Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Wavelets versus resels in the context of fMRI: Establishing the link with SPM
 
  • Details

Wavelets versus resels in the context of fMRI: Establishing the link with SPM

Journal
Proceedings of SPIE - The International Society for Optical Engineering
Journal Volume
5207
Journal Issue
1
Date Issued
2003-01-01
Author(s)
Van De Ville, Dimitri
THIERRY BLU  
Unser, Michael
DOI
10.1117/12.505627
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/640658
URL
https://api.elsevier.com/content/abstract/scopus_id/1242286052
Abstract
Statistical Parametric Mapping (SPM) is a widely deployed tool for detecting and analyzing brain activity from fMRI data. One of SPM's main features is smoothing the data by a Gaussian filter to increase the SNR. The subsequent statistical inference is based on the continuous Gaussian random field theory. Since the remaining spatial resolution has deteriorated due to smoothing, SPM introduces the concept of "resels" (resolution elements) or spatial information-containing cells. The number of resels turns out to be inversely proportional to the size of the Gaussian smoother. Detection the activation signal in fMRI data can also be done by a wavelet approach: after computing the spatial wavelet transform, a straightforward coefficient-wise statistical test is applied to detect activated wavelet coefficients. In this paper, we establish the link between SPM and the wavelet approach based on two observations. First, the (iterated) lowpass analysis filter of the discrete wavelet transform can be chosen to closely resemble SPM's Gaussian filter. Second, the subsampling scheme provides us with a natural way to define the number of resels; i.e., the number of coefficients in the lowpass subband of the wavelet decomposition. Using this connection, we can obtain the degree of the splines of the wavelet transform that makes it equivalent to SPM's method. We show results for two particularly attractive biorthogonal wavelet transforms for this task; i.e., 3D fractional-spline wavelets and 2D+Z fractional quincunx wavelets. The activation patterns are comparable to SPM's.
Subjects
Discrete wavelet transform | FMRI data analysis | Gaussian smoothing | Statistical testing
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science