Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Engineering Science and Ocean Engineering / 工程科學及海洋工程學系
  4. Automatic Brain Magnetic Resonance Image Denoising Using Texture Feature-Based Artificial Neural Networks
 
  • Details

Automatic Brain Magnetic Resonance Image Denoising Using Texture Feature-Based Artificial Neural Networks

Date Issued
2015
Date
2015
Author(s)
Chang, Yu-Ning
URI
http://ntur.lib.ntu.edu.tw//handle/246246/271517
Abstract
Noise is one of the main sources of quality deterioration not only for visual inspection but also in computerized processing in brain magnetic resonance (MR) image analysis such as tissue classification, segmentation and registration. Accordingly, noise removal in brain MR images is important for a wide variety of subsequent processing applications. However, most existing denoising algorithms require laborious tuning of parameters that are often sensitive to specific image features and textures. Automation of these parameters through artificial intelligence techniques will be highly beneficial. In the present study, an artificial neural network associated with texture feature analysis is proposed to establish a predictable parameter model and automate the denoising procedure. In our approach, a large number of image attributes are extracted based on four categories: 1) Basic image statistics. 2) Gray-level co-occurrence matrix (GLCM). 3) Gray-level run-length matrix (GLRLM) and 4) Tamura texture features. Based on the t-test and the sequential forward floating selection (SFFS) methods, the optimal texture features are selected and incorporated into a back propagation neural network system. We have used a wide variety of simulated T1-weighted MR images and clinical images to evaluate the proposed automatic denoising system. Experimental results indicated that the proposed method accurately predicted the bilateral filtering parameters and automatically removed the noise in a number of MR images with satisfactory quantity and quality.
Subjects
magnetic resonance image
back-propagation neural network
bilateral filter
denoising
image texture feature
t-test
sequential forward floating selection (SFFS)
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-104-R02525056-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):a124c859e02bcbd53aa80ed5fdb3b48b

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science