contribute to the understanding of the general principles

of circadian timekeeping.
4. The clock study of the German cockroach

All the clock studies on the German cockroach are done in locomotor circadian
rhythm. Although male German cockroach can express locomotor circadian rhythm
under constant darkness conditions with a period less than 24 h, females are
arrhythmic ( Sommer, 1975 Lepplaetal., 1989: Lee and Wu, 1994; Lin and Lee,
1996). It has been found that the locomotor circadian rhythm of female German
cockroach is masked by the development of ovaries. However, ovariectomized
females show a robust free-running rhythm with a circadian period similar to the
male’s. Its locomotion occurs mainly during the subjective night as it does for males
under constant darkness condition (Lin and Lee, 1996). Therefore, the locomotion
of both male and female German cockroach is under the control of a circadian clock.

The circadian period of the German cockroach is temperature compensated.
The free-running period appeared a range 22.73 to 23.67 h between 19 °C and 33 C
(Dreisig and Nielsen, 1971). These results meet the essential criteria of the circadian
clock and enforce the finding that the locomotion of the German cockroach is under
the control of circadian clock.

Since German cockroach is a nocturnal insect, the daily locomotory patterns
show a diel rhythm, with most locomotion occurring in the scotophase. However,
movement and behavioral patterns of the German cockroach are significantly
depended on the sex, age and stage of reproductive cycle. Sommer (1975) used
radiotrace techniques to monitor the activity of a single cockroach at a time. He
found that the activity of males was highest, followed by non-pregnant females,
pregnant females, old nymphs (4 to 6 instars), and the young nymphs (2 and 3 instars).
Young nymphs (1 and 2 instars) were relatively immobile, and tended to aggregate
(Bretetal., 1983 : Rossetal., 1984; Rivault, 1989). After 3 instar stadia, nymphs
became more active, especially when the resources (food and water) were scarce, they
tended to leave the aggregated sites and dispersed (Ross ef al., 1984 ; Rivault, 1989).
Denzer et al. (1987) pointed out that the adults displayed activity 4 times higher than




that of the nymphs.
Although the majority of results showed that male adults are the most active of

adult stages (Sommer, 1975 : Owens and Bennett, 1983 : Silverman, 1986).
Demark and Bennett (1995) used computerized moving-image analysis to show that
non-pregnant females were the most active of all adult stages. On the other hand,
pregnant females are the most sessile, and spending most of their time in and around
the shelter (Lee and Wu, 1994). Active locomotion of male adults occurs primarily
during the night and females showed daily arrhythmic locomotion under light-dark
cycles and DD conditions (Lee and Wu, 1994). However, the female will increase
their locomotion so that they may even come up to walk during photophase against its
nature of light avoidance ( Lin and Lee, 1996 ; 1998). In addition, the female
German cockroach shows a cyclic pattern of reproduction, its locomotive activity
coincided with its reproductive cycle (Lee and Wu, 1994).

5. Mate-finding behavioral rhythm

The coordination of timing is crucial to the reproductive success of nocturnal
insect in the wild (Loher, 1979). Therefore, both sexes should synchronize their
temporal movements (Lin and Lee, 1996). Because the German cockroaches tend to
aggregate, they usually do not need to travel far to find mates (Schal et al., 1983). If
they are alone and sexually receptive, both females and males increase their
locomotor activity (Lin and Lee, 1996, 1998). Sexually receptive virgin females not
only increase locomotion to search for mates, but also exhibit calling behavior during
which volatile sex pheromone is released (Tsai and Lee, 1997). For adult female
cockroaches, locomotion serves various functions: for example, searching for
resources, finding mates, and escaping from natural enemies or harsh environment.
Since locomotion of females was individually monitiored in a motion detector box
with food and water supplied ad libitum, and no enemy was present in the studies
(Lee and Wu, 1994 ; Linand Lee, 1996 ; 1998 ; Tsai and Lee, 2000), we expected
that the locomotion expressed by the females was primarily mate-finding. The
significant reduction of activity after mating confirmed this expectation.

The existence of male odor to trigger female’s locomotor rhythmicity indicates
that the underlying mechanisms of both mate-finding locomotor activity and sexual
receptivity are the same: 1). Juvenile hormone (JH) is an essential factor. 2). The
ovaries have no direct effects on mate-finding locomotion and sexual receptivity, but
could affect both of them through JH. 3). Mating decreases the frequency of mate-
finding locomotion and inhibits sexual receptivity when sperm is transferred
successfully (Lin and Lee, 1998). Although normal females’ daily activities change




cyclically and coincide with their own reproductive cycle (Lee and Wu, 1994), they
do not show locomotor circadian rhythm (Lin and Lee, 1996).  Since ovariectomized
females do express circadian rhythm as males do, and the virgin females will regain
their circadian thythm when male’s odor is present, the findings indicate that: 1).
Mate-finding locomotory activity is under the control of a circadian oscillator that
allows both sexes to synchronize their movements. 2). This locomotory circadian
thythm can be masked by internal factors. 3). Under certain social conditions, the
masked circadian rhythm can be uncovered (Lin and Lee, 1996).

6. The coupling system of two locomotor pacemakers

By the bilateral severance between the optic lobes and midbrain, the locomotor
circadian pacemaker is found to be located in the optic lobes and it controlled the
locomotor circadian rhythm through neural pathways in the German cockroach (Wen
and Lee, 2000). When unilaterally optic tract was severed, the cockroach still
showed locomotor circadian rhythmicity without significantly changing the circadian
period or level of locomotor activity. Therefore, both of right and left optic lobe
contain a circadian pacemaker competent to drive the locomotor circadian rhythm
(Wen and Lee, 2000). From only one locomotor circadian rhythm expressed either
in entrainment or free-running conditions, the two functionally redundant pacemakers
are mutually coupled. Regardless whether the optic nerve severed or not, the two
pacemakers are still mutually coupled and only one component rhythm is expressed
(Wen and Lee, 2000). The two pacemakers of the German cockroach are strongly
coupled. Otherwise, there are two split thythms observed in crickets under LL when
the optic nerves were unilaterally severed (Wiedenmann, 1983 ; Tomioka, 1993).

Although one pacemaker is sufficient to drive a locomotor circadian rhythm, an
unequal contribution from each pacemaker in determining the overt circadian period
is found. There is a major-minor coupling relationship between these two
pacemakers. No matter on which side of the optic lobe the major pacemaker was
located; these two pacemakers are mutually coupled to produce an overt locomotor
circadian rhythm, with a circadian period determined by the major one. Since the
photic information is conveyed by the pacemaker to the contralateral pacemaker
through a neural pathway (Page, 1978 : 1983), it is reasonable to assume that light
intensity influences the coupling strength of the pacemaker (Wen and Lee, 2000).
Influences of light intensity on the coupling strength have also been reported in
mammals (Daan and Berde, 1978) and crickets (Tomioka, 1993).




7. Conclusion

At the present day, we can tell the German cockroach lives in a time orderly life.
We have proven that an endogenous biological clock provides time signals for its
locomotion. Although we just paint a partial picture of “how the German cockroach
tells time”, the outline or at least the frame of the picture is clearly visible. We hope
that a complete story of “how the German cockroach tells time” can be unveiled in a
near future and we can report to you once again in the City of Science in Tunis.
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