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摘要 

 
晶圓允收測試資料係指晶圓在完成所有製

造程序後，測試結構所量測的電性測試參數。

此類參數的分析能夠快速的評估整體製程狀

態，並提供了製程異常狀態的警訊以及產品元

件的電性特性。然而由於晶圓允收測試資料是

在生產線末端量測而得，他們具有多機台及時

序錯亂的雙重效應，因此通常不容易直接偵測

出其異常趨勢。為了提昇異常趨勢的偵測速

度，我們利用到生產線上某部機台的製程有速

移時，晶圓允收測試資料的平均值及變異數都

會增加之特性，同時監看晶圓允收資料的平均

值、變異數及製程能力指標，因此發展了一套

結合 Shehwart 管制圖，指數加權移動平均圖
(Exponentially Weighted Moving Average)與指
數加權移動 Cpk 圖的晶圓允收監看系
統:SHEWMAC。經由模擬分析與晶圓廠資料實
證分析，驗證本研究之 SHEWMAC法較傳統的
Shewhart-EWMA 法更能快速偵測製程異常速
移。 
 
關鍵詞：關鍵詞：關鍵詞：關鍵詞：晶圓允收測試資料，統計製程管制，

指數加權移動估測法 
 
 

 
Abstract 

 
Under the effects of multiple-stream and 
sequence-disorder, process change caused by one 
machine at an in-line step may result in changes 
in both the mean and variance of end-of-line 
wafer acceptance test (WAT) data sequence.  To 
speed up trend detection of WAT data without 
resorting to an intensive computing power, an 
end-of-line SHEWMAC scheme is proposed, 
which combines a Shewhart, an exponentially 
weighted moving average (EWMA), and an 
exponentially weighted moving Cpk (EWMC) 
charts for jointly monitoring the mean and 
variance of wafer lot average sequence from WAT 
data.  In view of the wide ranges of process 
conditions and low volume of each product in a 
foundry fab, a data normalization technique is 
adopted to aggregate data of similar products and 
a new design method is developed to generate a 
robust set of scheme parameters.  Simulation 
and field data validation show that SHEWMAC is 
superior to the combined Shewhart-EWMA 
scheme in shift detection speed and is 
complementary to the in-line SPC. 
 
Keywords: Wafer Acceptance Test, Statistical 
Process Control, Exponentially Weighted Moving 
Average



I. INTRODUCTION 

  Statistical Process Control (SPC) techniques have 
been widely adopted in semiconductor fabrication for the 
purpose of in-line process monitoring and control.  
Nevertheless, from the viewpoint of process integration, 
statistical stability at the in-line level does not guarantee the 
stability of the whole IC fabrication process.  Quality 
control techniques such as acceptance sampling test, 
trend/control chart, and variance decomposition have 
therefore been applied and/or extended by fabs [1]-[3] to 
the monitoring and control of end-of-line wafer acceptance 
(WAT) data. 
 WAT data provides the integral statistics about 
process stability and product performance.  It has the 
salient features of sequence disorder (SD) and multiple 
streams (MS) due to operation dispatching as compared 
with in-line data of individual machines and/or fabrication 
steps.  In presence of the two features, a change caused by 
one machine at an in-line step may result in changes in both 
the mean and variance of a WAT data sequence.  A current 
industrial practice groups WAT data over a period of time 
(window) and monitors mean, variance or process 
capability index (Cpk) of data groups respectively.  In 
specific, a control chart of Cpk may serve to detect 
combined changes in mean and variance, and a window size 
of one week is taken for grouping so that trend patterns can 
be extracted under the salient features of WAT data 
sequence. 
 In many of the aforementioned WAT monitoring 
schemes, the control limits and window size are determined 
empirically because in-line SPC techniques do not apply 
directly.  As a result, window size and control limits thus 
selected have led to slow process fault detection or frequent 
false alarms.  There have been a lack of solid foundation 
for the design and analysis of WAT SPC schemes, 
especially for a fab where product types, process 
characteristics, and the intensities of SD and MS effects 
vary widely and frequently. 
 In [4], the authors proposed a framework of 
end-of-line quality control (Figure 1) and focused on the 
end-of-line SPC module.  A SHEWMA scheme was 
developed and implemented in a foundry fab.  It is a 
methodology for generating robust design parameters for 
the simultaneous application of Shewhart and EWMA 
control charts to WAT data.  Filed data validation shows 
that the incorporation of SHEWMA control charts 
complements the existing end-of-line data 
monitoring/analysis system and in-line SPC schemes for 
process integration.  It indeed improves the false alarm 
rate, detection speed and diagnosis efficiency from the 
current practice without resorting to an intensive computing 
power as the approach taken by [3]. 
 By exploiting the advantages of both SHEWMA and 
Cpk review schemes, a new and integrated WAT SPC 
scheme, SHEWMAC, is developed in this research for 
jointly monitoring mean and variance of wafer lot average 
sequence from WAT data.  The proposed SHEWMAC 

scheme consists of a Shewhart, an EWMA, and an 
exponentially weighted moving Cpk (EWMC) control 
charts.  Figure 2 illustrates the potential advantage of 
SHEWMAC over SHEWMA.  The shaded areas in the 
mean-versus-variance plots are the respective in-control 
regions of SHEWMA and SHEWMAC derived by our 
analysis under approximately the same false alarm rate.  It 
is obvious that when both process mean and variance 
change together, the monitored statistics are more likely to 
fall outside the in-control region of SHEWMAC.  Namely, 
SHEWMAC is more sensitive in detecting a combined 
mean and variance change at a given false alarm rate.  
Compared with the currently used simple Cpk scheme for 
batch review, the SHEWMAC scheme has the advantage of 
easier scheme parameter design and rolling review. 

The remainders of this report will first characterize 
the SD and MS features of WAT data.  A SHEWMAC 
system is then designed for industrial applications.  Finally, 
by using simulation and fab data, the effectiveness of 
SHEWMAC scheme is validated.  

 
II. SEQUENCE-DISORDER & MULTIPLE-STREAM 

Figure 3 demonstrates the generation process of a 
WAT data sequence.  Let }{ iX  be a random sequence 
representing wafer lot averages of a WAT measurement 
item, where i is the lot output sequence index at the WAT 
step.  In general, affected by different product flows and 
dispatching polices, the cycle time from a process step p to 
the end-of-line WAT step varies among lots.  As a result, 
the lot with a sequence label n at step p very likely has a 
different lot sequence label i at the WAT step.  This is 
defined as the sequence-disorder effect.  Note that the 
processing of a lot may require more than 300 steps and 
each step may be processed by any one of a machine group.  
Define a stream as a sequence of machines that a lot goes 
through during its fabrication process.  There are many 
possible streams in a fab and the resultant WAT 
measurements among different streams vary due to 
machine-to-machine variation.  This is defined as the 
multiple-stream effect.  

A triplet of process conditions (R, M, S) are defined to 
characterize these two salient features of WAT data, where 

- R is the SD range from the monitored step p to WAT 
step (defined in Figure 3), 

- M is the total number of machines in the monitored 
step p, and 

- S is the potential magnitude of a shift (in standard 
deviation unit). 

For example, when (R, M, S)=(15, 2, 1.5), the changes in 
both mean and variance of WAT data in end-of-line lot 
sequence, }{ iX , in contrast with those in in-line lot 
sequence from the abnormal machine m is demonstrated in 
Figure 4.  It can be seen that an in-line shift on machine m 
ramps and then levels off in the WAT data sequence, where 
the magnitude of leveling off part is reduced and the 
variance increases as compared with the original in-line 
shift.  It is clear that to enhance the WAT shift detection 



speed, the end-of-line SPC scheme should have the 
capability to simultaneously detect changes in both mean 
and variance of }{ iX . 

III. SHEWMAC SYSTEM 

  Figure 5 depicts the schematic diagram of 
SHEWMAC tool implementation.  There are three 
function modules: Input Data Normalization, Control 
Charting, and Robust Parameter Generation.  In a foundry 
fab, daily generation of WAT data of each product type may 
be statistically “rare”.  To increase the sample size, WAT 
data inputs are first normalized so that data of different 
products belonging to the same processing technology can 
be aggregated to reach a scale of statistical significance.  A 
normalized data sequence can then be monitored lot-by-lot 
by the Control Charting module based on the scheme 
parameters from the Robust Parameter Generation module.  
The Robust Parameter Generation module takes the 
requirement of false alarm rate and the possible range of 
process conditions ≡Ω {(R, M, S)} as inputs.  It evaluates 
the scheme performance and generates a robust set of 
SHEWMAC parameters over a wide range of process 
conditions.  The outputs of the SHEWMAC scheme 
include a Shewhart, an EWMA, and an EWMC control 
charts of the normalized WAT lot average sequence, and a 
warning signal when a data point is out of control. 
 
Data Normalization 

The objective here is to use the historical WAT lot 
average sequence to establish the baseline behavior, and 
later normalize the real time WAT lot average sequence 
based on this baseline.  The baseline behavior consists of 
the long-term mean ( µ̂ ) and variance ( 2ˆ

X
σ ) of }{ iX .  This 

paper assumes that }{ iX  follows a normal distribution.  In 
specific, a moving range estimator [5] is adopted to 
estimate the variance MRX 887.0ˆ ≈σ , where 

∑=
=
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0/)(
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i IMRMR , || 1 iii XXMR −≡ + , 0,...,2,1 Ii = , and I0 is the 

number of samples.  This estimator is unbiased, is robust 
with respect to shifts in the process mean, and can model 
the machine-to-machine variation among lots well.  Given 
µ̂  and 2ˆ

Xσ , the normalized metric Xii XZ σµ ˆ/)ˆ( −≡  will be 
approximately normally distributed and can be used as the 
common metric for all products. 
 
Control Charting 

In the Control Charting module, the Shewhart chart 
tests if the average of a lot is normal; the EWMA chart tests 
if there is any small WAT shift; and the EWMC chart tests if 
the slight changes in mean and variance result in a 
significant changes in Cpk.  Warning messages from these 
three charts provide information about the occurrence and 
the extent of a process shift.  If only the EWMA or 
EWMC chart detects an abnormal trend, there could be a 
small process shift.  When there is a large trend in the 
EWMA and EWMC charts and a data point out of Shehwart 
control limits at the same time, a large process shift may 

have occurred. 
Let the monitored statistics be }{ iZ  in the Shewhart 

chart.  The EWMA sequence is then generated by  
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where q
qiW )1( λλ −=− , 10 ≤< λ , and the initial value 0A  is 

usually set as zero.  To get the Cpk values in EWMC chart, 
the variance is first estimated by 2

iii ABV −= , where  
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is an exponentially weighted moving estimator of mean 
square and 0B  is usually set as 1.  Given iA  and iB , 
the EWMC sequence is then generated by 

( ) )3/(, iiii VLSLAAUSLMinC −−= ,    (3) 
where USL and LSL are the upper and lower specification 
limits respectively. 
 In summary, SHEWMAC scheme parameters consists 
of quadruplet (c, λ, h, k), where c is the Shewhart control 
limit gain, λ is the EWMA weighting factor, h is the 
EWMA control limit gain, and k is the EWMC control limit 
gain.  Once the SHEWMAC parameters (c, λ, h, k) are 
available, control limits of Shewhart chart, EWMA chart, 
and EWMC chart are then set as ± c, ± h )2/( λλ − , and k 
respectively. 
  It is clear that iA  and iB  is a moving average and a 
moving mean square of },...,,{ 11 ZZZ ii −  respectively with 
exponentially decreasing weighting coefficients, i.e., they 
tend to emphasize on utilizing the most recently collected 
data.  To pop out the underlying trend in SD and MS data, 
a large window size (a small weighting factor λ) is needed.  
However, if the weighting factor λ is too small, the EWMA 
and EWMC will not be sensitive to process change and the 
detection speed will be slow.  The other three parameters c, 
h, and k should also be designed in accordance with the 
choice of λ to maximize the detection speed and maintain a 
desirable false alarm rate. 
 
Robust Parameter Generation 

Figure 6 depicts the design procedures in the Robust 
Parameter Generation, which are based on the concept of 
run length.  The run length is a random variable 
characterizing the number of observations that an SPC 
scheme takes to generate an out-of-control signal after the 
occurrence of a process change.  In view of the fact that in 
Eq. (1), each EWMA value iA  is an interpolation of its 
former value 1−iA  and the present normalized lot average 

iZ , the average run length of an EWMA chart is usually 
characterized as a discrete state Markov chain [6].  Similar 
to this approach, the Robust Parameter Generation module 
models the SHEWMAC as a two-variable, iA  and iB , 
Markov chain.  The robust design of SHEWMAC has two 
folds: to maximize average run length ARL0 for a normal 



process and to minimize average run length ARL1 after a 
process becomes abnormal.  In practice, exact process 
conditions ),,( SMR  cannot be known a priori.  For the 
feasibility of implementation, the optimal parameters for 
each process condition in Ω  is first calculated.  Then a 
robust design of parameters is chosen so that the 
SHEWMAC scheme results in a satisfactory performance 
over possible conditions in Ω . 

 

IV. VALIDATION 

Simulation 
 As the proposed SHEWMAC is a simultaneous 
application of Shewhart, EWMA, and EWMC schemes, it 
therefore combines all the advantageous features of the 
three.  Figure 7 demonstrates the simulation result that 
EWMC is good at median shift (1.5~2.5 sigma) detection, 
EWMA is superior in small shift (<1.5 sigma) detection and 
Shewhart is suitable for large shift (over 3 sigma) detection.  
Whichever the shift condition is, the detection speed of 
SHEWMAC equals the fastest of the three. 
 
Field Data Application 

A 0.26 µm logic device is selected with a focus on 
monitoring WAT item of Rs_N+, which represents the sheet 
resistance of N+ structure.  In this case, the SHEWMAC 
parameters are chosen as (c, λ, h, k)=(3.25, 0.11, 2.90, 0.65) 
and the corresponding SHEWMAC control charts are 
demonstrated in Figures 8(a) and 8(b).  The SHEWMAC 
generates seven warning messages, one from the Shewhart 
chart at the 65th lot, three from the EWMA chart at the 27th, 
37th, and 64th lots, and the other three from the EWMC chart 
at the 27th, 37th, and 55th lots respectively.  

Through the data trace back and stratification 
functions of engineering data analysis (EDA) systm, it is 
found that N+ drain/source implant step is the root cause.  
Figure 8(c) demonstrates the Shewhart chart of Rs_N+ in 
the lot sequence and processing machines at the faulty step.  
It is obvious that M1 had a significant machine offset from 
the 29th to 36th lots in its in-line lot sequence as compared to 
the other machines.  Also, a process shift occurred at M4 
starting from the 62th lot in its in-line lot sequence.  In this 
case, it is validated that EWMA and EWMC charts are 
supperior to the Shewhart chart in detecting the samll 
machine offset of M1.  Also, since the EWMC chart 
reflects the changes in both mean and variance, it enhances 
the shift detection of M4 by 10 lots as compared to the 
EWMA chart.     

The in-line SPC at the N+ drain/source implant step 
monitors the sheet resistance taken from the test wafer 
every 12 hours.  It did not detect the two shifts in this case.  
There may be two reasons.  First, the in-line measurements 
may be less sensitive to the process change as compared to 
the WAT measurements taken from product wafer.  Second, 
the sampling rate in in-line level is much less than that of 
WAT.  SHEWMAC is thus complementary to the in-line 
SPC for process integration. 

 

V. CONCLUSIONS 

 In this research, an end-of-line SPC scheme, 
SHEWMAC, is proposed to monitor the simultaneous 
changes in mean and variance of WAT lot average sequence.  
Simulation and field data validation show that SHEWMAC 
is superior to the combined Shewhart-EWMA scheme in 
shift detection speed and is complementary to the in-line 
SPC. 
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Figure 3: Generation process of end-of-line WAT data 

W A T  d a t a  s e q u e n c e

-0 .5

0

0 .5

1

1 .5

2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

M
ea

n

0 .9
1

1.1
1.2
1.3
1.4
1.5
1.6

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Lot No .

V
ar

ia
nc

e

M a c h i n e  m  d a t a  s e q u e n c e

M a c h i n e  m  d a t a  s e q u e n c e

W A T  d a t a  s e q u e n c e

 
Figure 4: The changes in mean and variance of }{ iX  
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Figure 5: Schematic diagram of SHEWMAC tool 
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