Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Universal Ensemble-Embedding Graph Neural Network for Direct Prediction of Optical Spectra from Crystal Structures
 
  • Details

Universal Ensemble-Embedding Graph Neural Network for Direct Prediction of Optical Spectra from Crystal Structures

Journal
Advanced Materials
Journal Volume
36
Journal Issue
46
Start Page
2409175
ISSN
15214095
09359648
Date Issued
2024
Author(s)
TUAN HUNG NGUYEN  
Okabe, Ryotaro
Chotrattanapituk, Abhijatmedhi
Li, Mingda
DOI
10.1002/adma.202409175
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85203557397&doi=10.1002%2Fadma.202409175&partnerID=40&md5=b03944a78538c33640e9a877b10aeb4d
https://scholars.lib.ntu.edu.tw/handle/123456789/732289
Abstract
Optical properties in solids, such as refractive index and absorption, hold vast applications ranging from solar panels to sensors, photodetectors, and transparent displays. However, first-principles computation of optical properties from crystal structures is a complex task due to the high convergence criteria and computational cost. Recent progress in machine learning shows promise in predicting material properties, yet predicting optical properties from crystal structures remains challenging due to the lack of efficient atomic embeddings. Here, Graph Neural Network for Optical spectra prediction (GNNOpt) is introduced, an equivariant graph-neural-network architecture featuring universal embedding with automatic optimization. This enables high-quality optical predictions with a dataset of only 944 materials. GNNOpt predicts all optical properties based on the Kramers-Kronig relations, including absorption coefficient, complex dielectric function, complex refractive index, and reflectance. The trained model is applied to screen photovoltaic materials based on spectroscopic limited maximum efficiency and search for quantum materials based on quantum weight. First-principles calculations validate the efficacy of the GNNOpt model, demonstrating excellent agreement in predicting the optical spectra of unseen materials. The discovery of new quantum materials with high predicted quantum weight, such as SiOs, which host exotic quasiparticles with multifold nontrivial topology, demonstrates the potential of GNNOpt in predicting optical properties across a broad range of materials and?applications.
Subjects
Equivariant Neural Networks
Kramers-kronig Relations
Machine Learning
Optical Spectra
Photovoltaic Materials
Quantum Materials
Crystal Atomic Structure
Glass Ceramics
Graph Embeddings
Graph Neural Networks
Health Risks
Nanocrystals
Network Embeddings
Network Theory (graphs)
Equivariant Neural Network
Kramers-kronig
Machine-learning
Neural-networks
Optical Spectrum
Optical-
Photovoltaic Materials
Property
Quantum Material
Kramers-kronig Relations
Absorption
Article
Controlled Study
Crystal Structure
Electric Potential
Machine Learning
Nerve Cell Network
Optics
Pharmaceutics
Prediction
Refraction Index
Sensor
Publisher
John Wiley and Sons Inc
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science