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Under the effects of multiple-stream and
sequence-disorder, process change caused by one
machine at an in-line step may result in changes
in both the mean and variance of end-of-line
wafer acceptance test (WAT) data sequence. To
speed up trend detection of WAT data without
resorting to an intensive computing power, an
end-of-line SHEWMAC scheme is proposed,
which combines a Shewhart, an exponentially
weighted moving average (EWMA), and an
exponentially weighted moving Cpk (EWMC)
charts for jointly monitoring the mean and
variance of wafer lot average sequence from WAT
data. In view of the wide ranges of process
conditions and low volume of each product in a
foundry fab, a data normalization technique is
adopted to aggregate data of similar products and
a new design method is developed to generate a
robust set of scheme parameters. Simulation
and field data validation show that SHEWMAC 1is
superior to the combined Shewhart-EWMA
scheme in shift detection speed and is
complementary to the in-line SPC.

Keywords: Wafer Acceptance Test, Statistical
Process Control, Exponentially Weighted Moving
Average



I. INTRODUCTION

Statistical Process Control (SPC) techniques have
been widely adopted in semiconductor fabrication for the
purpose of in-line process monitoring and control.
Nevertheless, from the viewpoint of process integration,
statistical stability at the in-line level does not guarantee the
stability of the whole IC fabrication process. Quality
control techniques such as acceptance sampling test,
trend/control chart, and variance decomposition have
therefore been applied and/or extended by fabs [1]-[3] to
the monitoring and control of end-of-line wafer acceptance
(WAT) data.

WAT data provides the integral statistics about
process stability and product performance. It has the
salient features of sequence disorder (SD) and multiple
streams (MS) due to operation dispatching as compared
with in-line data of individual machines and/or fabrication
steps. In presence of the two features, a change caused by
one machine at an in-line step may result in changes in both
the mean and variance of a WAT data sequence. A current
industrial practice groups WAT data over a period of time
(window) and monitors mean, variance or process
capability index (Cpk) of data groups respectively. In
specific, a control chart of Cpk may serve to detect
combined changes in mean and variance, and a window size
of one week is taken for grouping so that trend patterns can
be extracted under the salient features of WAT data
sequence.

In many of the aforementioned WAT monitoring
schemes, the control limits and window size are determined
empirically because in-line SPC techniques do not apply
directly. As a result, window size and control limits thus
selected have led to slow process fault detection or frequent
false alarms. There have been a lack of solid foundation
for the design and analysis of WAT SPC schemes,
especially for a fab where product types, process
characteristics, and the intensities of SD and MS effects
vary widely and frequently.

In [4], the authors proposed a framework of
end-of-line quality control (Figure 1) and focused on the
end-of-line SPC module. @A SHEWMA scheme was
developed and implemented in a foundry fab. It is a
methodology for generating robust design parameters for
the simultaneous application of Shewhart and EWMA
control charts to WAT data. Filed data validation shows
that the incorporation of SHEWMA control charts
complements the existing end-of-line data
monitoring/analysis system and in-line SPC schemes for
process integration. It indeed improves the false alarm
rate, detection speed and diagnosis efficiency from the
current practice without resorting to an intensive computing
power as the approach taken by [3].

By exploiting the advantages of both SHEWMA and
Cpk review schemes, a new and integrated WAT SPC
scheme, SHEWMAC, is developed in this research for
jointly monitoring mean and variance of wafer lot average
sequence from WAT data. The proposed SHEWMAC

scheme consists of a Shewhart, an EWMA, and an
exponentially weighted moving Cpk (EWMC) control
charts. Figure 2 illustrates the potential advantage of
SHEWMAC over SHEWMA. The shaded areas in the
mean-versus-variance plots are the respective in-control
regions of SHEWMA and SHEWMAC derived by our
analysis under approximately the same false alarm rate. It
is obvious that when both process mean and variance
change together, the monitored statistics are more likely to
fall outside the in-control region of SHEWMAC. Namely,
SHEWMAC is more sensitive in detecting a combined
mean and variance change at a given false alarm rate.
Compared with the currently used simple Cpk scheme for
batch review, the SHEWMAC scheme has the advantage of
easier scheme parameter design and rolling review.

The remainders of this report will first characterize
the SD and MS features of WAT data. A SHEWMAC
system is then designed for industrial applications. Finally,
by using simulation and fab data, the effectiveness of
SHEWMAC scheme is validated.

I1. SEQUENCE-DISORDER & MULTIPLE-STREAM

Figure 3 demonstrates the generation process of a
WAT data sequence. Let {X;} be a random sequence

representing wafer lot averages of a WAT measurement
item, where i is the lot output sequence index at the WAT
step. In general, affected by different product flows and
dispatching polices, the cycle time from a process step p to
the end-of-line WAT step varies among lots. As a result,
the lot with a sequence label n at step p very likely has a
different lot sequence label i at the WAT step. This is
defined as the sequence-disorder effect. Note that the
processing of a lot may require more than 300 steps and
each step may be processed by any one of a machine group.
Define a stream as a sequence of machines that a lot goes
through during its fabrication process. There are many
possible streams in a fab and the resultant WAT
measurements among different streams vary due to
machine-to-machine variation. This is defined as the
multiple-stream effect.
A triplet of process conditions (R, M, S) are defined to
characterize these two salient features of WAT data, where
- R s the SD range from the monitored step p to WAT
step (defined in Figure 3),
- Mis the total number of machines in the monitored
step p, and
- S is the potential magnitude of a shift (in standard
deviation unit).
For example, when (R, M, S)=(15, 2, 1.5), the changes in
both mean and variance of WAT data in end-of-line lot
sequence, {X;} , in contrast with those in in-line lot

sequence from the abnormal machine m is demonstrated in
Figure 4. It can be seen that an in-line shift on machine m
ramps and then levels off in the WAT data sequence, where
the magnitude of leveling off part is reduced and the
variance increases as compared with the original in-line
shift. It is clear that to enhance the WAT shift detection



speed, the end-of-line SPC scheme should have the
capability to simultaneously detect changes in both mean
and variance of {X;}.

1. SHEWMAC SYSTEM

Figure 5 depicts the schematic diagram of
SHEWMAC tool implementation. There are three
function modules: Input Data Normalization, Control
Charting, and Robust Parameter Generation. In a foundry
fab, daily generation of WAT data of each product type may
be statistically “rare”. To increase the sample size, WAT
data inputs are first normalized so that data of different
products belonging to the same processing technology can
be aggregated to reach a scale of statistical significance. A
normalized data sequence can then be monitored lot-by-lot
by the Control Charting module based on the scheme
parameters from the Robust Parameter Generation module.
The Robust Parameter Generation module takes the
requirement of false alarm rate and the possible range of
process conditions Q= {(R, M, S)} as inputs. It evaluates
the scheme performance and generates a robust set of
SHEWMAC parameters over a wide range of process
conditions. = The outputs of the SHEWMAC scheme
include a Shewhart, an EWMA, and an EWMC control
charts of the normalized WAT lot average sequence, and a
warning signal when a data point is out of control.

Data Normalization

The objective here is to use the historical WAT lot
average sequence to establish the baseline behavior, and
later normalize the real time WAT lot average sequence
based on this baseline. The baseline behavior consists of

the long-term mean ( /) and variance (63 ) of {X;}. This

paper assumes that {X;} follows a normal distribution. In
specific, a moving range estimator [5] is adopted to

estimate  the  variance 6y =0887MR ,  where

JE— | — — .
MR:(ZOMRi)/IO , MR = Xy =X |,i=12,.,1p, and lg is the
i=l

number of samples. This estimator is unbiased, is robust
with respect to shifts in the process mean, and can model
the machine-to-machine variation among lots well. Given

i and &%, the normalized metric Z; =(X; -4)/d5; will be

approximately normally distributed and can be used as the
common metric for all products.

Control Charting
In the Control Charting module, the Shewhart chart

tests if the average of a lot is normal; the EWMA chart tests
if there is any small WAT shift; and the EWMC chart tests if
the slight changes in mean and variance result in a
significant changes in Cpk. Warning messages from these
three charts provide information about the occurrence and
the extent of a process shift. If only the EWMA or
EWMC chart detects an abnormal trend, there could be a
small process shift. When there is a large trend in the
EWMA and EWMC charts and a data point out of Shehwart
control limits at the same time, a large process shift may

have occurred.
Let the monitored statistics be {Z;} in the Shewhart

chart. The EWMA sequence is then generated by
A =AZi+ (1= DAL

=i§Wi-qZ_i-q+(1'A)iA0: i:lazz"" (1)
q=0

where Wi_q =A(1-2)%, 0<A<l, and the initial value A, is
usually set as zero. To get the Cpk values in EWMC chart,
the variance is first estimated by V, =B; - A?, where

Bi =AZ{ +(1-M)Bi
:iilwi-qziz_q +(1'A)iBOs i:1a29'--s (2)
q=0

is an exponentially weighted moving estimator of mean
square and B, is usually set as 1. Given A; and B;,
the EWMC sequence is then generated by

C; = Min(USL - A, A —LSL)/G\M ), 3)
where USL and LSL are the upper and lower specification
limits respectively.

In summary, SHEWMAC scheme parameters consists
of quadruplet (c, A, h, k), where ¢ is the Shewhart control
limit gain, A is the EWMA weighting factor, h is the
EWMA control limit gain, and k is the EWMC control limit
gain. Once the SHEWMAC parameters (C, A, h, k) are
available, control limits of Shewhart chart, EWMA chart,
and EWMC chart are then setas +#¢C, +h \/m , and k

respectively.

It is clear that A; and B; is a moving average and a
moving mean square of {Z;,Z;...Z;} respectively with
exponentially decreasing weighting coefficients, i.e., they
tend to emphasize on utilizing the most recently collected
data. To pop out the underlying trend in SD and MS data,
a large window size (a small weighting factor A) is needed.
However, if the weighting factor A is too small, the EWMA
and EWMC will not be sensitive to process change and the
detection speed will be slow. The other three parameters C,
h, and k should also be designed in accordance with the
choice of A to maximize the detection speed and maintain a
desirable false alarm rate.

Robust Parameter Generation

Figure 6 depicts the design procedures in the Robust
Parameter Generation, which are based on the concept of
run length. The run length is a random wvariable
characterizing the number of observations that an SPC
scheme takes to generate an out-of-control signal after the
occurrence of a process change. In view of the fact that in
Eq. (1), each EWMA value A is an interpolation of its

former value A, and the present normalized lot average

Z,, the average run length of an EWMA chart is usually

characterized as a discrete state Markov chain [6]. Similar
to this approach, the Robust Parameter Generation module
models the SHEWMAC as a two-variable, A and B,
Markov chain. The robust design of SHEWMAC has two
folds: to maximize average run length ARLO for a normal



process and to minimize average run length ARLI after a
process becomes abnormal. In practice, exact process
conditions (R,M,S) cannot be known a priori. For the
feasibility of implementation, the optimal parameters for
each process condition in Q is first calculated. Then a
robust design of parameters is chosen so that the
SHEWMAC scheme results in a satisfactory performance
over possible conditions in Q.

IV. VALIDATION

Simulation

As the proposed SHEWMAC is a simultaneous
application of Shewhart, EWMA, and EWMC schemes, it
therefore combines all the advantageous features of the
three. Figure 7 demonstrates the simulation result that
EWMC is good at median shift (1.5~2.5 sigma) detection,
EWMA is superior in small shift (<1.5 sigma) detection and
Shewhart is suitable for large shift (over 3 sigma) detection.
Whichever the shift condition is, the detection speed of
SHEWMAC equals the fastest of the three.

Field Data Application

A 0.26 pm logic device is selected with a focus on
monitoring WAT item of Rs_ N+, which represents the sheet
resistance of N+ structure. In this case, the SHEWMAC
parameters are chosen as (C, A, h, k)=(3.25, 0.11, 2.90, 0.65)
and the corresponding SHEWMAC control charts are
demonstrated in Figures 8(a) and 8(b). The SHEWMAC
generates seven warning messages, one from the Shewhart
chart at the 65™ lot, three from the EWMA chart at the 27",
37“‘, and 64" lots, and the other three from the EWMC chart
at the 27", 37" and 55" lots respectively.

Through the data trace back and stratification
functions of engineering data analysis (EDA) systm, it is
found that N+ drain/source implant step is the root cause.
Figure 8(c) demonstrates the Shewhart chart of Rs N+ in
the lot sequence and processing machines at the faulty step.
It is obvious that M1 had a significant machine offset from
the 29™ to 36™ lots in its in-line lot sequence as compared to
the other machines. Also, a process shift occurred at M4
starting from the 62th lot in its in-line lot sequence. In this
case, it is validated that EWMA and EWMC charts are
supperior to the Shewhart chart in detecting the samll
machine offset of M1. Also, since the EWMC chart
reflects the changes in both mean and variance, it enhances
the shift detection of M4 by 10 lots as compared to the
EWMA chart.

The in-line SPC at the N+ drain/source implant step
monitors the sheet resistance taken from the test wafer
every 12 hours. It did not detect the two shifts in this case.
There may be two reasons. First, the in-line measurements
may be less sensitive to the process change as compared to
the WAT measurements taken from product wafer. Second,
the sampling rate in in-line level is much less than that of
WAT. SHEWMAC is thus complementary to the in-line
SPC for process integration.

V. CONCLUSIONS

In this research, an end-of-line SPC scheme,
SHEWMAC, is proposed to monitor the simultaneous
changes in mean and variance of WAT lot average sequence.
Simulation and field data validation show that SHEWMAC
is superior to the combined Shewhart-EWMA scheme in
shift detection speed and is complementary to the in-line
SPC.
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