Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Agricultural Chemistry / 農業化學系
  4. 性類固醇的微生物降解: 由模式物種延伸至環境樣本
 
  • Details

性類固醇的微生物降解: 由模式物種延伸至環境樣本

Other Title
Microbial Degradation of Sex Steroid Hormones: From Model Organisms to the Environmental Samples
Start Page
239
Date Issued
2017
Author(s)
陳宜龍(Yi-Lung Chen)  
江殷儒
DOI
10.6345/NTNU202203373
URI
https://www.airitilibrary.com/Article/Detail?DocID=U0021-G080150001S
https://scholars.lib.ntu.edu.tw/handle/123456789/732096
Abstract
Sex steroid hormones (SHs), a major group of endocrine disrupting agents, are often detected in aquatic environments. The most concerned SHs include estrogens (e.g., 17β-estradiol and estrone) and androgens (e.g., testosterone). Among the proposed remediation strategies, bacterial degradation has been considered an efficient and eco-friendly strategy for removing the SHs from the contaminated ecosystems. In this dissertation, I aimed to investigate the metabolic and phylogenetic diversity related to bacterial degradation of SHs from model organisms to the environemnt. By using culturable bacterial strains as model organisms, I demonstrated that strictly aerobic Sphingomonas sp. strain KC8 degrade estrogens through the 4,5-seco pathway; the essential meta-cleavage dioxygenase was isolated and characterized. Furthermore, through the genomic and transcriptomic analyses, I identified the catabolic gene clusters in the 4,5-seco pathway of strain KC8, and in the 2,3-seco pathway for androgen biodegradation of Steroidobacter denitrificans DSM 18526. The omics studies on the model organisms enabled the environmental investigations of steroid biodegradation, for which I used the following approaches: (i) ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) identification of signature metabolites, (ii) identification of main catabolic players through next-generation sequencing techniques, and (iii) PCR-based identification of functional genes. This study is the first integrated ‘omics’ investigation on the biochemical mechanisms and phylogenetic diversity of steroid biodegradation in the environment. In brief, Introduction provides the background information of SHs, current knowledge on their biodegradation, and my research objectives. The studies of androgen degradation: the genome of the androgen anaerobic decomposer, Steroidobacter denitrificans was completely sequenced and annotated. Transcriptomic data revealed the gene clusters that were distinctly expressed during anaerobic growth on testosterone; besides, I identified the bifunctional 1-testosterone hydratase/dehydrogenase, which is essential for anaerobic degradation of steroid A-ring. Because of apparent substrate preference of this molybdoenzyme, corresponding genes, along with the signature metabolites of the 2,3-seco pathway, suggested as biomarkers to investigate androgen biodegradation. Based on the available biomarkers of androgen degradation, I investigated the biochemical mechanisms and corresponding microorganisms of androgen degradation in the anaerobic and aerobic sewage. Sewage samples collected from the Dihua Sewage Treatment Plant (Taipei, Taiwan) were incubated with testosterone (1 mM) anaerobically or aerobically. Androgen metabolite analysis indicated that denitrifying bacteria in anaerobic sewage use the 2,3-seco pathway to degrade androgens. Metagenomic analysis and PCR-based functional assay showed androgen degradation in anaerobic sewage by Thauera spp. (mainly T. terpenica) through the action of 1-testosterone hydratase/dehydrogenase. Moreover, the 2.3-seco pathway utilized by T. terpenica 58Eu (DSMZ 12139) was also confirmed. By contrast, bacteria in aerobic sewage degraded androgens via the oxygenase-dependent 9,10-seco pathway, and the metagenomic analysis indicated the apparent enrichment of Comamonas spp. (mainly C. testosteroni) and Pseudomonas spp. in sewage incubated with testosterone. I used the degenerate primers derived from the meta-cleavage dioxygenase gene (tesB) of various proteobacteria to track this essential catabolic gene in the sewage. The amplified sequences showed the highest similarity (87–96%) to tesB of C. testosteroni. Using quantitative PCR, I detected a remarkable increase of the 16S rRNA and catabolic genes of C. testosteroni in the testosterone-treated sewage. The studies of estrogen degradation: Using a tiered functional genomics approach, I deciphered the catabolic enzymes and genes involved in estrogen biodegradation by a wastewater isolate, Sphingomonas sp. strain KC8. I identified the initial intermediates of this catabolic pathway, including 4-hydroxyestrone, a meta-cleavage product, and pyridinestrone acid. The yeast-based estrogen assay suggested that pyridinestrone acid exhibits negligible estrogenic activity. Further genomic and transcriptomic analyses revealed that two gene clusters are specifically expressed in strain KC8 cells grown on 17β-estradiol. I also characterized 17β-estradiol dehydrogenase and 4-hydroxyestrone 4,5-dioxygenase responsible for the 17-dehydrogenation and meta-cleavage of the estrogen A-ring, respectively. The 4-hydroxyestrone 4,5-dioxygenase gene and the characteristic pyridinestrone acid were detected in two wastewater treatment plants and two suburban rivers in Taiwan. In conclusion, the catabolic genes and characteristic metabolites can be used as the biomarkers to investigate fate and biodegradation potential of estrogens in the environment.
Subjects
13C-metabolomics
androgen
biodegradation
Comamonas
denitrifying bacteria
ecophysiology
estrogen
extradiol dioxygenase
functional genomics
Illumina MiSeq
molybdoenzyme
RNA-Seq
sewage treatment plant
Sphingomonas
steroid hormones
Steroidobacter
Thauera
Type
thesis

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science