Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. A GPU-Accelerated Modified Unsharp-Masking Method for High-Frequency Background- Noise Suppression
 
  • Details

A GPU-Accelerated Modified Unsharp-Masking Method for High-Frequency Background- Noise Suppression

Journal
IEEE Access
Journal Volume
9
Pages
68746-68757
Date Issued
2021
Author(s)
Borah B.J
Sun C.-K.
CHI-KUANG SUN  
DOI
10.1109/ACCESS.2021.3077287
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85106030554&doi=10.1109%2fACCESS.2021.3077287&partnerID=40&md5=3456bee83e97270a9977a9445a0e5830
https://scholars.lib.ntu.edu.tw/handle/123456789/580741
Abstract
A digitized analog signal often encounters a high-frequency noisy background which degrades the signal-to-noise ratio (SNR) particularly in case of low signal strength. Despite quite a lot of hardware- and software-based approaches have been reported to date to deal with the noise issue, it is still a challenging task to real-time retrieve the noise-contaminated low-frequency information efficiently without degrading the original bandwidth. In this paper, we report a modified unsharp-masking (UM)-based Graphics Processing Unit (GPU)-accelerated algorithm to efficiently suppress a high-frequency noisy background in a digitized two-dimensional image. The proposed idea works effectively even if noise-density is high and signal of interest is comparable or weaker than the maximum noise level. While suppressing the noisy background, the original resolution remains least compromised. We first explore the effectiveness of the algorithm by means of simulated images and subsequently extend our demonstration towards a real-world life-science imaging application. Securing a potential for real-time applicability, we implement the algorithm via Compute Unified Device Architecture (CUDA)-acceleration and preserve a $ < 300~\mu \text{s}$ processing time for a $1000\times 1000$ -sized 8-bit data set. ? 2013 IEEE.
Subjects
Computer graphics; Computer graphics equipment; Computerized tomography; Graphics processing unit; Program processors; Background noise; Compute Unified Device Architecture(CUDA); Hardware and software; High frequency HF; Imaging applications; Maximum noise levels; Signal of interests; Two dimensional images; Signal to noise ratio
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science