Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Comprehensive study on M-I-S contact system and its application to n-InGaAs semiconductor substrate
 
  • Details

Comprehensive study on M-I-S contact system and its application to n-InGaAs semiconductor substrate

Date Issued
2015
Date
2015
Author(s)
Lien, Chin
URI
http://ntur.lib.ntu.edu.tw//handle/246246/278337
Abstract
In this paper, we make a comprehensive study on Metal-Insulator-Semiconductor (M-I-S) contact system for III-V compound material, InGaAs. With the scaling limitation of Si-based device, III-V compound materials are regarded as the promising candidates for n-channel device in next generation because of its high electron mobility and low electron effective mass. However, III-V compound materials also have the same problem as Si or Ge, the Fermi Level Pinning (FLP). Recently, the Metal-Insulator-Semiconductor (M-I-S) contact structures have been proposed to release the Fermi Level Pinning (FLP), by modulating the Schottky Barrier Height (SBH) and futher reduce the contact resistivity. Reduction of contact resistivity plays an important role on boosting the device performance, especially in on-state current, in scaling generation. At the first part, I collect several literatures about recent M-I-S development and list some papers which focus on M-I-S contact system based on different semiconductor substrates i.e. Si, Ge and III-V compound material. Then the mechanisms of Fermi Level Pinning and M-I-S contact system are also given. The key points of reduction of contact resistivity using M-I-S system are the properties of inserting insulator i.e. dielectric constant, band offset, carrier effective mass and band gap as well as the interactions between insulator and substrate. At the second part, I use three different kinds of insulator: BaTiO3, TiO2 and ZnO on InGaAs substrate. Then Ti is used as contact metal to form M-I-S ohmic contact. The experimental results of M-S and M-I-S contact were discussed here. We find that the contact resistivity will reduce ~10x when we insert ZnO as insulator. Due to its nearly zero conduction band offset, the reduction of contact resistivity is still achieved even though its dielectric constant is not high compare to other two insulators.
Subjects
InGaAs
contact resistivity
Schottky Barrier Height
Fermi Level Pinning
Metal-Insulator-Semiconductor contact system
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-104-R02522613-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):cc041d4878023b05e58171d9d91fd2cb

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science