Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. The Influence of Subwavelength Grating Profiles to Surface Plasmon Resonance: Development of Nanowriter Optical Head and Related Applications
 
  • Details

The Influence of Subwavelength Grating Profiles to Surface Plasmon Resonance: Development of Nanowriter Optical Head and Related Applications

Date Issued
2005
Date
2005
Author(s)
Chou, Pei-Ting
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/62565
Abstract
Grating coupling is a major method to excite surface plasmon resonance; this thesis took the extraordinary transmission phenomenon first proposed by Ebbesen et al. as the starting point to study gratings of different materials and various profiles in order to understand the influence of these changes on surface plasmon resonance. It is anticipated to utilize parameters learned during the course of this research to facilitate the design of nanowriter optical head and other related applications. In simulations, we use rigorous coupled wave analysis (RCWA) and finite difference time domain (FDTD) to calculate the reflection spectrum and electromagnetic mode of surface plasmons, both of which is coupled by using gratings. The surface plasmon dispersion curve and coupling efficiency under different grating profiles were successfully calculated. We consider the non-metal surface gratings as a homogeneous dielectric layer by using effective medium theory. For metal surface gratings, we found the surface plasmon resonance condition of gradient gratings is different to binary gratings, thus the coupling efficiency and band gap width of gratings under different grating depths will be different. The distribution of electromagnetic field under different wavelength of light will be different. More specifically, the coupling efficiencies and band gap width under different grating depth were found to be different. We can obtain the design criterion of optical head and other optical devices through the above simulations. In experiments, we use electron beam lithography to make the gradient gratings, and produce metal and non-metal surface gratings with proper fabrication process. The fabrication process of nanowriter optical head was then detailed. We also take advantage of wet etching to manufacture the triangular nanoimprint mold with an attempt to reach the mass production goal of nanowriter optical head and other applications by using nanoimprint techniques.
Subjects
表面電漿
光柵
奈米直寫儀
surface plasmons
gratings
Nanowriter
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-94-R92543049-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):c8d32af436f93b83e555a1d27329d213

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science