Publication: On the preparation and validation of a large-scale dataset of singing transcription
cris.lastimport.scopus | 2025-04-20T22:21:06Z | |
cris.virtual.department | Networking and Multimedia | en_US |
cris.virtual.department | Computer Science and Information Engineering | en_US |
cris.virtual.department | Center for Artificial Intelligence and Advanced Robotics | en_US |
cris.virtual.department | FinTech Center | en_US |
cris.virtual.orcid | 0000-0002-7319-9095 | en_US |
cris.virtualsource.department | c584a094-1560-413c-9e15-083ce2a92ffb | |
cris.virtualsource.department | c584a094-1560-413c-9e15-083ce2a92ffb | |
cris.virtualsource.department | c584a094-1560-413c-9e15-083ce2a92ffb | |
cris.virtualsource.department | c584a094-1560-413c-9e15-083ce2a92ffb | |
cris.virtualsource.orcid | c584a094-1560-413c-9e15-083ce2a92ffb | |
dc.contributor.author | Wang J.-Y | en_US |
dc.contributor.author | JYH-SHING JANG | en_US |
dc.creator | Wang J.-Y;Jang J.-S.R. | |
dc.date.accessioned | 2022-04-25T06:43:46Z | |
dc.date.available | 2022-04-25T06:43:46Z | |
dc.date.issued | 2021 | |
dc.description.abstract | This paper proposes a large-scale dataset for singing transcription, along with some methods for fine-tuning and validating its contents. The dataset is named MIR-ST500, which consists of more than 160,000 notes from 500 pop songs. To create this large-scale dataset, we set some labeling criteria and ask non-experts to label notes. We also perform some adjustments on the annotation to correct minor errors. Finally, to validate the dataset, we train a singing transcription model on MIR-ST500 dataset and evaluate it on various datasets. The result shows that we can certainly construct a better singing transcription model for various purposes using MIR-ST500, which is properly labeled and validated. ? 2021 IEEE | |
dc.identifier.doi | 10.1109/ICASSP39728.2021.9414601 | |
dc.identifier.issn | 15206149 | |
dc.identifier.scopus | 2-s2.0-85115050788 | |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85115050788&doi=10.1109%2fICASSP39728.2021.9414601&partnerID=40&md5=70bedf26b4c297347e361f22fd12f43a | |
dc.identifier.uri | https://scholars.lib.ntu.edu.tw/handle/123456789/607419 | |
dc.relation.conference | 2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 | |
dc.relation.ispartof | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings | |
dc.relation.journalvolume | 2021-June | |
dc.relation.pages | 276-280 | |
dc.subject | Automatic singing transcription | |
dc.subject | Dataset preparation | |
dc.subject | Dataset validation | |
dc.subject | Music information retrieval | |
dc.subject | Signal processing | |
dc.subject | Fine tuning | |
dc.subject | Large-scale dataset | |
dc.subject | Large dataset | |
dc.title | On the preparation and validation of a large-scale dataset of singing transcription | en_US |
dc.type | conference paper | en |
dspace.entity.type | Publication |