Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Applied Physics / 應用物理研究所
  4. Nitrogen Pretreatment of Growth Substrates for Vacancy-Saturated MoS2
 
  • Details

Nitrogen Pretreatment of Growth Substrates for Vacancy-Saturated MoS2

Journal
ACS Applied Materials & Interfaces
Journal Volume
15
Journal Issue
36
Start Page
42746
End Page
42752
ISSN
1944-8244
1944-8252
Date Issued
2023-08-30
Author(s)
Yu-Chi Yao
Bo-Yi Wu
Hao-Ting Chin
Zhi-Long Yen
Chu-Chi Ting
Mario Hofmann  
Ya-Ping Hsieh
DOI
10.1021/acsami.3c07793
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/724675
Abstract
Two-dimensional transition-metal dichalcogenides (2D TMDCs) are considered promising materials for optoelectronics due to their unique optical and electric properties. However, their potential has been limited by the occurrence of atomic vacancies during synthesis. While post-treatment processes have demonstrated the passivation of such vacancies, they increase process complexity and affect the TMDC’s quality. We here introduce the concept of pretreatment as a facile and powerful route to solve the problem of vacancies in MoS2. Low-temperature nitridation of the sapphire substrate prior to growth provides a nondestructive method to MoS2 modification without introducing new processing steps or increasing the thermal budget. Spectroscopic characterization and atomic-resolution microscopy reveal the incorporation of nitrogen from the sapphire surface layer into chalcogen vacancies. The resulting MoS2 with nitrogen-saturated defects shows a decrease in midgap states and more intrinsic doping as confirmed by ab initio calculations and optoelectronic measurements. The demonstrated pretreatment method opens up new routes toward future, high-performance 2D electronics, as evidenced by a 3-fold reduction in contact resistance and a 10-fold improved performance of 2D photodetectors.
Subjects
2D materials
defect engineering
low-temperature pretreatments
optoelectronics
photoluminescence
transport properties
Publisher
American Chemical Society (ACS)
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science