Skip navigation
  • 中文
  • English

DSpace CRIS

  • DSpace logo
  • Home
  • Organizations
  • Researchers
  • Research Outputs
  • Explore by
    • Organizations
    • Researchers
    • Research Outputs
  • Academic & Publications
  • Sign in
  • 中文
  • English
  1. NTU Scholars

新進教師學術研究計畫/化學工程學系/開發多功能性高分子介面材料以提升有機/無機混摻鈣鈦礦太陽能電池之效能與穩定性

View Statistics Email Alert RSS Feed

  • Information

Details

Project title/計畫英文名
新進教師學術研究計畫/化學工程學系/開發多功能性高分子介面材料以提升有機/無機混摻鈣鈦礦太陽能電池之效能與穩定性
 
Project Number/計畫編號
106R7322
 
Translated Name/計畫中文名
新進教師學術研究計畫/化學工程學系/開發多功能性高分子介面材料以提升有機/無機混摻鈣鈦礦太陽能電池之效能與穩定性
 
Project Principal Investigator/計畫主持人
CHU-CHEN CHUEH
 
Funding Organization
The Aim For The Top University Project
 
Start date/計畫起
01-01-2017
Expected Completion/計畫迄
31-12-2017
 

Description

Abstract
摘要:發展永續能源已成為人類社會經濟發展之重要課題,其中以光伏發電最為受到矚目。近年來,有機/無機混成鈣鈦礦太陽能電池的快速發展引起了全世界的矚目。短短幾年内,其光轉換效率已大幅超越了有機太陽能電池,被視為太陽能電池技術中的革命性新世代材料,其具簡易溶液加工之特性與低材料成本展現了未來大規模商業化應用之高度可能性。然而,目前此領域相關之製程技術仍有待進一步提升,特別是在介面工程方面,其對於鈣鈦礦活性層薄膜形貌與穩定性、元件內部載子傳輸、元件之整體柔性與穩定性,扮演著舉足輕重的影響。因此,本計畫將致力於開發具有可溶液製備特性的多功能性高分子介面材料,以期同時提升鈣鈦礦太陽能電池之效能與穩定性。除開發具有高載子傳輸特性之共軛高分子材料與其相關介面載子傳輸分析外,也將針對高分子結構進行微調以研究其結構對於鈣鈦礦材料之結晶行為與穩定性之影響。最終將與元件工程整合,解決目前鈣鈦礦太陽能電池中元件再現性、毒性以及穩定性等關鍵問題,同時在此基礎上進一步發展高效能柔性鈣鈦礦太陽能電池,為其未來商業化作出貢獻。預計在三年的研究畫中達成下列目標:

(1) 最適化鈣鈦礦活性層薄膜製程,並研究其薄膜型態對於其光物理性質的影響。同時,針對鈣鈦礦組成進行調控,以製備具有不同帶隙之鈣鈦礦活性層以及降地有毒鉛之組份。

(2) 開發具有不同官能基團之新穎高分子半導體材料,並研究其結構-載子遷移率之相關性。同時,針對不同組份之鈣鈦礦材料,對所開發之半導體材料結構進行微調,並研究其對於鈣鈦礦材料之結晶行為與穩定性之影響,以達成鈣鈦礦活性層質量與元件介面載子傳輸之最適化。

(3) 整合所開發之高分子介面材料與元件工程製備高效能鈣鈦礦太陽能電池,並針對元件之再現性、遲滯現象、與相關穩定性作深入探討以達成元件製程最適化。最終,基於高分子介面材料之優良可撓性,達成製備高效能之柔性鈣鈦礦太陽能電池之目標。

Abstract: The development of sustainable energy has become an important task for human society, of which the photovoltaic technique has attracted the most attention. Recently, the rapid progress of organic/inorganic hybrid perovskite solar cell (PVSC) has drawn worldwide attention. Within only few years’ development, its power conversion efficiency has transcended the performance of organic photovoltaics, which enables PVSC to be viewed as the revolutionary new-generation photovoltaic materials. Provided its facile solution processability and low cost, the commercialization of PVSCs is potentially feasible in the near future. However, several issues regarding device manufacturing processes are still needed to be addressed prior to the practical applications, especially in terms of interfacial engineering which plays a pivotal role in influencing the crystallization and stability of prepared perovskite film, charge transport in device, and the overall flexibility and stability of the fabricated device. Hence, in this proposal, we will dedicate to develop solution-processed, multifunctional polymeric interlayers to simultaneously enhance the performance and stability of the derived PVSCs. In addition to the exploitation of high-mobility conjugated polymers and the investigation of associated interfacial charge transfer/transport, we will also fine-tune the polymer structures to clarify their structural influence on the crystallization and stability of the prepared perovskite films. We eventually will integrate the interface and device engineering to address the key issues in PVSCs, such as reproducibility, toxicity, and stability. Standing on this achievement, we will continue to develop high-performance flexible PVSCs and anticipate contributing to the future commercialization of PVSCs. We aim to achieve the following goals in this proposal:

(1) Optimize the deposition of perovskite films and investigate the correlation between thin-film morphology and resulting opto-physical properties. Besides, tuning the composition of perovskites to develop photoactive films with varied bandgaps and to reduce the toxic Pb content in perovskite films.

(2) Develop novel conjugated polymer materials with distinct functional groups and investigate their structure-mobility relationship. Besides, aiming to the perovskites with different composition, the structures of the exploited polymeric interlayers will be fine-tuned to promote the crystallization and stability of the prepared perovskite films and to optimize the charge transfer/transport at the corresponding interfaces.

(3) Integrate the exploited polymeric interlayers with device engineering to fabricate high-performance PVSCs and investigate their reproducibility, hysteresis, and stability to purse the optimal conditions of device fabrication. Taking the advantageous flexibility of polymeric interlayers, high-performance flexible PVSCs would be finally accomplished.
 
Keyword(s)
高分子介面材料
鈣鈦礦太陽能電池
載子傳輸特性
穩定性
柔性電池
Polymeric Interlayers
Perovskite Solar Cells
Charge-Transporting Property
Stability
Flexible Solar Cells
 

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Sherpa Romeo網站查詢,以確認出版單位之版權政策。
    Please use Sherpa Romeo to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)
Build with DSpace-CRIS - Extension maintained and optimized by Logo 4SCIENCE Feedback