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Abstract 
The goal of this research is to develop a fuzzy logic- 
based system for a first-cut end-of-line diagnosis 
function. Based on measured abnormal electrical 
test data, the system provides the engineers a list of 
prioritized causes (process steps) for hrther 
investigation. The intelligent diagnosis system 
consists of three major modules: fbzzy modeling, 
knowledge base and inference engine. Experienced 
engineers’ diagnosis knowledge is captured in the 
knowledge base using hzzy logic knowledge 
representation models. Each major processing 
step’s fault possibility is calculated in the inference 
engine. The intelligent diagnosis system bas been 
validated against 23 real fab cases. Results show 
that version 2.0 of the system identifies the real 
causes as the top three causes in 20 cases. Our 
analysis indicates that the inference engine is robust 
but the knowledge base is insufficient. Improvement 
strategy has been to periodically update the 
knowledge base by field engineers based on lessons 
learned from the case study. 

1. Introduction 
Semiconductor wafer fabrication involves the most 
complex manufacturing processes. Wafer lot 
abnormality may occur due to many causes in the 
fabrication processes such as a single step process 
error, process integration problems, equipment faults 
and miss operations. Diagnosis of such problems 
has been a difficult task in the semiconductor 
manufacturing, and many approaches have been 
proposed in the past, such as statistical approaches 
[ 1][2], rule-based approaches [3][4], hzzy logic and 
neural network approaches [5]-[SI. 

In this paper, we propose an intelligent system for a 
first-cut end-of-line diagnosis. Based on abnormal 
end-of-line electrical test data and fuzzy logic 
modeling of experienced engineers’ empirical 
knowledge, the system provides the engineers a list 

of prioritized causes (processing steps) for firther 
investigation. This approach is based on the 
modification of a current industry diagnosis practice 
and the systematic modeling of associated empirical 
knowledge. 

In the next section we review one of the current 
industry end-of-line diagnosis practices. An 
intelligent diagnosis system and its architecture are 
proposed in section 3. Three important modules of 
the proposed system: fbzzy modeling, knowledge 
base and inference engine, are described in sections 4 
and 5 .  In section 6, we present the validation 
results. Conclusions are made in section 7. 

2. End-of-line Diagnosis Practices 
In a modem semiconductor wafer fab, a very high 
volume of end-of-line electrical test data and 
empirical knowledge associated with the fabrication 
processes are available for the purpose of end-of-line 
diagnosis. End-of-line data mostly refer to the 
wafer electric test data after completing the whole 
fabrication processes. They provide important 
information regarding process integration status. 
When measured end-of-line data show abnormal 
values, integration engineers must find out the root 
causes as quickly as possible and feedback such 
information to process engineers to prevent hrther 
errors. 

In general, integration engineers use their process 
physics knowledge and abnormal test data to 
diagnose the root causes. In order to facilitate the 
diagnosis process, experienced engineers write down 
their knowledge into a knowledge table called “key 
node table.” Fig. 1 depicts one such table used by 
the industry, which empirically correlates the 
abnormal end-of-line test data (symptoms) to major 
process steps (root causes). Numerical values in 
the table represent the relative rank. When 
compared columnwisely, number one represents the 
most probable cause. For example, when EOL-2 

0-7803-3642-9196 $4.00 01996 IEEE 347 1996 IEEVCPMT Int‘l Electronics Manufacturing Technology Symposium 



shows abnormal values, step-2 is the most probable 
cause compared to step-4 and step - 1 

Processing 
step 

Step-1 

Step-2 

Step-3 

Step-4 

End-of line data 

EOL-1 EOL-2 EOL-3 EOL-4 

multiple abnormal end-of-line measurements. 
0 Diagnosis process is not robust. The diagnosis 

accuracy is highly dependent on the accuracy of 
the key node table and end-of-line data. 

3. Intelligent Diagnosis System 
Due to many limitations of the current approach, an 
intelligent system for the first-cut diagnosis is 
proposed with the following objectives: 

0 

0 to automate diagnosis process, 
0 

o 

to enhance the current diagnosis accuracy, 

to train junior engineers, and 
to facilitate knowledge integration / expansion. 

Fig. 1 Key node table used by the industry 

Historically, field engineers use the key node table 
approach to perform the first-cut diagnosis. 
Although usefil in some situations, this approach is 
insufficient. Several problems arise with the use of 
the key node table: 

0 Key node table is empirical. There is great 
fbzziness in defining this table by field engineers. 

o Key node table is incomplete. The accuracy is 
highly dependent on engineers’ experience. 

0 Diagnosis process is empirical and incomplete. 
There is no systematic inference method to 
determine the root causes when there are 

Fig. 2 illustrates the architecture of the proposed 
intelligent system. It consists of six modules: fuzzy 
modeling, knowledge base, inference engine, history 
data base, U0 interface, and self-learning. As 
shown in Fig. 2, engineers provide abnormal end-of- 
line test data as the inputs to the system through the 
I/O interface. The intelligent diagnosis system then 
calculates each process step’s fault possibility and 
provides the engineers a list of prioritized causes for 
firther investigation. Experts’ knowledge or key 
node table, either old or newly updated, can be also 
sent to the fizzy modeling module for further 
processing and stored in the knowledge base. 

a@ knowledge 

Fig. 2 Architecture of an intelligent diagnosis system. 
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In general, experts’ diagnosis knowledge contains a 
lot of qualitative or uncertain information. 
Traditional probability concept cannot model such 
information very well. In the fbzzy modeling 
module, we use fbzzy logic’s possibility concept to 
model vague information. The resulting 
information is then stored in the knowledge base. 

I 
I 
I 
I 
I 
I 

With the information of abnormal end-of-line data 
and knowledge base, each major process step’s fault 
possibility is calculated in the inference engine. The 
resulting information can be provided to the users 
through the I/O interface or sent to the history data 
base. The diagnosis results together with the real 
causes can be sent to the self-learning module for 
hrther knowledge training. This is usefbl when the 
initial knowledge base is insufficient or incomplete. 

I 

3 1 3  
I 
I 

In this paper, three main modules, fbzzy modeling, 
knowledge base and inference engine, will be 
described in detail in the next two sections. The 
self-learning function is currently performed by 
experienced engineers by comparing the system’s 
diagnosis results with the real causes. 

Value of 
end-of-line 
data 

4. Fuzzy Modeling / Knowledge Base 
As mentioned earlier, several problems arise with the 
use of the key node table. In order to overcome 
these difficulties, several approaches are used to 
effectively extract knowledge. 

small error 
internal spec 

internal spec 

The first approach is to redefine the key node table 
by many experienced field engineers. Through 
group discussion and information exchange, the 
resulting key node table represents the most 
complete key node table available. In addition, 
numerical number in each cell no longer represents 
the “rank” of the cause in which number one 
represents the most probable cause. Instead, it is 
redefined as the “correlation” between the abnormal 
end-of-line data and corresponding process steps. 
Here, a higher number represents a strong 
correlation and a lower number represents a weak 
correlation. This new definition has two 
advantages. First, each cell number can be defined 
individually. Second, the concept of strong, 
medium and weak correlation can be easily modeled 
using hzzy logic theory. 
The second approach is to use two correlation 

numbers in each cell of the key node table. As 
shown in Fig. 3, the left-hand side number represents 
the correlation for a “small” abnormal end-of-line 
measurement, while the right-hand side number 
represents the correlation for a “large” abnormal 
end-of-line measurement. This new definition uses 
the fact that the correlation is usually higher when an 
end-of-line measurement shows a larger abnormality. 
An empirical rule to decide if an end-of-line 
measurement is a small error or a large error is to 
check if its value is beyond the internal spec or 
customer spec, as shown in Fig. 4. 

End-of line data 
Processing 

Step EOL-1 EOL-2 - 
U Step-1 

Step-2 

Step-3 

Step-4 

~ 
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Fig. 3 Modified key node table. 

4- customer spec 

small error 

large error 
customer spec 

Fig. 4 A rule to decide small and large errors. 

The third approach is to include the error direction 
information into the key node table. Often, the 
deviation of an end-of-line measurement from its 
target value may depend on the deviation of a 
process step’s parameter from its target setting. If 
the correlation between the two deviations can be 
derived based on process physics, it can be used in 
the key node table as shown in Fig. 5 .  Here a 



positive sign represents a positive correlation and a 
minus sign represents a negative correlation. This 
information also provides the inter-dependence 1 

step 4 has a positive error, then EOL-1 and EOL-3 

relationship among the end-of-line measurements for 
a given miss-operated process step. For example, if 

will have positive errors while EOL - 2 has a negative 
error. 

o.5 

Step-1 

End-of line data 

Processing EOL-1 EOL-2 EOL-3 EOL-4 
Step , I I I 1 

022 078 1 1  
+ 4- 

+ Step-4 

Fig. 5 Correlation between end-of-line and process 
step's deviations. 

- + 

Although the key node table is redefined and more 
knowledge is extracted based on the first three 
approaches, the knowledge is still too empirical for 
fbrther manipulation. The fourth approach is then 
to transform the correlation numbers into fbzzy 
logic's possibility using S membership hnction [9]. 
The S membership function is defined below and is 
also shown in Fig. 6. 

Step-2 

I I 

I I 
I I 

0.22- I I 

c 

1 1  078  1 
- 

- 

1 2 Correlation 0 

weak medium strong value 

Fig. 6 S membership function. 

1 :  1 0.22; 0.78 
. . . . . . . . . . . . .  . ....,.. .... ........................... 

- + 

End-of line data 

Step-3 

Step-4 

Fig. 7 Complete knowledge table after fbzzy 
modeling . 

5. Inference Engine 
The inference engine computes, by using fuzzy logic 
operations, the possibility of a process step causing 
the observed abnormal end-of-line measurements. 
The inference algorithm is based on comparing the 
observed abnormal patterns with patterns in the 
knowledge base (KB). For a given process step, a 
better match between the two patterns, a higher 
possibility is assigned to the step. 

x 5 a  S(X) = 0 

2 
a+b  

=2(') a<x<-- - -  
2 

< x < b  (x-b)2  __ a+b  
(1 )  

=1 -2  __ 9 

= 1  b < x  For a process step i, the possibility of a positive fault 
is given by: 

n 
A p v  

n Here, x is the correlation value as defined in the key 

knowledge table after fizzy modeling is shown in 
Fig. 7. j=l  

f j = l  node table, and a = 0, b = 3 .  The complete < =@.A. = 
1 1  NI c s'y 
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n = number of abnormal end-of-line measurements 
N ,  = number of end-of-line items for step i in the KB 

a+. = cell i j  matching factor 

Sv = cell ij possibility in the KB 
A ,  = step i weighted sum of possibility 

o = step i matching factor 

v 

1 

Notice that the “+” sign represents a positive fault, 
i.e., the step’s parameter is “higher” than the target 
value. We can also use equation similar to (2) to 
calculate the possibility of a step’s negative fault (by 
using A-). The calculation steps are described in 
detail below and illustrated in Fig. 8. 

Step 1 : 
Assume the step i is positively (+) deviated from its 
target value, then we define: 

Calculate the cell matching factor A’ 

a+. = 1 if KB cell i j  has the same sign 

(+,-) as the sign of the observed 
end-of-line measurement j 

v 

a+. = o  other cases v 

SteD 2: Calculate the weighted sum of possibilitv A 

(3) 

End-of-line e-3 
1 Determine cell’s matching factor 

Calculate step’s fault possibility 
-+ 7 = m i A i  

Here, S, must be chosen based on whether end-of- Fig. 8 Inference engine calculation steps. 

line measurementj is a small error or a large error. 

SteD 3: Calculate the step matching; factor CO 

The purpose of cell matching factor and step 
matching factor is to evaluate the consistency 
between the knowledge base (prior information) and 
the observed end-of-line data. 

The cell matching factor evaluates the error direction 
(4) consistency. The step matching factor evaluates Ni 

c 8, the consistency of the overall error pattern. If the 
j=l diagnosis is based only on emphasizing 

measurements that deviate but ignoring those that do 
not, it might bias the decision. 

n 

j = l  
a;sY 

Cui = 

Step 4: 
Step 5 :  

Calculate each steo’s fault possibility P’ 
Repeat for P - 
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End-of line data 
Vt NL Vt-N Isat-N BV N RS N+ Rc N+ - - - - 

Processing 
Step 

P+ S/D Photo 
planket) 

NLDD-Implant 
(Dosage) 

. . . . . , . . . . . . 

Fig. 9 Knowledge base used in the example. 

Example Step 4: Calculate each step's fault possibilitv P' 
Five end-of-line measurements show abnormal p+ S/D photo : pfl = 0.6 0.6 = 0.36 _ .  ~ 

values, which are: 
Vt-N (-) small error 
Isat-N (-) small error 
R s N +  (+) large error 
Rc N+ (+) large error 
R S W  - (+I small error 

NLDD-implant : Pfz = 0.044 x 0.153 = 0.006 
N+ S/D implant : P', = 0.044 x 0.08 = 0.004 

Step 5 :  Calculate each step's fault possibility P - 
P+ S/D photo : P - = 0.2 x 0.2 = 0.04 
NLDD-implant : P - ,  = 0.156 x 0.54 = 0.08 

N+ S/D implant : P - ,  = 0.444 x 0.84 = 0.37 

So the three most possible steps are: 
N+ S/D implant (negative error, P - 3  = 0.37) 

NLDD-implant (negative error, P - = 0.08) 

Part of the knowledge base is shown in Fig. 9. 
Based on the information, we want to know which 
process steps are the causing steps. 

Step 1 : 
Vt-N 

P+ S/D photo : 

NLDD-implant : 6. Data Validation 
A+= 1 0 0 0 0 Twenty three test cases are carefblly selected from 
N+ S/D implant : historical lot data by experienced field engineers to 
A'= 1 0 0 0 0 validate the proposed diagnosis system and to 

explore its properties. The metric for validation is 
Step 2: Calculate the weighted - sum OfpossibilitvA defined as fol~ows. If the top (second, third) 
P+ S/D photo : possible cause of a case identified by the diagnosis 

= (0 1 + 1 1 + 1 1 + 1 1 + 0 0)  5 = 0.6 system matches the real cause, a score of one (0.5, 
NLDD-implant : A ,  = (1 x 0.22) / 5 = 0.044 0.25) is given to the test case. Our validation 

focuses on the inference engine and knowledge base. N+ S/D implant : A ,  = (1 x 0.22) / 5 = 0.044 
Improvements in these two modules are carried out 
along with the validation by individual cases. Step 3: 

P+ SD photo : w1 = (1+1+1) / (l+l+l+l+l) = 0.6 The validation starts with the baseline diagnosis NLDD-implant : system, where the inference engine does not include w z  = (0.22) / (0.22-1-0.22-tO.78-tO.22) = 0.153 consideration of step matching factor ( w i  in Eq. 4) N+ S/D implant : 
w3 = (0.22) / (0.22+0.22+0.22+1+1) = 0.08 and the knowledge base of version 1.0 is used. 

Validation result of the first 14 test cases is depicted 

Calculate the cell matching factor A' 
Isat - N Rs - N+ Rc-N+ R s - W  P+ S/D photo (positive error, P+l = 0.36) 

A+= 0 1 1 1 0 

Calculate the step matching factor w 
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by the solid line in Fig. 10, where the system 
diagnoses the actual causes as top possible causes in 
half of the cases and the average score is 0.55. 
Analysis of the misdiagnosed cases (cases 6, 7, 9, 1 1, 
12 and 14) indicate two types of deficiency in the 
baseline system, one suggesting inclusion of the step 
matching factor into the inference engine and the 
other suggesting enrichments of the knowledge base. 
Details are described as follows. 

The calculated values are: 

Vt-imp: A = 1.0 
Pwell-imp : A = 0.75 

However, if Vt-imp is really the cause, we should 
observe abnormal values for BV N, Vt-P, Isat P 
and BV P (Fig. 11). These motivate the addition 
of the step matching factor into consideration as 
described in section 5. The newly calculated 
possibilities are: 

Pwell - imp : 
Vt-imp : 

Diagnosis results of the revised inference engine are 
depicted by the dash line in Fig. 10, where 
improvements in cases 9, 1 1 and 12 are obvious and 
there is no loss of diagnosability in other cases; the 

P = wA = 0.56 x 0.75 = 0.42 
P = wA = 0.36 

1 3  5 7 9 1 1 1 3  
Case number 

Fig. 10 Validation results for knowledge base 
version 1 .O and inference engine without 
step matching factor (solid line) and with 
step matching factor (dash line). 

Inference engine 
In the original inference engine, the possibility of a 
process step being the cause of fault is calculated 
using the weighted sum of possibility ( A .  in Eq. 3).  

With this method, the step's fault possibility is based 
only on the end-of-line measurements that deviate 
from their respective target values. The prior 
information about the error pattern, i.e., which 
measurements should deviate in what way when a 
process step goes wrong, is not utilized. In other 
words, the diagnosis is biased by overemphasizing 
on measurements that deviate but ignoring those that 
do not. Misdiagnosis in cases 9, 11, and 12 is due 
to such a deficiency. 

I 

Specifically, in case 12, the Isat-N value is seriously 
higher than target (positive and large error) and 
Vt-N is slightly low. By merely looking at the 
deviations and using weighted sum of possibility A,  
we deduce that Vt - imp is the most possible cause. 
The true cause Pwell-imp, however, has a lower A 
than that of Vt-imp. 

average score goes up to 0.64. 

Knowledge base 
Misdiagnosis of cases 6, 7 and 14 does not improve 
with the revised inference engine because of 
insufficient or inaccurate knowledge base. For 
example, the P+-blanket step is the true cause of 
case 6 but it is not in the knowledge base of version 
1 .o. 

To overcome the above deficiencies, more detailed 
process steps are added to the knowledge base, 
which increases from 34 to 132 in the validating 
process. Misdiagnosis due to missing steps in the 
knowledge base is therefore largely eliminated. 
Diagnosis result obtained by using the revised 
inference engine and knowledge base version 2.0 
over 23 cases are given in Fig. 12, where the first 14 
cases are the same cases as those in Fig. 10. 
Significant improvements in cases 6, 7 and a small 
improvement in case 14 can be observed while at the 
price of deterioration in cases 5 ,  8, 9, 11 and 12. 
The average score of the first 14 cases slightly goes 
up from 0.64 to 0.66 and is about 0.68 overall. 

To sum up, in 13 cases the real cause is identified as 
the top cause, in 4 cases as the second and in 3 cases 
as the third. Out of the 23 studied cases, version 
2.0 of the system identifies the real causes as the top 
three causes in 20 cases. 
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Pwell imP 1 + - + + 

Fig. 11 Knowledge table for case 12. 

- 1  

Vt-imp 

The deterioration is mainly due to the inaccurate 
parameters in the knowledge base. For example, in 
case 8 step Polyghoto/etch (small poly gate length) 
can be identified as the cause of symptom pattern of 
low Vt-N and large Isat-N by applying two physical 
rules, 
a Vt a L (Lis poly gate length) 
a Isat a 1/L 
Our diagnosis system only ranks Poly_photo/etch as 
2nd possible because the weighting is inaccurate 
which makes step NLDD the top possible and is 
inconsistent with the reality. Parameters of hture 
knowledge base should be adjusted to better reflect 
engineers’ knowledge about the basic physical 
relationship. 

I I I I I I + - + - + - 

2.0 of the system identifies the real causes as the top 
three causes in 20 cases. Our analysis indicates that 
the inference engine is robust but the knowledge 
base is insufficient, A short-term improvement 
strategy is to periodically update the knowledge base 
by field engineers based on lessons learned from the 
case study. Future long-term improvement plan 
might use neural network to perform the self- 
learning. 
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