Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Linear Discriminative Projections for Heterogeneous Domain Adaptation
 
  • Details

Linear Discriminative Projections for Heterogeneous Domain Adaptation

Date Issued
2014
Date
2014
Author(s)
Fang, Wen-Chieh
URI
http://ntur.lib.ntu.edu.tw//handle/246246/261452
Abstract
It is often expensive to collect labeled data and we sometimes have large amounts of labeled data in a related domain. Without enough training data, some classifiers such as k-Nearest Neighbor (kNN) or Support Vector Machine (SVM) may fail to achieve good classification performance. In this thesis, we consider the problem of utilizing few labeled data samples in a target domain and the data samples in a source domain to improve data classification in the target domain. We assume that the source and target domains have different feature spaces. In addition, the two domains are assumed to share no explicit common features but have the same set of class labels. A key technique for leveraging the data from another domain is to find two mapping functions so that the source and target spaces can be projected on a common space. In this thesis, we present a simple and intuitive technique called linear discriminative projections to address the problem. First, we separate the source data of distinct classes by using a discriminative method such as Linear Discriminative Analysis (LDA). We then apply a regression technique to map each labeled target data instance as close as possible to the center of the source data group with the same class label. Finally, we again use a discriminative method to separate all the data of distinct classes. Experimental results on some benchmark datasets clearly demonstrate that our approach is effective for learning discriminative features for supervised classification with few training target data.
Subjects
資料映射
特徵學習
領域適應
監督式分類
機器學習
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-103-D97922009-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):c08196be13ec1f0be95ca257b3c3a63c

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science