Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Individual Component Detection of a Scaffolding Assembly for Vision-Based Safety Check
 
  • Details

Individual Component Detection of a Scaffolding Assembly for Vision-Based Safety Check

Journal
Construction Research Congress 2024, CRC 2024
Journal Volume
4
ISBN
9780784485293
Date Issued
2024-01-01
Author(s)
Lin, Pei Hsin
Pal, Aritra
林之謙  
SHANG-HSIEN HSIEH  
DOI
10.1061/9780784485293.073
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/641933
URL
https://api.elsevier.com/content/abstract/scopus_id/85188801152
Abstract
Fall from heights accounts for 50% of the accidents on construction sites, and 20% are scaffolding-related. Therefore, ensuring the safety of scaffolding installation can significantly reduce accidents onsite. Scaffoldings are erected by assembling components such as footboards, standards, ledgers, and cross-bracings. A safety check must ensure all necessary components in a scaffolding unit are installed in the correct order. While vision-based scaffolding detection has become more accurate with the recent success of deep learning detection algorithms, the detection of individual scaffolding units and their components is still challenging due to the scaffolding component size and shape. The size and shape factors pose many difficulties for the vision algorithms to detect thin structures and components of similar looks. To address the difficulties, this study proposes a method to segment the scaffolding units and components from a point cloud using a deep learning-based 3D semantic segmentation model. After segmentation, a rule-based approach can be applied to check the missing components. The method has been implemented in a construction project, and the preliminary results confirm its applicability for drawing workers' attention to the missing scaffolding components, thereby improving the construction site's safety.
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science